x-transformers 2.1.35__tar.gz → 2.1.36__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. {x_transformers-2.1.35 → x_transformers-2.1.36}/PKG-INFO +1 -1
  2. {x_transformers-2.1.35 → x_transformers-2.1.36}/pyproject.toml +1 -1
  3. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/x_transformers.py +5 -4
  4. {x_transformers-2.1.35 → x_transformers-2.1.36}/.github/FUNDING.yml +0 -0
  5. {x_transformers-2.1.35 → x_transformers-2.1.36}/.github/workflows/python-publish.yml +0 -0
  6. {x_transformers-2.1.35 → x_transformers-2.1.36}/.github/workflows/python-test.yaml +0 -0
  7. {x_transformers-2.1.35 → x_transformers-2.1.36}/.gitignore +0 -0
  8. {x_transformers-2.1.35 → x_transformers-2.1.36}/LICENSE +0 -0
  9. {x_transformers-2.1.35 → x_transformers-2.1.36}/README.md +0 -0
  10. {x_transformers-2.1.35 → x_transformers-2.1.36}/data/README.md +0 -0
  11. {x_transformers-2.1.35 → x_transformers-2.1.36}/data/enwik8.gz +0 -0
  12. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/all-attention.png +0 -0
  13. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/attention-on-attention.png +0 -0
  14. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/cosine-sim-attention.png +0 -0
  15. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/deepnorm.png +0 -0
  16. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/dynamic-pos-bias-linear.png +0 -0
  17. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/dynamic-pos-bias-log.png +0 -0
  18. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/dynamic-pos-bias-sinusoidal.png +0 -0
  19. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/dynamic-pos-bias.png +0 -0
  20. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/enhanced-recurrence.png +0 -0
  21. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/fcm.png +0 -0
  22. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/ffglu.png +0 -0
  23. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/flash-attention.png +0 -0
  24. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/gate_values.png +0 -0
  25. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/gating.png +0 -0
  26. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/length-extrapolation-scale.png +0 -0
  27. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/macaron-1.png +0 -0
  28. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/macaron-2.png +0 -0
  29. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/memory-transformer.png +0 -0
  30. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/normformer.png +0 -0
  31. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/pia.png +0 -0
  32. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/qknorm-analysis.png +0 -0
  33. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/resi_dual.png +0 -0
  34. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/residual_attn.png +0 -0
  35. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/rezero.png +0 -0
  36. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/rotary.png +0 -0
  37. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/sandwich-2.png +0 -0
  38. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/sandwich.png +0 -0
  39. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/sandwich_norm.png +0 -0
  40. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/scalenorm.png +0 -0
  41. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/talking-heads.png +0 -0
  42. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/topk-attention.png +0 -0
  43. {x_transformers-2.1.35 → x_transformers-2.1.36}/images/xval.png +0 -0
  44. {x_transformers-2.1.35 → x_transformers-2.1.36}/tests/test_x_transformers.py +0 -0
  45. {x_transformers-2.1.35 → x_transformers-2.1.36}/train_belief_state.py +0 -0
  46. {x_transformers-2.1.35 → x_transformers-2.1.36}/train_copy.py +0 -0
  47. {x_transformers-2.1.35 → x_transformers-2.1.36}/train_enwik8.py +0 -0
  48. {x_transformers-2.1.35 → x_transformers-2.1.36}/train_length_extrapolate.py +0 -0
  49. {x_transformers-2.1.35 → x_transformers-2.1.36}/train_parity.py +0 -0
  50. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/__init__.py +0 -0
  51. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/attend.py +0 -0
  52. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/autoregressive_wrapper.py +0 -0
  53. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/belief_state_wrapper.py +0 -0
  54. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/continuous.py +0 -0
  55. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/dpo.py +0 -0
  56. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/multi_input.py +0 -0
  57. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/neo_mlp.py +0 -0
  58. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/nonautoregressive_wrapper.py +0 -0
  59. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  60. {x_transformers-2.1.35 → x_transformers-2.1.36}/x_transformers/xval.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.1.35
3
+ Version: 2.1.36
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "x-transformers"
3
- version = "2.1.35"
3
+ version = "2.1.36"
4
4
  description = "X-Transformers"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -864,14 +864,15 @@ class DynamicTanh(Module):
864
864
  self.gamma = nn.Parameter(torch.ones(dim))
865
865
  self.beta = nn.Parameter(torch.zeros(dim))
866
866
 
867
- self.unit_offset = int(unit_offset)
867
+ self.pre_tanh_scale_offset = init_alpha if unit_offset else 0.
868
+ self.gamma_offset = float(unit_offset)
868
869
 
869
- nn.init.constant_(self.pre_tanh_scale, 1. - float(unit_offset))
870
+ nn.init.constant_(self.pre_tanh_scale, 0 if unit_offset else init_alpha)
870
871
  nn.init.constant_(self.gamma, 1. - float(unit_offset))
871
872
 
872
873
  def forward(self, x):
873
- pre_tanh_scale = self.pre_tanh_scale + self.unit_offset
874
- gamma = self.gamma + self.unit_offset
874
+ pre_tanh_scale = self.pre_tanh_scale + self.pre_tanh_scale_offset
875
+ gamma = self.gamma + self.gamma_offset
875
876
  return (x * pre_tanh_scale).tanh() * gamma + self.beta
876
877
 
877
878
  # residual and residual gates
File without changes