x-transformers 2.1.23__tar.gz → 2.1.24__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. {x_transformers-2.1.23 → x_transformers-2.1.24}/PKG-INFO +1 -1
  2. {x_transformers-2.1.23 → x_transformers-2.1.24}/pyproject.toml +1 -1
  3. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/belief_state_wrapper.py +7 -1
  4. {x_transformers-2.1.23 → x_transformers-2.1.24}/.github/FUNDING.yml +0 -0
  5. {x_transformers-2.1.23 → x_transformers-2.1.24}/.github/workflows/python-publish.yml +0 -0
  6. {x_transformers-2.1.23 → x_transformers-2.1.24}/.github/workflows/python-test.yaml +0 -0
  7. {x_transformers-2.1.23 → x_transformers-2.1.24}/.gitignore +0 -0
  8. {x_transformers-2.1.23 → x_transformers-2.1.24}/LICENSE +0 -0
  9. {x_transformers-2.1.23 → x_transformers-2.1.24}/README.md +0 -0
  10. {x_transformers-2.1.23 → x_transformers-2.1.24}/data/README.md +0 -0
  11. {x_transformers-2.1.23 → x_transformers-2.1.24}/data/enwik8.gz +0 -0
  12. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/all-attention.png +0 -0
  13. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/attention-on-attention.png +0 -0
  14. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/cosine-sim-attention.png +0 -0
  15. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/deepnorm.png +0 -0
  16. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/dynamic-pos-bias-linear.png +0 -0
  17. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/dynamic-pos-bias-log.png +0 -0
  18. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/dynamic-pos-bias-sinusoidal.png +0 -0
  19. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/dynamic-pos-bias.png +0 -0
  20. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/enhanced-recurrence.png +0 -0
  21. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/fcm.png +0 -0
  22. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/ffglu.png +0 -0
  23. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/flash-attention.png +0 -0
  24. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/gate_values.png +0 -0
  25. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/gating.png +0 -0
  26. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/length-extrapolation-scale.png +0 -0
  27. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/macaron-1.png +0 -0
  28. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/macaron-2.png +0 -0
  29. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/memory-transformer.png +0 -0
  30. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/normformer.png +0 -0
  31. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/pia.png +0 -0
  32. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/qknorm-analysis.png +0 -0
  33. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/resi_dual.png +0 -0
  34. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/residual_attn.png +0 -0
  35. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/rezero.png +0 -0
  36. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/rotary.png +0 -0
  37. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/sandwich-2.png +0 -0
  38. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/sandwich.png +0 -0
  39. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/sandwich_norm.png +0 -0
  40. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/scalenorm.png +0 -0
  41. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/talking-heads.png +0 -0
  42. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/topk-attention.png +0 -0
  43. {x_transformers-2.1.23 → x_transformers-2.1.24}/images/xval.png +0 -0
  44. {x_transformers-2.1.23 → x_transformers-2.1.24}/tests/test_x_transformers.py +0 -0
  45. {x_transformers-2.1.23 → x_transformers-2.1.24}/train_belief_state.py +0 -0
  46. {x_transformers-2.1.23 → x_transformers-2.1.24}/train_copy.py +0 -0
  47. {x_transformers-2.1.23 → x_transformers-2.1.24}/train_enwik8.py +0 -0
  48. {x_transformers-2.1.23 → x_transformers-2.1.24}/train_length_extrapolate.py +0 -0
  49. {x_transformers-2.1.23 → x_transformers-2.1.24}/train_parity.py +0 -0
  50. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/__init__.py +0 -0
  51. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/attend.py +0 -0
  52. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/autoregressive_wrapper.py +0 -0
  53. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/continuous.py +0 -0
  54. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/dpo.py +0 -0
  55. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/multi_input.py +0 -0
  56. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/neo_mlp.py +0 -0
  57. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/nonautoregressive_wrapper.py +0 -0
  58. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/x_transformers.py +0 -0
  59. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  60. {x_transformers-2.1.23 → x_transformers-2.1.24}/x_transformers/xval.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.1.23
3
+ Version: 2.1.24
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "x-transformers"
3
- version = "2.1.23"
3
+ version = "2.1.24"
4
4
  description = "X-Transformers"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -350,7 +350,13 @@ class BeliefStateWrapper(Module):
350
350
 
351
351
  if exists(loss_weight_by_fb_indices):
352
352
  loss_weight = loss_weight_by_fb_indices(fb_pairs)
353
- loss = einx.multiply('b fb n, n', loss, loss_weight)
353
+
354
+ if loss_weight.ndim == 1:
355
+ loss = einx.multiply('b fb n, n', loss, loss_weight)
356
+ elif loss_weight.ndim == 2:
357
+ loss = einx.multiply('b fb n, n fb', loss, loss_weight)
358
+ else:
359
+ raise ValueError('invalid loss weight dims')
354
360
 
355
361
  loss = loss.mean()
356
362
 
File without changes