x-transformers 1.42.26__tar.gz → 1.42.28__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (22) hide show
  1. {x_transformers-1.42.26/x_transformers.egg-info → x_transformers-1.42.28}/PKG-INFO +1 -1
  2. {x_transformers-1.42.26 → x_transformers-1.42.28}/setup.py +1 -1
  3. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/x_transformers.py +1 -1
  4. {x_transformers-1.42.26 → x_transformers-1.42.28/x_transformers.egg-info}/PKG-INFO +1 -1
  5. {x_transformers-1.42.26 → x_transformers-1.42.28}/LICENSE +0 -0
  6. {x_transformers-1.42.26 → x_transformers-1.42.28}/README.md +0 -0
  7. {x_transformers-1.42.26 → x_transformers-1.42.28}/setup.cfg +0 -0
  8. {x_transformers-1.42.26 → x_transformers-1.42.28}/tests/test_x_transformers.py +0 -0
  9. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/__init__.py +0 -0
  10. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/attend.py +0 -0
  11. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/autoregressive_wrapper.py +0 -0
  12. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/continuous.py +0 -0
  13. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/dpo.py +0 -0
  14. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/multi_input.py +0 -0
  15. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/neo_mlp.py +0 -0
  16. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/nonautoregressive_wrapper.py +0 -0
  17. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  18. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers/xval.py +0 -0
  19. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers.egg-info/SOURCES.txt +0 -0
  20. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers.egg-info/dependency_links.txt +0 -0
  21. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers.egg-info/requires.txt +0 -0
  22. {x_transformers-1.42.26 → x_transformers-1.42.28}/x_transformers.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.26
3
+ Version: 1.42.28
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
  setup(
4
4
  name = 'x-transformers',
5
5
  packages = find_packages(exclude=['examples']),
6
- version = '1.42.26',
6
+ version = '1.42.28',
7
7
  license='MIT',
8
8
  description = 'X-Transformers - Pytorch',
9
9
  author = 'Phil Wang',
@@ -1584,7 +1584,7 @@ class AttentionLayers(Module):
1584
1584
  unet_skips = False,
1585
1585
  reinject_input = False, # seen first in DEQ paper https://arxiv.org/abs/1909.01377, but later used in a number of papers trying to achieve depthwise generalization https://arxiv.org/abs/2410.03020v1
1586
1586
  add_value_residual = False, # resformer from Zhou et al - https://arxiv.org/abs/2410.17897v1
1587
- learned_value_residual_mix = False, # seeing big improvements when the value residual mix value is learned per token - credit goes to @faresobeid for taking the first step with learned scalar mix, then @Blinkdl for taking it a step further with data dependent. here we will use per token learned
1587
+ learned_value_residual_mix = True, # seeing big improvements when the value residual mix value is learned per token - credit goes to @faresobeid for taking the first step with learned scalar mix, then @Blinkdl for taking it a step further with data dependent. here we will use per token learned
1588
1588
  rel_pos_kwargs: dict = dict(),
1589
1589
  **kwargs
1590
1590
  ):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.26
3
+ Version: 1.42.28
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang