x-transformers 1.42.10__tar.gz → 1.42.11__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (22) hide show
  1. {x_transformers-1.42.10/x_transformers.egg-info → x_transformers-1.42.11}/PKG-INFO +1 -1
  2. {x_transformers-1.42.10 → x_transformers-1.42.11}/setup.py +1 -1
  3. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/continuous.py +20 -3
  4. {x_transformers-1.42.10 → x_transformers-1.42.11/x_transformers.egg-info}/PKG-INFO +1 -1
  5. {x_transformers-1.42.10 → x_transformers-1.42.11}/LICENSE +0 -0
  6. {x_transformers-1.42.10 → x_transformers-1.42.11}/README.md +0 -0
  7. {x_transformers-1.42.10 → x_transformers-1.42.11}/setup.cfg +0 -0
  8. {x_transformers-1.42.10 → x_transformers-1.42.11}/tests/test_x_transformers.py +0 -0
  9. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/__init__.py +0 -0
  10. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/attend.py +0 -0
  11. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/autoregressive_wrapper.py +0 -0
  12. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/dpo.py +0 -0
  13. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/multi_input.py +0 -0
  14. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/neo_mlp.py +0 -0
  15. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/nonautoregressive_wrapper.py +0 -0
  16. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/x_transformers.py +0 -0
  17. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  18. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers/xval.py +0 -0
  19. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers.egg-info/SOURCES.txt +0 -0
  20. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers.egg-info/dependency_links.txt +0 -0
  21. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers.egg-info/requires.txt +0 -0
  22. {x_transformers-1.42.10 → x_transformers-1.42.11}/x_transformers.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.10
3
+ Version: 1.42.11
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
  setup(
4
4
  name = 'x-transformers',
5
5
  packages = find_packages(exclude=['examples']),
6
- version = '1.42.10',
6
+ version = '1.42.11',
7
7
  license='MIT',
8
8
  description = 'X-Transformers - Pytorch',
9
9
  author = 'Phil Wang',
@@ -2,7 +2,8 @@ import torch
2
2
  from torch import nn
3
3
  import torch.nn.functional as F
4
4
 
5
- from einops import pack, repeat, unpack
5
+ import einx
6
+ from einops import reduce, pack, repeat, unpack
6
7
 
7
8
  from x_transformers.x_transformers import (
8
9
  AttentionLayers,
@@ -24,6 +25,15 @@ def default(val, d):
24
25
  return val
25
26
  return d() if callable(d) else d
26
27
 
28
+ def masked_mean(t, mask):
29
+ t = einx.where('b n, b n d, -> b n d', mask, t, 0.)
30
+
31
+ num = reduce(t, 'b n d -> b', 'sum')
32
+ den = mask.sum(dim = -1)
33
+
34
+ masked_average = num / den.clamp(min = 1.)
35
+ return masked_average
36
+
27
37
  # main classes
28
38
 
29
39
  class ContinuousTransformerWrapper(nn.Module):
@@ -169,12 +179,15 @@ class ContinuousAutoregressiveWrapper(nn.Module):
169
179
  net: ContinuousTransformerWrapper,
170
180
  ignore_index = -100,
171
181
  pad_value = 0,
172
- loss_fn = nn.MSELoss(reduction = 'none')
182
+ loss_fn = nn.MSELoss(reduction = 'none'),
183
+ equal_loss_weight_batch = False # setting this to True, if the mask is passed in and sequences are variable in length, each sequence will be weighted the same (as opposed to each token)
173
184
  ):
174
185
  super().__init__()
175
186
  self.net = net
176
187
  self.max_seq_len = net.max_seq_len
188
+
177
189
  self.loss_fn = loss_fn
190
+ self.equal_loss_weight_batch = equal_loss_weight_batch
178
191
 
179
192
  @torch.no_grad()
180
193
  def generate(self, start_tokens, seq_len, **kwargs):
@@ -222,6 +235,10 @@ class ContinuousAutoregressiveWrapper(nn.Module):
222
235
 
223
236
  if exists(mask):
224
237
  assert loss.ndim > 1, 'loss should not be reduced if mask is passed in'
225
- loss = loss[mask]
238
+
239
+ if self.equal_loss_weight_batch:
240
+ loss = masked_mean(loss, mask)
241
+ else:
242
+ loss = loss[mask]
226
243
 
227
244
  return loss.mean()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: x-transformers
3
- Version: 1.42.10
3
+ Version: 1.42.11
4
4
  Summary: X-Transformers - Pytorch
5
5
  Home-page: https://github.com/lucidrains/x-transformers
6
6
  Author: Phil Wang