x-transformers 1.41.5__tar.gz → 1.42.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {x_transformers-1.41.5/x_transformers.egg-info → x_transformers-1.42.0}/PKG-INFO +1 -1
- {x_transformers-1.41.5 → x_transformers-1.42.0}/README.md +11 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/setup.py +1 -1
- {x_transformers-1.41.5 → x_transformers-1.42.0}/tests/test_x_transformers.py +20 -1
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/__init__.py +4 -0
- x_transformers-1.42.0/x_transformers/neo_mlp.py +126 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0/x_transformers.egg-info}/PKG-INFO +1 -1
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers.egg-info/SOURCES.txt +1 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/LICENSE +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/setup.cfg +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/attend.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/autoregressive_wrapper.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/continuous.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/dpo.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/multi_input.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/nonautoregressive_wrapper.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/x_transformers.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/xl_autoregressive_wrapper.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers/xval.py +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers.egg-info/dependency_links.txt +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers.egg-info/requires.txt +0 -0
- {x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers.egg-info/top_level.txt +0 -0
@@ -2341,4 +2341,15 @@ ids_out, num_out, is_number_mask = model.generate(start_ids, start_nums, 17)
|
|
2341
2341
|
}
|
2342
2342
|
```
|
2343
2343
|
|
2344
|
+
```bibtex
|
2345
|
+
@inproceedings{anonymous2024from,
|
2346
|
+
title = {From {MLP} to Neo{MLP}: Leveraging Self-Attention for Neural Fields},
|
2347
|
+
author = {Anonymous},
|
2348
|
+
booktitle = {Submitted to The Thirteenth International Conference on Learning Representations},
|
2349
|
+
year = {2024},
|
2350
|
+
url = {https://openreview.net/forum?id=A8Vuf2e8y6},
|
2351
|
+
note = {under review}
|
2352
|
+
}
|
2353
|
+
```
|
2354
|
+
|
2344
2355
|
*solve intelligence... then use that to solve everything else.* - Demis Hassabis
|
@@ -6,7 +6,11 @@ from x_transformers.x_transformers import (
|
|
6
6
|
TransformerWrapper,
|
7
7
|
Encoder,
|
8
8
|
Decoder,
|
9
|
-
AutoregressiveWrapper
|
9
|
+
AutoregressiveWrapper,
|
10
|
+
)
|
11
|
+
|
12
|
+
from x_transformers.neo_mlp import (
|
13
|
+
NeoMLP
|
10
14
|
)
|
11
15
|
|
12
16
|
from x_transformers.multi_input import MultiInputTransformerWrapper
|
@@ -357,3 +361,18 @@ def test_forgetting_transformer():
|
|
357
361
|
x = torch.randint(0, 20000, (2, 1024))
|
358
362
|
|
359
363
|
embed = model(x)
|
364
|
+
|
365
|
+
def test_neo_mlp():
|
366
|
+
|
367
|
+
mlp = NeoMLP(
|
368
|
+
dim_in = 5,
|
369
|
+
dim_out = 7,
|
370
|
+
dim_hidden = 16,
|
371
|
+
depth = 5,
|
372
|
+
dim_model = 64,
|
373
|
+
)
|
374
|
+
|
375
|
+
x = torch.randn(3, 5)
|
376
|
+
|
377
|
+
out = mlp(x)
|
378
|
+
assert out.shape == (3, 7)
|
@@ -0,0 +1,126 @@
|
|
1
|
+
from collections import namedtuple
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import nn, tensor, pi, is_tensor
|
5
|
+
import torch.nn.functional as F
|
6
|
+
from torch.nn import Module, ModuleList
|
7
|
+
|
8
|
+
from einops import rearrange, repeat, einsum, pack, unpack
|
9
|
+
|
10
|
+
from x_transformers.x_transformers import (
|
11
|
+
Encoder
|
12
|
+
)
|
13
|
+
|
14
|
+
# helpers
|
15
|
+
|
16
|
+
def exists(v):
|
17
|
+
return v is not None
|
18
|
+
|
19
|
+
def default(v, d):
|
20
|
+
return v if exists(v) else d
|
21
|
+
|
22
|
+
# random fourier
|
23
|
+
|
24
|
+
class RandomFourierEmbed(Module):
|
25
|
+
|
26
|
+
def __init__(self, dim):
|
27
|
+
super().__init__()
|
28
|
+
self.proj = nn.Linear(1, dim)
|
29
|
+
self.proj.requires_grad_(False)
|
30
|
+
|
31
|
+
def forward(
|
32
|
+
self,
|
33
|
+
times,
|
34
|
+
):
|
35
|
+
|
36
|
+
times = rearrange(times, '... -> ... 1')
|
37
|
+
rand_proj = self.proj(times)
|
38
|
+
return torch.cos(2 * pi * rand_proj)
|
39
|
+
|
40
|
+
# class
|
41
|
+
|
42
|
+
class NeoMLP(Module):
|
43
|
+
""" https://openreview.net/forum?id=A8Vuf2e8y6 """
|
44
|
+
|
45
|
+
def __init__(
|
46
|
+
self,
|
47
|
+
*,
|
48
|
+
dim_in,
|
49
|
+
dim_hidden,
|
50
|
+
dim_out,
|
51
|
+
dim_model,
|
52
|
+
depth,
|
53
|
+
encoder_kwargs: dict = dict(
|
54
|
+
attn_dim_head = 16,
|
55
|
+
heads = 4
|
56
|
+
)
|
57
|
+
):
|
58
|
+
super().__init__()
|
59
|
+
|
60
|
+
# input and output embeddings
|
61
|
+
|
62
|
+
self.input_embed = nn.Parameter(torch.zeros(dim_in, dim_model))
|
63
|
+
self.hidden_embed = nn.Parameter(torch.zeros(dim_hidden, dim_model))
|
64
|
+
self.output_embed = nn.Parameter(torch.zeros(dim_out, dim_model))
|
65
|
+
|
66
|
+
nn.init.normal_(self.input_embed, std = 0.02)
|
67
|
+
nn.init.normal_(self.hidden_embed, std = 0.02)
|
68
|
+
nn.init.normal_(self.output_embed, std = 0.02)
|
69
|
+
|
70
|
+
# they use random fourier for continuous features
|
71
|
+
|
72
|
+
self.random_fourier = nn.Sequential(
|
73
|
+
RandomFourierEmbed(dim_model),
|
74
|
+
nn.Linear(dim_model, dim_model)
|
75
|
+
)
|
76
|
+
|
77
|
+
# hidden dimensions of mlp replaced with nodes with message passing
|
78
|
+
# which comes back to self attention as a fully connected graph.
|
79
|
+
|
80
|
+
self.transformer = Encoder(
|
81
|
+
dim = dim_model,
|
82
|
+
depth = depth,
|
83
|
+
**encoder_kwargs
|
84
|
+
)
|
85
|
+
|
86
|
+
# output
|
87
|
+
|
88
|
+
self.to_output_weights = nn.Parameter(torch.randn(dim_out, dim_model))
|
89
|
+
self.to_output_bias = nn.Parameter(torch.zeros(dim_out))
|
90
|
+
|
91
|
+
def forward(
|
92
|
+
self,
|
93
|
+
x,
|
94
|
+
return_embeds = False
|
95
|
+
):
|
96
|
+
batch = x.shape[0]
|
97
|
+
|
98
|
+
fouriered_input = self.random_fourier(x)
|
99
|
+
|
100
|
+
# add fouriered input to the input embedding
|
101
|
+
|
102
|
+
input_embed = fouriered_input + self.input_embed
|
103
|
+
|
104
|
+
hidden_embed, output_embed = tuple(repeat(t, '... -> b ...', b = batch) for t in (self.hidden_embed, self.output_embed))
|
105
|
+
|
106
|
+
# pack all the inputs into one string of tokens for self attention
|
107
|
+
|
108
|
+
embed, packed_shape = pack([input_embed, hidden_embed, output_embed], 'b * d')
|
109
|
+
|
110
|
+
# attention is all you need
|
111
|
+
|
112
|
+
embed = self.transformer(embed)
|
113
|
+
|
114
|
+
# unpack
|
115
|
+
|
116
|
+
input_embed, hidden_embed, output_embed = unpack(embed, packed_shape, 'b * d')
|
117
|
+
|
118
|
+
# project for output
|
119
|
+
|
120
|
+
output = einsum(output_embed, self.to_output_weights, 'b n d, n d -> b n')
|
121
|
+
output = output + self.to_output_bias
|
122
|
+
|
123
|
+
if not return_embeds:
|
124
|
+
return output
|
125
|
+
|
126
|
+
return output, (input_embed, hidden_embed, output_embed)
|
@@ -9,6 +9,7 @@ x_transformers/autoregressive_wrapper.py
|
|
9
9
|
x_transformers/continuous.py
|
10
10
|
x_transformers/dpo.py
|
11
11
|
x_transformers/multi_input.py
|
12
|
+
x_transformers/neo_mlp.py
|
12
13
|
x_transformers/nonautoregressive_wrapper.py
|
13
14
|
x_transformers/x_transformers.py
|
14
15
|
x_transformers/xl_autoregressive_wrapper.py
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{x_transformers-1.41.5 → x_transformers-1.42.0}/x_transformers.egg-info/dependency_links.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|