wiba 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of wiba might be problematic. Click here for more details.

wiba-0.1.0/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Arman Akbarian
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
wiba-0.1.0/MANIFEST.in ADDED
@@ -0,0 +1,3 @@
1
+ include LICENSE
2
+ include README.md
3
+ include wiba/py.typed
wiba-0.1.0/PKG-INFO ADDED
@@ -0,0 +1,157 @@
1
+ Metadata-Version: 2.2
2
+ Name: wiba
3
+ Version: 0.1.0
4
+ Summary: WIBA: What Is Being Argued? A Comprehensive Approach to Argument Mining
5
+ Home-page: https://github.com/Armaniii/WIBA
6
+ Author: Arman Irani
7
+ Author-email: airan002@ucr.edu
8
+ Project-URL: Bug Tracker, https://github.com/Armaniii/WIBA/issues
9
+ Project-URL: Documentation, https://wiba.dev
10
+ Project-URL: Source Code, https://github.com/Armaniii/WIBA
11
+ Classifier: Development Status :: 4 - Beta
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
20
+ Classifier: Topic :: Text Processing :: Linguistic
21
+ Requires-Python: >=3.8
22
+ Description-Content-Type: text/markdown
23
+ License-File: LICENSE
24
+ Requires-Dist: requests>=2.25.0
25
+ Requires-Dist: pandas>=1.2.0
26
+ Requires-Dist: numpy>=1.19.0
27
+ Requires-Dist: tqdm>=4.50.0
28
+ Requires-Dist: structlog>=21.1.0
29
+ Dynamic: author
30
+ Dynamic: author-email
31
+ Dynamic: classifier
32
+ Dynamic: description
33
+ Dynamic: description-content-type
34
+ Dynamic: home-page
35
+ Dynamic: project-url
36
+ Dynamic: requires-dist
37
+ Dynamic: requires-python
38
+ Dynamic: summary
39
+
40
+ # WIBA: What Is Being Argued?
41
+
42
+ WIBA is a comprehensive argument mining toolkit that helps you detect, analyze, and understand arguments in text. It provides a simple yet powerful interface to identify argumentative content, extract topics, analyze stance, and discover arguments in longer texts.
43
+
44
+ ## Installation
45
+
46
+ ```bash
47
+ pip install wiba
48
+ ```
49
+
50
+ ## Quick Start
51
+
52
+ ```python
53
+ from wiba import WIBA
54
+
55
+ # Initialize with your API token
56
+ analyzer = WIBA(api_token="your_api_token_here")
57
+
58
+ # Example text
59
+ text = "Climate change is real because global temperatures are rising."
60
+
61
+ # Detect if it's an argument
62
+ result = analyzer.detect(text)
63
+ print(f"Argument detected: {result.argument_prediction}")
64
+ print(f"Confidence: {result.confidence_score}")
65
+ ```
66
+
67
+ ## Features
68
+
69
+ - **Argument Detection**: Identify whether a text contains an argument
70
+ - **Topic Extraction**: Extract the main topic being argued about
71
+ - **Stance Analysis**: Determine the stance towards a specific topic
72
+ - **Argument Discovery**: Find argumentative segments in longer texts
73
+ - **Batch Processing**: Efficiently process multiple texts
74
+ - **DataFrame Support**: Native pandas DataFrame integration
75
+
76
+ ## Documentation
77
+
78
+ For detailed documentation and examples, visit [wiba.dev](https://wiba.dev).
79
+
80
+ ## Getting Started
81
+
82
+ 1. Create an account at [wiba.dev](https://wiba.dev) to get your API token
83
+ 2. Install the package: `pip install wiba`
84
+ 3. Initialize the client with your token
85
+ 4. Start analyzing arguments!
86
+
87
+ ## Example Usage
88
+
89
+ ### Detect Arguments
90
+
91
+ ```python
92
+ # Single text
93
+ result = analyzer.detect("Climate change is real because temperatures are rising.")
94
+ print(result.argument_prediction) # "Argument" or "NoArgument"
95
+ print(result.confidence_score) # Confidence score between 0 and 1
96
+
97
+ # Multiple texts
98
+ texts = [
99
+ "Climate change is real because temperatures are rising.",
100
+ "This is just a simple statement without any argument."
101
+ ]
102
+ results = analyzer.detect(texts)
103
+ for r in results:
104
+ print(f"Text: {r.text}")
105
+ print(f"Prediction: {r.argument_prediction}")
106
+ ```
107
+
108
+ ### Extract Topics
109
+
110
+ ```python
111
+ result = analyzer.extract("Climate change is a serious issue because it affects our environment.")
112
+ print(result.topics) # List of extracted topics
113
+ ```
114
+
115
+ ### Analyze Stance
116
+
117
+ ```python
118
+ text = "We must take action on climate change because the evidence is overwhelming."
119
+ topic = "climate change"
120
+ result = analyzer.stance(text, topic)
121
+ print(f"Stance: {result.stance}") # "Favor", "Against", or "NoArgument"
122
+ ```
123
+
124
+ ### Discover Arguments
125
+
126
+ ```python
127
+ text = """Climate change is a serious issue. Global temperatures are rising at an
128
+ unprecedented rate. This is causing extreme weather events. However, some argue
129
+ that natural climate cycles are responsible."""
130
+
131
+ results_df = analyzer.discover_arguments(
132
+ text,
133
+ window_size=2, # Number of sentences per window
134
+ step_size=1 # Number of sentences to move window
135
+ )
136
+ print(results_df[['text_segment', 'argument_prediction', 'argument_confidence']])
137
+ ```
138
+
139
+ ## Citation
140
+
141
+ If you use WIBA in your research, please cite:
142
+
143
+ ```bibtex
144
+ @misc{irani2024wibaarguedcomprehensiveapproach,
145
+ title={WIBA: What Is Being Argued? A Comprehensive Approach to Argument Mining},
146
+ author={Arman Irani and Ju Yeon Park and Kevin Esterling and Michalis Faloutsos},
147
+ year={2024},
148
+ eprint={2405.00828},
149
+ archivePrefix={arXiv},
150
+ primaryClass={cs.CL},
151
+ url={https://arxiv.org/abs/2405.00828},
152
+ }
153
+ ```
154
+
155
+ ## License
156
+
157
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
wiba-0.1.0/README.md ADDED
@@ -0,0 +1,118 @@
1
+ # WIBA: What Is Being Argued?
2
+
3
+ WIBA is a comprehensive argument mining toolkit that helps you detect, analyze, and understand arguments in text. It provides a simple yet powerful interface to identify argumentative content, extract topics, analyze stance, and discover arguments in longer texts.
4
+
5
+ ## Installation
6
+
7
+ ```bash
8
+ pip install wiba
9
+ ```
10
+
11
+ ## Quick Start
12
+
13
+ ```python
14
+ from wiba import WIBA
15
+
16
+ # Initialize with your API token
17
+ analyzer = WIBA(api_token="your_api_token_here")
18
+
19
+ # Example text
20
+ text = "Climate change is real because global temperatures are rising."
21
+
22
+ # Detect if it's an argument
23
+ result = analyzer.detect(text)
24
+ print(f"Argument detected: {result.argument_prediction}")
25
+ print(f"Confidence: {result.confidence_score}")
26
+ ```
27
+
28
+ ## Features
29
+
30
+ - **Argument Detection**: Identify whether a text contains an argument
31
+ - **Topic Extraction**: Extract the main topic being argued about
32
+ - **Stance Analysis**: Determine the stance towards a specific topic
33
+ - **Argument Discovery**: Find argumentative segments in longer texts
34
+ - **Batch Processing**: Efficiently process multiple texts
35
+ - **DataFrame Support**: Native pandas DataFrame integration
36
+
37
+ ## Documentation
38
+
39
+ For detailed documentation and examples, visit [wiba.dev](https://wiba.dev).
40
+
41
+ ## Getting Started
42
+
43
+ 1. Create an account at [wiba.dev](https://wiba.dev) to get your API token
44
+ 2. Install the package: `pip install wiba`
45
+ 3. Initialize the client with your token
46
+ 4. Start analyzing arguments!
47
+
48
+ ## Example Usage
49
+
50
+ ### Detect Arguments
51
+
52
+ ```python
53
+ # Single text
54
+ result = analyzer.detect("Climate change is real because temperatures are rising.")
55
+ print(result.argument_prediction) # "Argument" or "NoArgument"
56
+ print(result.confidence_score) # Confidence score between 0 and 1
57
+
58
+ # Multiple texts
59
+ texts = [
60
+ "Climate change is real because temperatures are rising.",
61
+ "This is just a simple statement without any argument."
62
+ ]
63
+ results = analyzer.detect(texts)
64
+ for r in results:
65
+ print(f"Text: {r.text}")
66
+ print(f"Prediction: {r.argument_prediction}")
67
+ ```
68
+
69
+ ### Extract Topics
70
+
71
+ ```python
72
+ result = analyzer.extract("Climate change is a serious issue because it affects our environment.")
73
+ print(result.topics) # List of extracted topics
74
+ ```
75
+
76
+ ### Analyze Stance
77
+
78
+ ```python
79
+ text = "We must take action on climate change because the evidence is overwhelming."
80
+ topic = "climate change"
81
+ result = analyzer.stance(text, topic)
82
+ print(f"Stance: {result.stance}") # "Favor", "Against", or "NoArgument"
83
+ ```
84
+
85
+ ### Discover Arguments
86
+
87
+ ```python
88
+ text = """Climate change is a serious issue. Global temperatures are rising at an
89
+ unprecedented rate. This is causing extreme weather events. However, some argue
90
+ that natural climate cycles are responsible."""
91
+
92
+ results_df = analyzer.discover_arguments(
93
+ text,
94
+ window_size=2, # Number of sentences per window
95
+ step_size=1 # Number of sentences to move window
96
+ )
97
+ print(results_df[['text_segment', 'argument_prediction', 'argument_confidence']])
98
+ ```
99
+
100
+ ## Citation
101
+
102
+ If you use WIBA in your research, please cite:
103
+
104
+ ```bibtex
105
+ @misc{irani2024wibaarguedcomprehensiveapproach,
106
+ title={WIBA: What Is Being Argued? A Comprehensive Approach to Argument Mining},
107
+ author={Arman Irani and Ju Yeon Park and Kevin Esterling and Michalis Faloutsos},
108
+ year={2024},
109
+ eprint={2405.00828},
110
+ archivePrefix={arXiv},
111
+ primaryClass={cs.CL},
112
+ url={https://arxiv.org/abs/2405.00828},
113
+ }
114
+ ```
115
+
116
+ ## License
117
+
118
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
@@ -0,0 +1,6 @@
1
+ [build-system]
2
+ requires = ["setuptools>=45", "wheel", "setuptools_scm>=6.2"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [tool.setuptools_scm]
6
+ write_to = "wiba/_version.py"
wiba-0.1.0/setup.cfg ADDED
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
wiba-0.1.0/setup.py ADDED
@@ -0,0 +1,41 @@
1
+ from setuptools import setup, find_packages
2
+
3
+ with open("README.md", "r", encoding="utf-8") as fh:
4
+ long_description = fh.read()
5
+
6
+ setup(
7
+ name="wiba",
8
+ version="0.1.0",
9
+ author="Arman Irani",
10
+ author_email="airan002@ucr.edu",
11
+ description="WIBA: What Is Being Argued? A Comprehensive Approach to Argument Mining",
12
+ long_description=long_description,
13
+ long_description_content_type="text/markdown",
14
+ url="https://github.com/Armaniii/WIBA",
15
+ packages=find_packages(),
16
+ classifiers=[
17
+ "Development Status :: 4 - Beta",
18
+ "Intended Audience :: Science/Research",
19
+ "License :: OSI Approved :: MIT License",
20
+ "Operating System :: OS Independent",
21
+ "Programming Language :: Python :: 3",
22
+ "Programming Language :: Python :: 3.8",
23
+ "Programming Language :: Python :: 3.9",
24
+ "Programming Language :: Python :: 3.10",
25
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
26
+ "Topic :: Text Processing :: Linguistic",
27
+ ],
28
+ python_requires=">=3.8",
29
+ install_requires=[
30
+ "requests>=2.25.0",
31
+ "pandas>=1.2.0",
32
+ "numpy>=1.19.0",
33
+ "tqdm>=4.50.0",
34
+ "structlog>=21.1.0",
35
+ ],
36
+ project_urls={
37
+ "Bug Tracker": "https://github.com/Armaniii/WIBA/issues",
38
+ "Documentation": "https://wiba.dev",
39
+ "Source Code": "https://github.com/Armaniii/WIBA",
40
+ },
41
+ )