weco 0.2.6__tar.gz → 0.2.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. {weco-0.2.6 → weco-0.2.8}/.github/workflows/lint.yml +10 -7
  2. {weco-0.2.6 → weco-0.2.8}/.github/workflows/release.yml +2 -2
  3. {weco-0.2.6 → weco-0.2.8}/.gitignore +2 -0
  4. {weco-0.2.6 → weco-0.2.8}/PKG-INFO +39 -92
  5. {weco-0.2.6 → weco-0.2.8}/README.md +37 -90
  6. weco-0.2.8/examples/cuda/README.md +40 -0
  7. weco-0.2.8/examples/metal/README.md +0 -0
  8. weco-0.2.8/examples/spaceship-titanic/README.md +62 -0
  9. weco-0.2.8/examples/spaceship-titanic/baseline.py +27 -0
  10. weco-0.2.8/examples/spaceship-titanic/evaluate.py +71 -0
  11. weco-0.2.8/examples/spaceship-titanic/optimize.py +27 -0
  12. weco-0.2.8/examples/spaceship-titanic/requirements-test.txt +8 -0
  13. weco-0.2.8/examples/spaceship-titanic/utils.py +56 -0
  14. weco-0.2.8/examples/triton/README.md +0 -0
  15. {weco-0.2.6 → weco-0.2.8}/pyproject.toml +2 -2
  16. {weco-0.2.6 → weco-0.2.8}/weco/__init__.py +1 -1
  17. {weco-0.2.6 → weco-0.2.8}/weco/api.py +3 -8
  18. {weco-0.2.6 → weco-0.2.8}/weco/cli.py +13 -10
  19. {weco-0.2.6 → weco-0.2.8}/weco/panels.py +16 -7
  20. {weco-0.2.6 → weco-0.2.8}/weco.egg-info/PKG-INFO +39 -92
  21. {weco-0.2.6 → weco-0.2.8}/weco.egg-info/SOURCES.txt +9 -0
  22. {weco-0.2.6 → weco-0.2.8}/LICENSE +0 -0
  23. {weco-0.2.6 → weco-0.2.8}/examples/cuda/evaluate.py +0 -0
  24. {weco-0.2.6 → weco-0.2.8}/examples/cuda/guide.md +0 -0
  25. {weco-0.2.6 → weco-0.2.8}/examples/cuda/optimize.py +0 -0
  26. {weco-0.2.6 → weco-0.2.8}/examples/hello-kernel-world/evaluate.py +0 -0
  27. {weco-0.2.6 → weco-0.2.8}/examples/hello-kernel-world/optimize.py +0 -0
  28. {weco-0.2.6 → weco-0.2.8}/examples/metal/evaluate.py +0 -0
  29. {weco-0.2.6 → weco-0.2.8}/examples/metal/examples.rst +0 -0
  30. {weco-0.2.6 → weco-0.2.8}/examples/metal/optimize.py +0 -0
  31. {weco-0.2.6 → weco-0.2.8}/examples/triton/evaluate.py +0 -0
  32. {weco-0.2.6 → weco-0.2.8}/examples/triton/optimize.py +0 -0
  33. {weco-0.2.6 → weco-0.2.8}/setup.cfg +0 -0
  34. {weco-0.2.6 → weco-0.2.8}/weco/utils.py +0 -0
  35. {weco-0.2.6 → weco-0.2.8}/weco.egg-info/dependency_links.txt +0 -0
  36. {weco-0.2.6 → weco-0.2.8}/weco.egg-info/entry_points.txt +0 -0
  37. {weco-0.2.6 → weco-0.2.8}/weco.egg-info/requires.txt +0 -0
  38. {weco-0.2.6 → weco-0.2.8}/weco.egg-info/top_level.txt +0 -0
@@ -5,6 +5,7 @@ on:
5
5
  branches:
6
6
  - main
7
7
  - dev
8
+ pull_request: # Run on any pull request
8
9
 
9
10
  jobs:
10
11
  lint:
@@ -12,9 +13,7 @@ jobs:
12
13
 
13
14
  steps:
14
15
  - name: Checkout code
15
- uses: actions/checkout@v3
16
- with:
17
- ref: ${{ github.head_ref }}
16
+ uses: actions/checkout@v4
18
17
 
19
18
  - name: Set up Python
20
19
  uses: actions/setup-python@v3
@@ -26,15 +25,19 @@ jobs:
26
25
  python -m pip install --upgrade pip
27
26
  pip install ruff
28
27
 
29
- - name: Run linter
28
+ - name: Run Linter (PR Check)
29
+ if: github.event_name == 'pull_request'
30
30
  run: |
31
- ruff check . --fix
32
-
33
- - name: Run formatter
31
+ ruff check .
32
+
33
+ - name: Run Linter & Formatter (Push)
34
+ if: github.event_name == 'push'
34
35
  run: |
36
+ ruff check . --fix
35
37
  ruff format .
36
38
 
37
39
  - name: Commit changes
40
+ if: github.event_name == 'push'
38
41
  run: |
39
42
  git config --local user.email "action@github.com"
40
43
  git config --local user.name "GitHub Action"
@@ -90,7 +90,7 @@ jobs:
90
90
  GITHUB_TOKEN: ${{ github.token }}
91
91
  run: >-
92
92
  gh release create
93
- 'v0.2.6'
93
+ 'v0.2.8'
94
94
  --repo '${{ github.repository }}'
95
95
  --notes ""
96
96
 
@@ -102,5 +102,5 @@ jobs:
102
102
  # sigstore-produced signatures and certificates.
103
103
  run: >-
104
104
  gh release upload
105
- 'v0.2.6' dist/**
105
+ 'v0.2.8' dist/**
106
106
  --repo '${{ github.repository }}'
@@ -69,3 +69,5 @@ etc/
69
69
  # AI generated files
70
70
  digest.txt
71
71
  .runs/
72
+
73
+ *.pyc
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: weco
3
- Version: 0.2.6
3
+ Version: 0.2.8
4
4
  Summary: Documentation for `weco`, a CLI for using Weco AI's code optimizer.
5
5
  Author-email: Weco AI Team <contact@weco.ai>
6
6
  License: MIT
@@ -9,7 +9,7 @@ Keywords: AI,Code Optimization,Code Generation
9
9
  Classifier: Programming Language :: Python :: 3
10
10
  Classifier: Operating System :: OS Independent
11
11
  Classifier: License :: OSI Approved :: MIT License
12
- Requires-Python: >=3.12
12
+ Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
14
  License-File: LICENSE
15
15
  Requires-Dist: requests
@@ -20,13 +20,19 @@ Requires-Dist: build; extra == "dev"
20
20
  Requires-Dist: setuptools_scm; extra == "dev"
21
21
  Dynamic: license-file
22
22
 
23
- # Weco CLI Code Optimizer for Machine Learning Engineers
23
+ # Weco: The Evaluation-Driven AI Code Optimizer
24
24
 
25
25
  [![Python](https://img.shields.io/badge/Python-3.12.0-blue)](https://www.python.org)
26
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)
27
26
  [![PyPI version](https://badge.fury.io/py/weco.svg)](https://badge.fury.io/py/weco)
27
+ [![AIDE](https://img.shields.io/badge/AI--Driven_Exploration-arXiv-orange?style=flat-square&logo=arxiv)](https://arxiv.org/abs/2502.13138)
28
28
 
29
- `weco` is a command-line interface for interacting with Weco AI's code optimizer, powered by [AI-Driven Exploration](https://arxiv.org/abs/2502.13138). It helps you automate the improvement of your code for tasks like GPU kernel optimization, feature engineering, model development, and prompt engineering.
29
+ Weco systematically optimizes your code, guided directly by your evaluation metrics.
30
+
31
+ Example applications include:
32
+
33
+ - **GPU Kernel Optimization**: Reimplement PyTorch functions using CUDA, Triton or Metal, optimizing for `latency`, `throughput`, or `memory_bandwidth`.
34
+ - **Model Development**: Tune feature transformations or architectures, optimizing for `validation_accuracy`, `AUC`, or `Sharpe Ratio`.
35
+ - **Prompt Engineering**: Refine prompts for LLMs, optimizing for `win_rate`, `relevance`, or `format_adherence`
30
36
 
31
37
  https://github.com/user-attachments/assets/cb724ef1-bff6-4757-b457-d3b2201ede81
32
38
 
@@ -40,37 +46,6 @@ The `weco` CLI leverages a tree search approach guided by Large Language Models
40
46
 
41
47
  ---
42
48
 
43
- ## Example Use Cases
44
-
45
- Here's how `weco` can be applied to common ML engineering tasks:
46
-
47
- * **GPU Kernel Optimization:**
48
- * **Goal:** Improve the speed or efficiency of low-level GPU code.
49
- * **How:** `weco` iteratively refines CUDA, Triton, Metal, or other kernel code specified in your `--source` file.
50
- * **`--eval-command`:** Typically runs a script that compiles the kernel, executes it, and benchmarks performance (e.g., latency, throughput).
51
- * **`--metric`:** Examples include `latency`, `throughput`, `TFLOPS`, `memory_bandwidth`. Optimize to `minimize` latency or `maximize` throughput.
52
-
53
- * **Feature Engineering:**
54
- * **Goal:** Discover better data transformations or feature combinations for your machine learning models.
55
- * **How:** `weco` explores different processing steps or parameters within your feature transformation code (`--source`).
56
- * **`--eval-command`:** Executes a script that applies the features, trains/validates a model using those features, and prints a performance score.
57
- * **`--metric`:** Examples include `accuracy`, `AUC`, `F1-score`, `validation_loss`. Usually optimized to `maximize` accuracy/AUC/F1 or `minimize` loss.
58
-
59
- * **Model Development:**
60
- * **Goal:** Tune hyperparameters or experiment with small architectural changes directly within your model's code.
61
- * **How:** `weco` modifies hyperparameter values (like learning rate, layer sizes if defined in the code) or structural elements in your model definition (`--source`).
62
- * **`--eval-command`:** Runs your model training and evaluation script, printing the key performance indicator.
63
- * **`--metric`:** Examples include `validation_accuracy`, `test_loss`, `inference_time`, `perplexity`. Optimize according to the metric's nature (e.g., `maximize` accuracy, `minimize` loss).
64
-
65
- * **Prompt Engineering:**
66
- * **Goal:** Refine prompts used within larger systems (e.g., for LLM interactions) to achieve better or more consistent outputs.
67
- * **How:** `weco` modifies prompt templates, examples, or instructions stored in the `--source` file.
68
- * **`--eval-command`:** Executes a script that uses the prompt, generates an output, evaluates that output against desired criteria (e.g., using another LLM, checking for keywords, format validation), and prints a score.
69
- * **`--metric`:** Examples include `quality_score`, `relevance`, `task_success_rate`, `format_adherence`. Usually optimized to `maximize`.
70
-
71
- ---
72
-
73
-
74
49
  ## Setup
75
50
 
76
51
  1. **Install the Package:**
@@ -97,70 +72,30 @@ Here's how `weco` can be applied to common ML engineering tasks:
97
72
 
98
73
  ---
99
74
 
100
- ### Examples
75
+ ### Example: Optimizing Simple PyTorch Operations
76
+
77
+ This basic example shows how to optimize a simple PyTorch function for speedup.
101
78
 
102
- **Example 1: Optimizing PyTorch simple operations**
79
+ For more advanced examples, including **[Metal/MLX](/examples/metal/README.md), [Triton](/examples/triton/README.md), [CUDA kernel optimization](/examples/cuda/README.md)**, and **[ML model optimization](/examples/spaceship-titanic/README.md)t**, please see the `README.md` files within the corresponding subdirectories under the [`examples/`](./examples/) folder.
103
80
 
104
81
  ```bash
82
+ # Navigate to the example directory
105
83
  cd examples/hello-kernel-world
106
- pip install torch
84
+
85
+ # Install dependencies
86
+ pip install torch
87
+
88
+ # Run Weco
107
89
  weco --source optimize.py \
108
90
  --eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
109
91
  --metric speedup \
110
92
  --maximize true \
111
93
  --steps 15 \
112
- --model claude-3-7-sonnet-20250219 \
94
+ --model gemini-2.5-pro-exp-03-25 \
113
95
  --additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
114
96
  ```
115
97
 
116
- Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
117
-
118
- **Example 2: Optimizing MLX operations with instructions from a file**
119
-
120
- Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
121
-
122
- ```bash
123
- cd examples/metal
124
- pip install mlx
125
- weco --source optimize.py \
126
- --eval-command "python evaluate.py --solution-path optimize.py" \
127
- --metric speedup \
128
- --maximize true \
129
- --steps 30 \
130
- --model o3-mini \
131
- --additional-instructions examples.rst
132
- ```
133
-
134
- **Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
135
-
136
- Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
137
-
138
- 1. [Triton](https://github.com/triton-lang/triton)
139
- ```bash
140
- cd examples/triton
141
- pip install torch triton
142
- weco --source optimize.py \
143
- --eval-command "python evaluate.py --solution-path optimize.py" \
144
- --metric speedup \
145
- --maximize true \
146
- --steps 30 \
147
- --model gemini-2.5-pro-preview-03-25 \
148
- --additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
149
- ```
150
-
151
- 2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
152
- ```bash
153
- cd examples/cuda
154
- pip install torch
155
- weco --source optimize.py \
156
- --eval-command "python evaluate.py --solution-path optimize.py" \
157
- --metric speedup \
158
- --maximize true \
159
- --steps 30 \
160
- --model gemini-2.5-pro-preview-03-25 \
161
- --additional-instructions guide.md
162
- ```
163
-
98
+ **Note:** If you have an NVIDIA GPU, change the device in the `--eval-command` to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
164
99
 
165
100
  ---
166
101
 
@@ -169,16 +104,28 @@ Given how useful causal multihead self attention is to transformers, we've seen
169
104
  | Argument | Description | Required |
170
105
  | :-------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------- |
171
106
  | `--source` | Path to the source code file that will be optimized (e.g., `optimize.py`). | Yes |
172
- | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
173
- | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
107
+ | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
108
+ | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
174
109
  | `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
175
110
  | `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
176
- | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`. | Yes |
177
- | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
111
+ | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
112
+ | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
113
+ | `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
178
114
 
179
115
  ---
180
116
 
117
+ ### Performance & Expectations
118
+
119
+ Weco, powered by the AIDE algorithm, optimizes code iteratively based on your evaluation results. Achieving significant improvements, especially on complex research-level tasks, often requires substantial exploration time.
181
120
 
121
+ The following plot from the independent [Research Engineering Benchmark (RE-Bench)](https://metr.org/AI_R_D_Evaluation_Report.pdf) report shows the performance of AIDE (the algorithm behind Weco) on challenging ML research engineering tasks over different time budgets.
122
+ <p align="center">
123
+ <img src="https://github.com/user-attachments/assets/ff0e471d-2f50-4e2d-b718-874862f533df" alt="RE-Bench Performance Across Time" width="60%"/>
124
+ </p>
125
+
126
+ As shown, AIDE demonstrates strong performance gains over time, surpassing lower human expert percentiles within hours and continuing to improve. This highlights the potential of evaluation-driven optimization but also indicates that reaching high levels of performance comparable to human experts on difficult benchmarks can take considerable time (tens of hours in this specific benchmark, corresponding to many `--steps` in the Weco CLI). Factor this into your planning when setting the number of `--steps` for your optimization runs.
127
+
128
+ ---
182
129
 
183
130
  ### Important Note on Evaluation
184
131
 
@@ -1,10 +1,16 @@
1
- # Weco CLI Code Optimizer for Machine Learning Engineers
1
+ # Weco: The Evaluation-Driven AI Code Optimizer
2
2
 
3
3
  [![Python](https://img.shields.io/badge/Python-3.12.0-blue)](https://www.python.org)
4
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)
5
4
  [![PyPI version](https://badge.fury.io/py/weco.svg)](https://badge.fury.io/py/weco)
5
+ [![AIDE](https://img.shields.io/badge/AI--Driven_Exploration-arXiv-orange?style=flat-square&logo=arxiv)](https://arxiv.org/abs/2502.13138)
6
6
 
7
- `weco` is a command-line interface for interacting with Weco AI's code optimizer, powered by [AI-Driven Exploration](https://arxiv.org/abs/2502.13138). It helps you automate the improvement of your code for tasks like GPU kernel optimization, feature engineering, model development, and prompt engineering.
7
+ Weco systematically optimizes your code, guided directly by your evaluation metrics.
8
+
9
+ Example applications include:
10
+
11
+ - **GPU Kernel Optimization**: Reimplement PyTorch functions using CUDA, Triton or Metal, optimizing for `latency`, `throughput`, or `memory_bandwidth`.
12
+ - **Model Development**: Tune feature transformations or architectures, optimizing for `validation_accuracy`, `AUC`, or `Sharpe Ratio`.
13
+ - **Prompt Engineering**: Refine prompts for LLMs, optimizing for `win_rate`, `relevance`, or `format_adherence`
8
14
 
9
15
  https://github.com/user-attachments/assets/cb724ef1-bff6-4757-b457-d3b2201ede81
10
16
 
@@ -18,37 +24,6 @@ The `weco` CLI leverages a tree search approach guided by Large Language Models
18
24
 
19
25
  ---
20
26
 
21
- ## Example Use Cases
22
-
23
- Here's how `weco` can be applied to common ML engineering tasks:
24
-
25
- * **GPU Kernel Optimization:**
26
- * **Goal:** Improve the speed or efficiency of low-level GPU code.
27
- * **How:** `weco` iteratively refines CUDA, Triton, Metal, or other kernel code specified in your `--source` file.
28
- * **`--eval-command`:** Typically runs a script that compiles the kernel, executes it, and benchmarks performance (e.g., latency, throughput).
29
- * **`--metric`:** Examples include `latency`, `throughput`, `TFLOPS`, `memory_bandwidth`. Optimize to `minimize` latency or `maximize` throughput.
30
-
31
- * **Feature Engineering:**
32
- * **Goal:** Discover better data transformations or feature combinations for your machine learning models.
33
- * **How:** `weco` explores different processing steps or parameters within your feature transformation code (`--source`).
34
- * **`--eval-command`:** Executes a script that applies the features, trains/validates a model using those features, and prints a performance score.
35
- * **`--metric`:** Examples include `accuracy`, `AUC`, `F1-score`, `validation_loss`. Usually optimized to `maximize` accuracy/AUC/F1 or `minimize` loss.
36
-
37
- * **Model Development:**
38
- * **Goal:** Tune hyperparameters or experiment with small architectural changes directly within your model's code.
39
- * **How:** `weco` modifies hyperparameter values (like learning rate, layer sizes if defined in the code) or structural elements in your model definition (`--source`).
40
- * **`--eval-command`:** Runs your model training and evaluation script, printing the key performance indicator.
41
- * **`--metric`:** Examples include `validation_accuracy`, `test_loss`, `inference_time`, `perplexity`. Optimize according to the metric's nature (e.g., `maximize` accuracy, `minimize` loss).
42
-
43
- * **Prompt Engineering:**
44
- * **Goal:** Refine prompts used within larger systems (e.g., for LLM interactions) to achieve better or more consistent outputs.
45
- * **How:** `weco` modifies prompt templates, examples, or instructions stored in the `--source` file.
46
- * **`--eval-command`:** Executes a script that uses the prompt, generates an output, evaluates that output against desired criteria (e.g., using another LLM, checking for keywords, format validation), and prints a score.
47
- * **`--metric`:** Examples include `quality_score`, `relevance`, `task_success_rate`, `format_adherence`. Usually optimized to `maximize`.
48
-
49
- ---
50
-
51
-
52
27
  ## Setup
53
28
 
54
29
  1. **Install the Package:**
@@ -75,70 +50,30 @@ Here's how `weco` can be applied to common ML engineering tasks:
75
50
 
76
51
  ---
77
52
 
78
- ### Examples
53
+ ### Example: Optimizing Simple PyTorch Operations
54
+
55
+ This basic example shows how to optimize a simple PyTorch function for speedup.
79
56
 
80
- **Example 1: Optimizing PyTorch simple operations**
57
+ For more advanced examples, including **[Metal/MLX](/examples/metal/README.md), [Triton](/examples/triton/README.md), [CUDA kernel optimization](/examples/cuda/README.md)**, and **[ML model optimization](/examples/spaceship-titanic/README.md)t**, please see the `README.md` files within the corresponding subdirectories under the [`examples/`](./examples/) folder.
81
58
 
82
59
  ```bash
60
+ # Navigate to the example directory
83
61
  cd examples/hello-kernel-world
84
- pip install torch
62
+
63
+ # Install dependencies
64
+ pip install torch
65
+
66
+ # Run Weco
85
67
  weco --source optimize.py \
86
68
  --eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
87
69
  --metric speedup \
88
70
  --maximize true \
89
71
  --steps 15 \
90
- --model claude-3-7-sonnet-20250219 \
72
+ --model gemini-2.5-pro-exp-03-25 \
91
73
  --additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
92
74
  ```
93
75
 
94
- Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
95
-
96
- **Example 2: Optimizing MLX operations with instructions from a file**
97
-
98
- Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
99
-
100
- ```bash
101
- cd examples/metal
102
- pip install mlx
103
- weco --source optimize.py \
104
- --eval-command "python evaluate.py --solution-path optimize.py" \
105
- --metric speedup \
106
- --maximize true \
107
- --steps 30 \
108
- --model o3-mini \
109
- --additional-instructions examples.rst
110
- ```
111
-
112
- **Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
113
-
114
- Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
115
-
116
- 1. [Triton](https://github.com/triton-lang/triton)
117
- ```bash
118
- cd examples/triton
119
- pip install torch triton
120
- weco --source optimize.py \
121
- --eval-command "python evaluate.py --solution-path optimize.py" \
122
- --metric speedup \
123
- --maximize true \
124
- --steps 30 \
125
- --model gemini-2.5-pro-preview-03-25 \
126
- --additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
127
- ```
128
-
129
- 2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
130
- ```bash
131
- cd examples/cuda
132
- pip install torch
133
- weco --source optimize.py \
134
- --eval-command "python evaluate.py --solution-path optimize.py" \
135
- --metric speedup \
136
- --maximize true \
137
- --steps 30 \
138
- --model gemini-2.5-pro-preview-03-25 \
139
- --additional-instructions guide.md
140
- ```
141
-
76
+ **Note:** If you have an NVIDIA GPU, change the device in the `--eval-command` to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
142
77
 
143
78
  ---
144
79
 
@@ -147,16 +82,28 @@ Given how useful causal multihead self attention is to transformers, we've seen
147
82
  | Argument | Description | Required |
148
83
  | :-------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------- |
149
84
  | `--source` | Path to the source code file that will be optimized (e.g., `optimize.py`). | Yes |
150
- | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
151
- | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
85
+ | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
86
+ | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
152
87
  | `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
153
88
  | `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
154
- | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`. | Yes |
155
- | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
89
+ | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
90
+ | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
91
+ | `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
156
92
 
157
93
  ---
158
94
 
95
+ ### Performance & Expectations
96
+
97
+ Weco, powered by the AIDE algorithm, optimizes code iteratively based on your evaluation results. Achieving significant improvements, especially on complex research-level tasks, often requires substantial exploration time.
159
98
 
99
+ The following plot from the independent [Research Engineering Benchmark (RE-Bench)](https://metr.org/AI_R_D_Evaluation_Report.pdf) report shows the performance of AIDE (the algorithm behind Weco) on challenging ML research engineering tasks over different time budgets.
100
+ <p align="center">
101
+ <img src="https://github.com/user-attachments/assets/ff0e471d-2f50-4e2d-b718-874862f533df" alt="RE-Bench Performance Across Time" width="60%"/>
102
+ </p>
103
+
104
+ As shown, AIDE demonstrates strong performance gains over time, surpassing lower human expert percentiles within hours and continuing to improve. This highlights the potential of evaluation-driven optimization but also indicates that reaching high levels of performance comparable to human experts on difficult benchmarks can take considerable time (tens of hours in this specific benchmark, corresponding to many `--steps` in the Weco CLI). Factor this into your planning when setting the number of `--steps` for your optimization runs.
105
+
106
+ ---
160
107
 
161
108
  ### Important Note on Evaluation
162
109
 
@@ -0,0 +1,40 @@
1
+ # Example: Optimizing PyTorch Self-Attention with CUDA
2
+
3
+ This example showcases using Weco to optimize a PyTorch causal multi-head self-attention implementation by generating custom [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html) kernels. This approach aims for low-level optimization beyond standard PyTorch or even Triton for potentially higher performance on NVIDIA GPUs.
4
+
5
+ This example uses a separate Markdown file (`guide.md`) to provide detailed instructions and context to the LLM.
6
+
7
+ ## Setup
8
+
9
+ 1. Ensure you are in the `examples/cuda` directory.
10
+ 2. Install the required dependency:
11
+ ```bash
12
+ pip install torch
13
+ ```
14
+ *(Note: This example requires a compatible NVIDIA GPU and the CUDA Toolkit installed on your system for compiling and running the generated CUDA code.)*
15
+
16
+ ## Optimization Command
17
+
18
+ Run the following command to start the optimization process:
19
+
20
+ ```bash
21
+ weco --source optimize.py \
22
+ --eval-command "python evaluate.py --solution-path optimize.py" \
23
+ --metric speedup \
24
+ --maximize true \
25
+ --steps 30 \
26
+ --model gemini-2.5-pro-exp-03-25 \
27
+ --additional-instructions guide.md
28
+ ```
29
+
30
+ ### Explanation
31
+
32
+ * `--source optimize.py`: The initial PyTorch self-attention code to be optimized with CUDA.
33
+ * `--eval-command "python evaluate.py --solution-path optimize.py"`: Runs the evaluation script, which compiles (if necessary) and benchmarks the CUDA-enhanced code in `optimize.py` against a baseline, printing the `speedup`.
34
+ * `--metric speedup`: The optimization target metric.
35
+ * `--maximize true`: Weco aims to increase the speedup.
36
+ * `--steps 30`: The number of optimization iterations.
37
+ * `--model gemini-2.5-pro-exp-03-25`: The LLM used for code generation.
38
+ * `--additional-instructions guide.md`: Points Weco to a file containing detailed instructions for the LLM on how to write the CUDA kernels, handle compilation (e.g., using `torch.utils.cpp_extension`), manage data types, and ensure correctness.
39
+
40
+ Weco will iteratively modify `optimize.py`, potentially generating and integrating CUDA C++ code, guided by the evaluation results and the instructions in `guide.md`.
File without changes
@@ -0,0 +1,62 @@
1
+ # Example: Optimizing a Kaggle Classification Model (Spaceship Titanic)
2
+
3
+ This example demonstrates using Weco to optimize a Python script designed for the [Spaceship Titanic Kaggle competition](https://www.kaggle.com/competitions/spaceship-titanic/overview). The goal is to improve the model's `accuracy` metric by modifying the feature engineering and modeling steps within the `optimize.py` script.
4
+
5
+ This example uses the `README.md` file (this file) to provide additional instructions to the LLM.
6
+
7
+ ## Setup
8
+
9
+ 1. Ensure you are in the `examples/spaceship-titanic` directory.
10
+ 2. **Kaggle Credentials:** You need your Kaggle API credentials (`kaggle.json`) configured to download the competition dataset. Place the `kaggle.json` file in `~/.kaggle/` or set the `KAGGLE_USERNAME` and `KAGGLE_KEY` environment variables. See [Kaggle API documentation](https://github.com/Kaggle/kaggle-api#api-credentials) for details.
11
+ 3. **Install Dependencies:** Install the required Python packages:
12
+ ```bash
13
+ pip install -r requirements-test.txt
14
+ ```
15
+ 4. **Prepare Data:** Run the utility script once to download the dataset from Kaggle and place it in the expected `public/` and `private/` subdirectories:
16
+ ```bash
17
+ python utils.py
18
+ ```
19
+ After running `utils.py`, your directory structure should look like this:
20
+ ```
21
+ .
22
+ ├── baseline.py
23
+ ├── evaluate.py
24
+ ├── optimize.py
25
+ ├── private
26
+ │ └── test.csv
27
+ ├── public
28
+ │ ├── sample_submission.csv
29
+ │ ├── test.csv
30
+ │ └── train.csv
31
+ ├── README.md # This file
32
+ ├── requirements-test.txt
33
+ └── utils.py
34
+ ```
35
+
36
+ ## Optimization Command
37
+
38
+ Run the following command to start optimizing the model:
39
+
40
+ ```bash
41
+ weco --source optimize.py \
42
+ --eval-command "python optimize.py && python evaluate.py" \
43
+ --metric accuracy \
44
+ --maximize true \
45
+ --steps 10 \
46
+ --model gemini-2.5-pro-exp-03-25 \
47
+ --additional-instructions README.md
48
+ ```
49
+
50
+ ### Explanation
51
+
52
+ * `--source optimize.py`: The script containing the model training and prediction logic to be optimized. It starts identical to `baseline.py`.
53
+ * `--eval-command "python optimize.py && python evaluate.py"`: This is a multi-step evaluation.
54
+ * `python optimize.py`: Runs the modified script to generate predictions (`submission.csv`).
55
+ * `python evaluate.py`: Compares the generated `submission.csv` against the ground truth (using the training data as a proxy evaluation set in this example) and prints the `accuracy` metric.
56
+ * `--metric accuracy`: The target metric Weco should optimize.
57
+ * `--maximize true`: Weco aims to increase the accuracy.
58
+ * `--steps 10`: The number of optimization iterations.
59
+ * `--model gemini-2.5-pro-exp-03-25`: The LLM driving the optimization.
60
+ * `--additional-instructions README.md`: Provides this file as context to the LLM, which might include hints about feature engineering techniques, model types to try, or specific data columns to focus on (you can add such instructions to this file if desired).
61
+
62
+ Weco will iteratively modify the feature engineering or modeling code within `optimize.py`, run the evaluation pipeline, and use the resulting `accuracy` to guide further improvements. The `baseline.py` file is provided as a reference starting point.
@@ -0,0 +1,27 @@
1
+ from pathlib import Path
2
+ import pandas as pd
3
+
4
+
5
+ def predict(test: Path, save: Path):
6
+ # TODO: Add a model here
7
+
8
+ test_data = pd.read_csv(test)
9
+ submission = pd.DataFrame({"PassengerId": test_data["PassengerId"], "Transported": False})
10
+ submission.to_csv(save, index=False)
11
+ print(f"Test submission saved to {save}")
12
+
13
+
14
+ if __name__ == "__main__":
15
+ # This block is primarily for testing the script directly,
16
+ # it's not used by the weco evaluation loop.
17
+ script_dir = Path(__file__).resolve().parent
18
+ # Use validation data as test data *for this test block only*
19
+ train_file_path = script_dir / "public" / "train.csv"
20
+ print("train_file_path:", train_file_path)
21
+ test_file_path = script_dir / "public" / "test.csv"
22
+ print("test_file_path:", test_file_path)
23
+ submission_output_path = script_dir / "submission.csv"
24
+
25
+ # Call predict with the DataFrame and the correct output path
26
+ predict(train_file_path, test_file_path, submission_output_path)
27
+ print(f"Test submission saved to {submission_output_path}")
@@ -0,0 +1,71 @@
1
+ import sys
2
+ import pandas as pd
3
+ from sklearn.metrics import accuracy_score
4
+ from pathlib import Path
5
+
6
+
7
+ class InvalidSubmissionError(Exception):
8
+ """
9
+ A custom exception for when the agent submission cannot be graded.
10
+ """
11
+
12
+ pass
13
+
14
+
15
+ def prepare_for_accuracy_metric(submission: pd.DataFrame, answers: pd.DataFrame, target_column: str, id_column: str) -> dict:
16
+ # Answers checks
17
+ assert target_column in answers.columns, f"Answers must have a `{target_column}` column"
18
+ assert id_column in answers.columns, f"Answers must have a `{id_column}` column"
19
+
20
+ # Submission checks
21
+ if len(submission) != len(answers):
22
+ raise InvalidSubmissionError("Submission must have the same length as the answers.")
23
+ if target_column not in submission.columns:
24
+ raise InvalidSubmissionError(f"Submission must have a `{target_column}` column")
25
+ if id_column not in submission.columns:
26
+ raise InvalidSubmissionError(f"Submission must have a `{id_column}` column")
27
+
28
+ # sort on id to ensure correct order
29
+ submission = submission.sort_values(id_column)
30
+ answers = answers.sort_values(id_column)
31
+
32
+ if (submission[id_column].values != answers[id_column].values).any():
33
+ raise InvalidSubmissionError(f"Submission and Answers `{id_column}`'s do not match")
34
+
35
+ y_pred = submission[target_column].to_numpy()
36
+ y_true = answers[target_column].to_numpy()
37
+
38
+ return {"y_true": y_true, "y_pred": y_pred}
39
+
40
+
41
+ def grade(submission: pd.DataFrame, answers: pd.DataFrame) -> float:
42
+ accuracy_inputs = prepare_for_accuracy_metric(
43
+ submission=submission, answers=answers, target_column="Transported", id_column="PassengerId"
44
+ )
45
+ return accuracy_score(**accuracy_inputs)
46
+
47
+
48
+ if __name__ == "__main__":
49
+ # Get the directory where the script is located
50
+ script_dir = Path(__file__).resolve().parent
51
+ # The ground truth answers are now in private/test.csv
52
+ answers_path = script_dir / "private" / "test.csv"
53
+ # Assume the agent's submission is saved here
54
+ submission_path = script_dir / "submission.csv"
55
+
56
+ # Check if files exist before proceeding
57
+ if not answers_path.exists():
58
+ print(f"Error: Answers file not found at {answers_path}") # Updated path in error message
59
+ sys.exit(1)
60
+
61
+ if not submission_path.exists():
62
+ print(f"Error: Submission file not found at {submission_path}")
63
+ sys.exit(1)
64
+
65
+ submission = pd.read_csv(submission_path)
66
+ # Read answers from the updated path
67
+ answers = pd.read_csv(answers_path)
68
+
69
+ # Calculate and print the grade
70
+ score = grade(submission, answers)
71
+ print(f"accuracy: {score}")
@@ -0,0 +1,27 @@
1
+ from pathlib import Path
2
+ import pandas as pd
3
+
4
+
5
+ def predict(test: Path, save: Path):
6
+ # TODO: Add a model here
7
+
8
+ test_data = pd.read_csv(test)
9
+ submission = pd.DataFrame({"PassengerId": test_data["PassengerId"], "Transported": False})
10
+ submission.to_csv(save, index=False)
11
+ print(f"Test submission saved to {save}")
12
+
13
+
14
+ if __name__ == "__main__":
15
+ # This block is primarily for testing the script directly,
16
+ # it's not used by the weco evaluation loop.
17
+ script_dir = Path(__file__).resolve().parent
18
+ # Use validation data as test data *for this test block only*
19
+ train_file_path = script_dir / "public" / "train.csv"
20
+ print("train_file_path:", train_file_path)
21
+ test_file_path = script_dir / "public" / "test.csv"
22
+ print("test_file_path:", test_file_path)
23
+ submission_output_path = script_dir / "submission.csv"
24
+
25
+ # Call predict with the DataFrame and the correct output path
26
+ predict(train_file_path, test_file_path, submission_output_path)
27
+ print(f"Test submission saved to {submission_output_path}")
@@ -0,0 +1,8 @@
1
+ pandas
2
+ numpy
3
+ scikit-learn
4
+ torch
5
+ xgboost
6
+ lightgbm
7
+ catboost
8
+ kaggle
@@ -0,0 +1,56 @@
1
+ import pandas as pd
2
+ from sklearn.model_selection import train_test_split
3
+ from pathlib import Path
4
+ import kaggle
5
+ import zipfile
6
+ import os
7
+
8
+
9
+ def prepare_data():
10
+ kaggle.api.competition_download_files("spaceship-titanic")
11
+ # unzip the data
12
+ with zipfile.ZipFile("spaceship-titanic.zip", "r") as zip_ref:
13
+ zip_ref.extractall()
14
+ # remove the zip file
15
+ os.remove("spaceship-titanic.zip")
16
+
17
+
18
+ def split_data(public: Path, private: Path):
19
+ df = pd.read_csv("train.csv")
20
+ # Use a fixed random_state for reproducibility
21
+ new_train, new_test = train_test_split(df, test_size=0.1, random_state=0)
22
+
23
+ os.makedirs(public, exist_ok=True)
24
+ os.makedirs(private, exist_ok=True)
25
+
26
+ example_submission = new_test[["PassengerId", "Transported"]].copy()
27
+ example_submission["Transported"] = False
28
+ example_submission.to_csv(public / "sample_submission.csv", index=False)
29
+
30
+ new_train.to_csv(public / "train.csv", index=False)
31
+ print("training sample shape:", new_train.shape)
32
+ new_test.to_csv(private / "test.csv", index=False)
33
+ print("test sample shape:", new_test.shape)
34
+ print(f"Validation data saved to {public / 'test.csv'}")
35
+ new_test.drop("Transported", axis="columns").to_csv(public / "test.csv", index=False)
36
+
37
+ # remove the previous files
38
+ os.remove("train.csv")
39
+ os.remove("sample_submission.csv")
40
+
41
+
42
+ def setup_data():
43
+ # download the data
44
+ prepare_data()
45
+
46
+ # Get the directory where the script is located
47
+ script_dir = Path(__file__).resolve().parent
48
+ public_path = script_dir / "public"
49
+ private_path = script_dir / "private"
50
+
51
+ # split the data
52
+ split_data(public_path, private_path)
53
+
54
+
55
+ if __name__ == "__main__":
56
+ setup_data()
File without changes
@@ -10,9 +10,9 @@ authors = [
10
10
  ]
11
11
  description = "Documentation for `weco`, a CLI for using Weco AI's code optimizer."
12
12
  readme = "README.md"
13
- version = "0.2.6"
13
+ version = "0.2.8"
14
14
  license = {text = "MIT"}
15
- requires-python = ">=3.12"
15
+ requires-python = ">=3.8"
16
16
  dependencies = ["requests", "rich"]
17
17
  keywords = ["AI", "Code Optimization", "Code Generation"]
18
18
  classifiers = [
@@ -1,4 +1,4 @@
1
1
  # DO NOT EDIT
2
- __pkg_version__ = "0.2.6"
2
+ __pkg_version__ = "0.2.8"
3
3
  __api_version__ = "v1"
4
4
  __base_url__ = f"https://api.aide.weco.ai/{__api_version__}"
@@ -6,14 +6,9 @@ import sys
6
6
 
7
7
 
8
8
  def handle_api_error(e: requests.exceptions.HTTPError, console: rich.console.Console) -> None:
9
- """Extract and display error messages from API responses."""
10
- try:
11
- error_data = e.response.json()
12
- error_message = error_data.get("detail", str(e))
13
- console.print(f"[bold red]Server Error:[/] {error_message}")
14
- except Exception:
15
- # If we can't parse the JSON, just show the original error
16
- console.print(f"[bold red]Server Error:[/] {str(e)}")
9
+ """Extract and display error messages from API responses in a structured format."""
10
+ error_message = str(e) # Default message
11
+ console.print(f"[bold red]Error:[/] {error_message}")
17
12
  sys.exit(1)
18
13
 
19
14
 
@@ -36,7 +36,7 @@ def main() -> None:
36
36
  parser = argparse.ArgumentParser(
37
37
  description="[bold cyan]Weco CLI[/]", formatter_class=argparse.RawDescriptionHelpFormatter
38
38
  )
39
- parser.add_argument("--source", type=str, required=True, help="Path to the Python source code (e.g. optimize.py)")
39
+ parser.add_argument("--source", type=str, required=True, help="Path to the source code (e.g. optimize.py)")
40
40
  parser.add_argument(
41
41
  "--eval-command", type=str, required=True, help="Command to run for evaluation (e.g. 'python eval.py --arg1=val1')"
42
42
  )
@@ -50,6 +50,7 @@ def main() -> None:
50
50
  )
51
51
  parser.add_argument("--steps", type=int, required=True, help="Number of steps to run")
52
52
  parser.add_argument("--model", type=str, required=True, help="Model to use for optimization")
53
+ parser.add_argument("--log-dir", type=str, default=".runs", help="Directory to store logs and results")
53
54
  parser.add_argument(
54
55
  "--additional-instructions",
55
56
  default=None,
@@ -83,9 +84,11 @@ def main() -> None:
83
84
  timeout = 800
84
85
 
85
86
  # Initialize panels
86
- summary_panel = SummaryPanel(maximize=maximize, metric_name=metric_name, total_steps=steps, model=args.model)
87
+ summary_panel = SummaryPanel(
88
+ maximize=maximize, metric_name=metric_name, total_steps=steps, model=args.model, runs_dir=args.log_dir
89
+ )
87
90
  plan_panel = PlanPanel()
88
- solution_panels = SolutionPanels(metric_name=metric_name)
91
+ solution_panels = SolutionPanels(metric_name=metric_name, source_fp=source_fp)
89
92
  eval_output_panel = EvaluationOutputPanel()
90
93
  tree_panel = MetricTreePanel(maximize=maximize)
91
94
  layout = create_optimization_layout()
@@ -112,11 +115,11 @@ def main() -> None:
112
115
  with Live(layout, refresh_per_second=refresh_rate, screen=True) as live:
113
116
  # Define the runs directory (.runs/<session-id>)
114
117
  session_id = session_response["session_id"]
115
- runs_dir = pathlib.Path(".runs") / session_id
118
+ runs_dir = pathlib.Path(args.log_dir) / session_id
116
119
  runs_dir.mkdir(parents=True, exist_ok=True)
117
120
 
118
- # Save the original code (.runs/<session-id>/original.py)
119
- runs_copy_source_fp = runs_dir / "original.py"
121
+ # Save the original code (.runs/<session-id>/original.<extension>)
122
+ runs_copy_source_fp = runs_dir / f"original.{source_fp.suffix}"
120
123
  write_to_path(fp=runs_copy_source_fp, content=source_code)
121
124
 
122
125
  # Write the code string to the source file path
@@ -197,8 +200,8 @@ def main() -> None:
197
200
  api_keys=api_keys,
198
201
  timeout=timeout,
199
202
  )
200
- # Save next solution (.runs/<session-id>/step_<step>.py)
201
- write_to_path(fp=runs_dir / f"step_{step}.py", content=eval_and_next_solution_response["code"])
203
+ # Save next solution (.runs/<session-id>/step_<step>.<extension>)
204
+ write_to_path(fp=runs_dir / f"step_{step}.{source_fp.suffix}", content=eval_and_next_solution_response["code"])
202
205
 
203
206
  # Write the next solution to the source file
204
207
  write_to_path(fp=source_fp, content=eval_and_next_solution_response["code"])
@@ -348,8 +351,8 @@ def main() -> None:
348
351
  )
349
352
  best_solution_content = f"# Best solution from Weco with a score of {best_score_str}\n\n{best_solution_code}"
350
353
 
351
- # Save best solution to .runs/<session-id>/best.py
352
- write_to_path(fp=runs_dir / "best.py", content=best_solution_content)
354
+ # Save best solution to .runs/<session-id>/best.<extension>
355
+ write_to_path(fp=runs_dir / f"best.{source_fp.suffix}", content=best_solution_content)
353
356
 
354
357
  # write the best solution to the source file
355
358
  write_to_path(fp=source_fp, content=best_solution_content)
@@ -6,12 +6,13 @@ from rich.panel import Panel
6
6
  from rich.syntax import Syntax
7
7
  from typing import Dict, List, Optional, Union, Tuple
8
8
  from .utils import format_number
9
+ import pathlib
9
10
 
10
11
 
11
12
  class SummaryPanel:
12
13
  """Holds a summary of the optimization session."""
13
14
 
14
- def __init__(self, maximize: bool, metric_name: str, total_steps: int, model: str, session_id: str = None):
15
+ def __init__(self, maximize: bool, metric_name: str, total_steps: int, model: str, runs_dir: str, session_id: str = None):
15
16
  self.maximize = maximize
16
17
  self.metric_name = metric_name
17
18
  self.goal = ("Maximizing" if self.maximize else "Minimizing") + f" {self.metric_name}..."
@@ -19,7 +20,8 @@ class SummaryPanel:
19
20
  self.total_output_tokens = 0
20
21
  self.total_steps = total_steps
21
22
  self.model = model
22
- self.session_id = session_id or "N/A"
23
+ self.runs_dir = runs_dir
24
+ self.session_id = session_id if session_id is not None else "N/A"
23
25
  self.progress = Progress(
24
26
  TextColumn("[progress.description]{task.description}"),
25
27
  BarColumn(bar_width=20),
@@ -45,6 +47,8 @@ class SummaryPanel:
45
47
  """Create a summary panel with the relevant information."""
46
48
  layout = Layout(name="summary")
47
49
  summary_table = Table(show_header=False, box=None, padding=(0, 1))
50
+
51
+ summary_table.add_row("")
48
52
  # Goal
49
53
  if final_message is not None:
50
54
  summary_table.add_row(f"[bold cyan]Result:[/] {final_message}")
@@ -55,8 +59,7 @@ class SummaryPanel:
55
59
  summary_table.add_row(f"[bold cyan]Model:[/] {self.model}")
56
60
  summary_table.add_row("")
57
61
  # Log directory
58
- runs_dir = f".runs/{self.session_id}"
59
- summary_table.add_row(f"[bold cyan]Logs:[/] [blue underline]{runs_dir}[/]")
62
+ summary_table.add_row(f"[bold cyan]Logs:[/] [blue underline]{self.runs_dir}/{self.session_id}[/]")
60
63
  summary_table.add_row("")
61
64
  # Token counts
62
65
  summary_table.add_row(
@@ -256,13 +259,19 @@ class EvaluationOutputPanel:
256
259
  class SolutionPanels:
257
260
  """Displays the current and best solutions side by side."""
258
261
 
259
- def __init__(self, metric_name: str):
262
+ def __init__(self, metric_name: str, source_fp: pathlib.Path):
260
263
  # Current solution
261
264
  self.current_node = None
262
265
  # Best solution
263
266
  self.best_node = None
264
267
  # Metric name
265
268
  self.metric_name = metric_name.capitalize()
269
+ # Determine the lexer for the source file
270
+ self.lexer = self._determine_lexer(source_fp)
271
+
272
+ def _determine_lexer(self, source_fp: pathlib.Path) -> str:
273
+ """Determine the lexer for the source file."""
274
+ return Syntax.from_path(source_fp).lexer
266
275
 
267
276
  def update(self, current_node: Union[Node, None], best_node: Union[Node, None]):
268
277
  """Update the current and best solutions."""
@@ -280,7 +289,7 @@ class SolutionPanels:
280
289
  # Current solution (without score)
281
290
  current_title = f"[bold]💡 Current Solution (Step {current_step})"
282
291
  current_panel = Panel(
283
- Syntax(str(current_code), "python", theme="monokai", line_numbers=True, word_wrap=False),
292
+ Syntax(str(current_code), self.lexer, theme="monokai", line_numbers=True, word_wrap=False),
284
293
  title=current_title,
285
294
  border_style="yellow",
286
295
  expand=True,
@@ -290,7 +299,7 @@ class SolutionPanels:
290
299
  # Best solution
291
300
  best_title = f"[bold]🏆 Best Solution ([green]{self.metric_name}: {f'{best_score:.4f}' if best_score is not None else 'N/A'}[/])"
292
301
  best_panel = Panel(
293
- Syntax(str(best_code), "python", theme="monokai", line_numbers=True, word_wrap=False),
302
+ Syntax(str(best_code), self.lexer, theme="monokai", line_numbers=True, word_wrap=False),
294
303
  title=best_title,
295
304
  border_style="green",
296
305
  expand=True,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: weco
3
- Version: 0.2.6
3
+ Version: 0.2.8
4
4
  Summary: Documentation for `weco`, a CLI for using Weco AI's code optimizer.
5
5
  Author-email: Weco AI Team <contact@weco.ai>
6
6
  License: MIT
@@ -9,7 +9,7 @@ Keywords: AI,Code Optimization,Code Generation
9
9
  Classifier: Programming Language :: Python :: 3
10
10
  Classifier: Operating System :: OS Independent
11
11
  Classifier: License :: OSI Approved :: MIT License
12
- Requires-Python: >=3.12
12
+ Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
14
  License-File: LICENSE
15
15
  Requires-Dist: requests
@@ -20,13 +20,19 @@ Requires-Dist: build; extra == "dev"
20
20
  Requires-Dist: setuptools_scm; extra == "dev"
21
21
  Dynamic: license-file
22
22
 
23
- # Weco CLI Code Optimizer for Machine Learning Engineers
23
+ # Weco: The Evaluation-Driven AI Code Optimizer
24
24
 
25
25
  [![Python](https://img.shields.io/badge/Python-3.12.0-blue)](https://www.python.org)
26
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)
27
26
  [![PyPI version](https://badge.fury.io/py/weco.svg)](https://badge.fury.io/py/weco)
27
+ [![AIDE](https://img.shields.io/badge/AI--Driven_Exploration-arXiv-orange?style=flat-square&logo=arxiv)](https://arxiv.org/abs/2502.13138)
28
28
 
29
- `weco` is a command-line interface for interacting with Weco AI's code optimizer, powered by [AI-Driven Exploration](https://arxiv.org/abs/2502.13138). It helps you automate the improvement of your code for tasks like GPU kernel optimization, feature engineering, model development, and prompt engineering.
29
+ Weco systematically optimizes your code, guided directly by your evaluation metrics.
30
+
31
+ Example applications include:
32
+
33
+ - **GPU Kernel Optimization**: Reimplement PyTorch functions using CUDA, Triton or Metal, optimizing for `latency`, `throughput`, or `memory_bandwidth`.
34
+ - **Model Development**: Tune feature transformations or architectures, optimizing for `validation_accuracy`, `AUC`, or `Sharpe Ratio`.
35
+ - **Prompt Engineering**: Refine prompts for LLMs, optimizing for `win_rate`, `relevance`, or `format_adherence`
30
36
 
31
37
  https://github.com/user-attachments/assets/cb724ef1-bff6-4757-b457-d3b2201ede81
32
38
 
@@ -40,37 +46,6 @@ The `weco` CLI leverages a tree search approach guided by Large Language Models
40
46
 
41
47
  ---
42
48
 
43
- ## Example Use Cases
44
-
45
- Here's how `weco` can be applied to common ML engineering tasks:
46
-
47
- * **GPU Kernel Optimization:**
48
- * **Goal:** Improve the speed or efficiency of low-level GPU code.
49
- * **How:** `weco` iteratively refines CUDA, Triton, Metal, or other kernel code specified in your `--source` file.
50
- * **`--eval-command`:** Typically runs a script that compiles the kernel, executes it, and benchmarks performance (e.g., latency, throughput).
51
- * **`--metric`:** Examples include `latency`, `throughput`, `TFLOPS`, `memory_bandwidth`. Optimize to `minimize` latency or `maximize` throughput.
52
-
53
- * **Feature Engineering:**
54
- * **Goal:** Discover better data transformations or feature combinations for your machine learning models.
55
- * **How:** `weco` explores different processing steps or parameters within your feature transformation code (`--source`).
56
- * **`--eval-command`:** Executes a script that applies the features, trains/validates a model using those features, and prints a performance score.
57
- * **`--metric`:** Examples include `accuracy`, `AUC`, `F1-score`, `validation_loss`. Usually optimized to `maximize` accuracy/AUC/F1 or `minimize` loss.
58
-
59
- * **Model Development:**
60
- * **Goal:** Tune hyperparameters or experiment with small architectural changes directly within your model's code.
61
- * **How:** `weco` modifies hyperparameter values (like learning rate, layer sizes if defined in the code) or structural elements in your model definition (`--source`).
62
- * **`--eval-command`:** Runs your model training and evaluation script, printing the key performance indicator.
63
- * **`--metric`:** Examples include `validation_accuracy`, `test_loss`, `inference_time`, `perplexity`. Optimize according to the metric's nature (e.g., `maximize` accuracy, `minimize` loss).
64
-
65
- * **Prompt Engineering:**
66
- * **Goal:** Refine prompts used within larger systems (e.g., for LLM interactions) to achieve better or more consistent outputs.
67
- * **How:** `weco` modifies prompt templates, examples, or instructions stored in the `--source` file.
68
- * **`--eval-command`:** Executes a script that uses the prompt, generates an output, evaluates that output against desired criteria (e.g., using another LLM, checking for keywords, format validation), and prints a score.
69
- * **`--metric`:** Examples include `quality_score`, `relevance`, `task_success_rate`, `format_adherence`. Usually optimized to `maximize`.
70
-
71
- ---
72
-
73
-
74
49
  ## Setup
75
50
 
76
51
  1. **Install the Package:**
@@ -97,70 +72,30 @@ Here's how `weco` can be applied to common ML engineering tasks:
97
72
 
98
73
  ---
99
74
 
100
- ### Examples
75
+ ### Example: Optimizing Simple PyTorch Operations
76
+
77
+ This basic example shows how to optimize a simple PyTorch function for speedup.
101
78
 
102
- **Example 1: Optimizing PyTorch simple operations**
79
+ For more advanced examples, including **[Metal/MLX](/examples/metal/README.md), [Triton](/examples/triton/README.md), [CUDA kernel optimization](/examples/cuda/README.md)**, and **[ML model optimization](/examples/spaceship-titanic/README.md)t**, please see the `README.md` files within the corresponding subdirectories under the [`examples/`](./examples/) folder.
103
80
 
104
81
  ```bash
82
+ # Navigate to the example directory
105
83
  cd examples/hello-kernel-world
106
- pip install torch
84
+
85
+ # Install dependencies
86
+ pip install torch
87
+
88
+ # Run Weco
107
89
  weco --source optimize.py \
108
90
  --eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
109
91
  --metric speedup \
110
92
  --maximize true \
111
93
  --steps 15 \
112
- --model claude-3-7-sonnet-20250219 \
94
+ --model gemini-2.5-pro-exp-03-25 \
113
95
  --additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
114
96
  ```
115
97
 
116
- Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
117
-
118
- **Example 2: Optimizing MLX operations with instructions from a file**
119
-
120
- Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
121
-
122
- ```bash
123
- cd examples/metal
124
- pip install mlx
125
- weco --source optimize.py \
126
- --eval-command "python evaluate.py --solution-path optimize.py" \
127
- --metric speedup \
128
- --maximize true \
129
- --steps 30 \
130
- --model o3-mini \
131
- --additional-instructions examples.rst
132
- ```
133
-
134
- **Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
135
-
136
- Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
137
-
138
- 1. [Triton](https://github.com/triton-lang/triton)
139
- ```bash
140
- cd examples/triton
141
- pip install torch triton
142
- weco --source optimize.py \
143
- --eval-command "python evaluate.py --solution-path optimize.py" \
144
- --metric speedup \
145
- --maximize true \
146
- --steps 30 \
147
- --model gemini-2.5-pro-preview-03-25 \
148
- --additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
149
- ```
150
-
151
- 2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
152
- ```bash
153
- cd examples/cuda
154
- pip install torch
155
- weco --source optimize.py \
156
- --eval-command "python evaluate.py --solution-path optimize.py" \
157
- --metric speedup \
158
- --maximize true \
159
- --steps 30 \
160
- --model gemini-2.5-pro-preview-03-25 \
161
- --additional-instructions guide.md
162
- ```
163
-
98
+ **Note:** If you have an NVIDIA GPU, change the device in the `--eval-command` to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
164
99
 
165
100
  ---
166
101
 
@@ -169,16 +104,28 @@ Given how useful causal multihead self attention is to transformers, we've seen
169
104
  | Argument | Description | Required |
170
105
  | :-------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------- |
171
106
  | `--source` | Path to the source code file that will be optimized (e.g., `optimize.py`). | Yes |
172
- | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
173
- | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
107
+ | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
108
+ | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
174
109
  | `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
175
110
  | `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
176
- | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`. | Yes |
177
- | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
111
+ | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
112
+ | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
113
+ | `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
178
114
 
179
115
  ---
180
116
 
117
+ ### Performance & Expectations
118
+
119
+ Weco, powered by the AIDE algorithm, optimizes code iteratively based on your evaluation results. Achieving significant improvements, especially on complex research-level tasks, often requires substantial exploration time.
181
120
 
121
+ The following plot from the independent [Research Engineering Benchmark (RE-Bench)](https://metr.org/AI_R_D_Evaluation_Report.pdf) report shows the performance of AIDE (the algorithm behind Weco) on challenging ML research engineering tasks over different time budgets.
122
+ <p align="center">
123
+ <img src="https://github.com/user-attachments/assets/ff0e471d-2f50-4e2d-b718-874862f533df" alt="RE-Bench Performance Across Time" width="60%"/>
124
+ </p>
125
+
126
+ As shown, AIDE demonstrates strong performance gains over time, surpassing lower human expert percentiles within hours and continuing to improve. This highlights the potential of evaluation-driven optimization but also indicates that reaching high levels of performance comparable to human experts on difficult benchmarks can take considerable time (tens of hours in this specific benchmark, corresponding to many `--steps` in the Weco CLI). Factor this into your planning when setting the number of `--steps` for your optimization runs.
127
+
128
+ ---
182
129
 
183
130
  ### Important Note on Evaluation
184
131
 
@@ -4,14 +4,23 @@ README.md
4
4
  pyproject.toml
5
5
  .github/workflows/lint.yml
6
6
  .github/workflows/release.yml
7
+ examples/cuda/README.md
7
8
  examples/cuda/evaluate.py
8
9
  examples/cuda/guide.md
9
10
  examples/cuda/optimize.py
10
11
  examples/hello-kernel-world/evaluate.py
11
12
  examples/hello-kernel-world/optimize.py
13
+ examples/metal/README.md
12
14
  examples/metal/evaluate.py
13
15
  examples/metal/examples.rst
14
16
  examples/metal/optimize.py
17
+ examples/spaceship-titanic/README.md
18
+ examples/spaceship-titanic/baseline.py
19
+ examples/spaceship-titanic/evaluate.py
20
+ examples/spaceship-titanic/optimize.py
21
+ examples/spaceship-titanic/requirements-test.txt
22
+ examples/spaceship-titanic/utils.py
23
+ examples/triton/README.md
15
24
  examples/triton/evaluate.py
16
25
  examples/triton/optimize.py
17
26
  weco/__init__.py
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes