weco 0.2.5__tar.gz → 0.2.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. {weco-0.2.5 → weco-0.2.7}/.github/workflows/lint.yml +10 -7
  2. {weco-0.2.5 → weco-0.2.7}/.github/workflows/release.yml +2 -2
  3. {weco-0.2.5 → weco-0.2.7}/.gitignore +2 -0
  4. {weco-0.2.5 → weco-0.2.7}/PKG-INFO +106 -15
  5. {weco-0.2.5 → weco-0.2.7}/README.md +104 -13
  6. weco-0.2.7/examples/cuda/evaluate.py +157 -0
  7. weco-0.2.7/examples/cuda/guide.md +113 -0
  8. weco-0.2.7/examples/cuda/optimize.py +44 -0
  9. {weco-0.2.5/examples/simple-torch → weco-0.2.7/examples/hello-kernel-world}/evaluate.py +32 -17
  10. {weco-0.2.5/examples/simple-mlx → weco-0.2.7/examples/metal}/evaluate.py +28 -20
  11. weco-0.2.5/examples/simple-mlx/metal-examples.rst → weco-0.2.7/examples/metal/examples.rst +2 -1
  12. weco-0.2.7/examples/metal/optimize.py +28 -0
  13. weco-0.2.7/examples/spaceship-titanic/README.md +93 -0
  14. weco-0.2.7/examples/spaceship-titanic/baseline.py +27 -0
  15. weco-0.2.7/examples/spaceship-titanic/evaluate.py +71 -0
  16. weco-0.2.7/examples/spaceship-titanic/optimize.py +27 -0
  17. weco-0.2.7/examples/spaceship-titanic/requirements-test.txt +8 -0
  18. weco-0.2.7/examples/spaceship-titanic/utils.py +56 -0
  19. weco-0.2.7/examples/triton/evaluate.py +153 -0
  20. weco-0.2.7/examples/triton/optimize.py +44 -0
  21. {weco-0.2.5 → weco-0.2.7}/pyproject.toml +2 -2
  22. {weco-0.2.5 → weco-0.2.7}/weco/__init__.py +1 -1
  23. {weco-0.2.5 → weco-0.2.7}/weco/cli.py +11 -3
  24. {weco-0.2.5 → weco-0.2.7}/weco/panels.py +16 -10
  25. {weco-0.2.5 → weco-0.2.7}/weco.egg-info/PKG-INFO +106 -15
  26. weco-0.2.7/weco.egg-info/SOURCES.txt +33 -0
  27. weco-0.2.5/examples/simple-mlx/optimize.py +0 -26
  28. weco-0.2.5/weco.egg-info/SOURCES.txt +0 -22
  29. {weco-0.2.5 → weco-0.2.7}/LICENSE +0 -0
  30. {weco-0.2.5/examples/simple-torch → weco-0.2.7/examples/hello-kernel-world}/optimize.py +0 -0
  31. {weco-0.2.5 → weco-0.2.7}/setup.cfg +0 -0
  32. {weco-0.2.5 → weco-0.2.7}/weco/api.py +0 -0
  33. {weco-0.2.5 → weco-0.2.7}/weco/utils.py +0 -0
  34. {weco-0.2.5 → weco-0.2.7}/weco.egg-info/dependency_links.txt +0 -0
  35. {weco-0.2.5 → weco-0.2.7}/weco.egg-info/entry_points.txt +0 -0
  36. {weco-0.2.5 → weco-0.2.7}/weco.egg-info/requires.txt +0 -0
  37. {weco-0.2.5 → weco-0.2.7}/weco.egg-info/top_level.txt +0 -0
@@ -5,6 +5,7 @@ on:
5
5
  branches:
6
6
  - main
7
7
  - dev
8
+ pull_request: # Run on any pull request
8
9
 
9
10
  jobs:
10
11
  lint:
@@ -12,9 +13,7 @@ jobs:
12
13
 
13
14
  steps:
14
15
  - name: Checkout code
15
- uses: actions/checkout@v3
16
- with:
17
- ref: ${{ github.head_ref }}
16
+ uses: actions/checkout@v4
18
17
 
19
18
  - name: Set up Python
20
19
  uses: actions/setup-python@v3
@@ -26,15 +25,19 @@ jobs:
26
25
  python -m pip install --upgrade pip
27
26
  pip install ruff
28
27
 
29
- - name: Run linter
28
+ - name: Run Linter (PR Check)
29
+ if: github.event_name == 'pull_request'
30
30
  run: |
31
- ruff check . --fix
32
-
33
- - name: Run formatter
31
+ ruff check .
32
+
33
+ - name: Run Linter & Formatter (Push)
34
+ if: github.event_name == 'push'
34
35
  run: |
36
+ ruff check . --fix
35
37
  ruff format .
36
38
 
37
39
  - name: Commit changes
40
+ if: github.event_name == 'push'
38
41
  run: |
39
42
  git config --local user.email "action@github.com"
40
43
  git config --local user.name "GitHub Action"
@@ -90,7 +90,7 @@ jobs:
90
90
  GITHUB_TOKEN: ${{ github.token }}
91
91
  run: >-
92
92
  gh release create
93
- 'v0.2.5'
93
+ 'v0.2.7'
94
94
  --repo '${{ github.repository }}'
95
95
  --notes ""
96
96
 
@@ -102,5 +102,5 @@ jobs:
102
102
  # sigstore-produced signatures and certificates.
103
103
  run: >-
104
104
  gh release upload
105
- 'v0.2.5' dist/**
105
+ 'v0.2.7' dist/**
106
106
  --repo '${{ github.repository }}'
@@ -69,3 +69,5 @@ etc/
69
69
  # AI generated files
70
70
  digest.txt
71
71
  .runs/
72
+
73
+ *.pyc
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: weco
3
- Version: 0.2.5
3
+ Version: 0.2.7
4
4
  Summary: Documentation for `weco`, a CLI for using Weco AI's code optimizer.
5
- Author-email: Weco AI Team <dhruv@weco.ai>
5
+ Author-email: Weco AI Team <contact@weco.ai>
6
6
  License: MIT
7
7
  Project-URL: Homepage, https://github.com/WecoAI/weco-cli
8
8
  Keywords: AI,Code Optimization,Code Generation
@@ -99,32 +99,111 @@ Here's how `weco` can be applied to common ML engineering tasks:
99
99
 
100
100
  ### Examples
101
101
 
102
- **Example 1: Optimizing PyTorch operations**
102
+ **Example 1: Optimizing PyTorch simple operations**
103
103
 
104
104
  ```bash
105
- weco --source examples/simple-torch/optimize.py \
106
- --eval-command "python examples/simple-torch/evaluate.py --solution-path examples/simple-torch/optimize.py --device mps" \
105
+ cd examples/hello-kernel-world
106
+ pip install torch
107
+ weco --source optimize.py \
108
+ --eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
107
109
  --metric speedup \
108
110
  --maximize true \
109
111
  --steps 15 \
110
- --model o3-mini \
112
+ --model gemini-2.5-pro-exp-03-25 \
111
113
  --additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
112
114
  ```
113
115
 
116
+ Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
117
+
114
118
  **Example 2: Optimizing MLX operations with instructions from a file**
115
119
 
116
- Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
120
+ Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
117
121
 
118
122
  ```bash
119
- weco --source examples/simple-mlx/optimize.py \
120
- --eval-command "python examples/simple-mlx/evaluate.py --solution-path examples/simple-mlx/optimize.py" \
123
+ cd examples/metal
124
+ pip install mlx
125
+ weco --source optimize.py \
126
+ --eval-command "python evaluate.py --solution-path optimize.py" \
121
127
  --metric speedup \
122
128
  --maximize true \
123
129
  --steps 30 \
124
- --model o3-mini \
125
- --additional-instructions examples/simple-mlx/metal-examples.rst
130
+ --model gemini-2.5-pro-exp-03-25 \
131
+ --additional-instructions examples.rst
126
132
  ```
127
133
 
134
+ **Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
135
+
136
+ Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
137
+
138
+ 1. [Triton](https://github.com/triton-lang/triton)
139
+ ```bash
140
+ cd examples/triton
141
+ pip install torch triton
142
+ weco --source optimize.py \
143
+ --eval-command "python evaluate.py --solution-path optimize.py" \
144
+ --metric speedup \
145
+ --maximize true \
146
+ --steps 30 \
147
+ --model gemini-2.5-pro-exp-03-25 \
148
+ --additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
149
+ ```
150
+
151
+ 2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
152
+ ```bash
153
+ cd examples/cuda
154
+ pip install torch
155
+ weco --source optimize.py \
156
+ --eval-command "python evaluate.py --solution-path optimize.py" \
157
+ --metric speedup \
158
+ --maximize true \
159
+ --steps 30 \
160
+ --model gemini-2.5-pro-exp-03-25 \
161
+ --additional-instructions guide.md
162
+ ```
163
+
164
+ **Example 4: Optimizing a Classification Model**
165
+
166
+ This example demonstrates optimizing a script for a Kaggle competition ([Spaceship Titanic](https://www.kaggle.com/competitions/spaceship-titanic/overview)) to improve classification accuracy. The additional instructions are provided via a separate file (`examples/spaceship-titanic/README.md`).
167
+
168
+ First, install the requirements for the example environment:
169
+ ```bash
170
+ pip install -r examples/spaceship-titanic/requirements-test.txt
171
+ ```
172
+ And run utility function once to prepare the dataset
173
+ ```bash
174
+ python examples/spaceship-titanic/utils.py
175
+ ```
176
+
177
+ You should see the following structure at `examples/spaceship-titanic`. You need to prepare the kaggle credentials for downloading the dataset.
178
+ ```
179
+ .
180
+ ├── baseline.py
181
+ ├── evaluate.py
182
+ ├── optimize.py
183
+ ├── private
184
+ │ └── test.csv
185
+ ├── public
186
+ │ ├── sample_submission.csv
187
+ │ ├── test.csv
188
+ │ └── train.csv
189
+ ├── README.md
190
+ ├── requirements-test.txt
191
+ └── utils.py
192
+ ```
193
+
194
+ Then, execute the optimization command:
195
+ ```bash
196
+ weco --source examples/spaceship-titanic/optimize.py \
197
+ --eval-command "python examples/spaceship-titanic/optimize.py && python examples/spaceship-titanic/evaluate.py" \
198
+ --metric accuracy \
199
+ --maximize true \
200
+ --steps 10 \
201
+ --model gemini-2.5-pro-exp-03-25 \
202
+ --additional-instructions examples/spaceship-titanic/README.md
203
+ ```
204
+
205
+ *The [baseline.py](examples/spaceship-titanic/baseline.py) is provided as a start point for optimization*
206
+
128
207
  ---
129
208
 
130
209
  ### Command Line Arguments
@@ -132,16 +211,28 @@ weco --source examples/simple-mlx/optimize.py \
132
211
  | Argument | Description | Required |
133
212
  | :-------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------- |
134
213
  | `--source` | Path to the source code file that will be optimized (e.g., `optimize.py`). | Yes |
135
- | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
136
- | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
214
+ | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
215
+ | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
137
216
  | `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
138
217
  | `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
139
- | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`. | Yes |
140
- | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
218
+ | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
219
+ | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
220
+ | `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
141
221
 
142
222
  ---
143
223
 
224
+ ### Performance & Expectations
225
+
226
+ Weco, powered by the AIDE algorithm, optimizes code iteratively based on your evaluation results. Achieving significant improvements, especially on complex research-level tasks, often requires substantial exploration time.
227
+
228
+ The following plot from the independent [Research Engineering Benchmark (RE-Bench)](https://metr.org/AI_R_D_Evaluation_Report.pdf) report shows the performance of AIDE (the algorithm behind Weco) on challenging ML research engineering tasks over different time budgets.
229
+ <p align="center">
230
+ <img src="https://github.com/user-attachments/assets/ff0e471d-2f50-4e2d-b718-874862f533df" alt="RE-Bench Performance Across Time" width="60%"/>
231
+ </p>
144
232
 
233
+ As shown, AIDE demonstrates strong performance gains over time, surpassing lower human expert percentiles within hours and continuing to improve. This highlights the potential of evaluation-driven optimization but also indicates that reaching high levels of performance comparable to human experts on difficult benchmarks can take considerable time (tens of hours in this specific benchmark, corresponding to many `--steps` in the Weco CLI). Factor this into your planning when setting the number of `--steps` for your optimization runs.
234
+
235
+ ---
145
236
 
146
237
  ### Important Note on Evaluation
147
238
 
@@ -77,32 +77,111 @@ Here's how `weco` can be applied to common ML engineering tasks:
77
77
 
78
78
  ### Examples
79
79
 
80
- **Example 1: Optimizing PyTorch operations**
80
+ **Example 1: Optimizing PyTorch simple operations**
81
81
 
82
82
  ```bash
83
- weco --source examples/simple-torch/optimize.py \
84
- --eval-command "python examples/simple-torch/evaluate.py --solution-path examples/simple-torch/optimize.py --device mps" \
83
+ cd examples/hello-kernel-world
84
+ pip install torch
85
+ weco --source optimize.py \
86
+ --eval-command "python evaluate.py --solution-path optimize.py --device cpu" \
85
87
  --metric speedup \
86
88
  --maximize true \
87
89
  --steps 15 \
88
- --model o3-mini \
90
+ --model gemini-2.5-pro-exp-03-25 \
89
91
  --additional-instructions "Fuse operations in the forward method while ensuring the max float deviation remains small. Maintain the same format of the code."
90
92
  ```
91
93
 
94
+ Note that if you have an NVIDIA gpu, change the device to `cuda`. If you are running this on Apple Silicon, set it to `mps`.
95
+
92
96
  **Example 2: Optimizing MLX operations with instructions from a file**
93
97
 
94
- Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
98
+ Lets optimize a 2D convolution operation in [`mlx`](https://github.com/ml-explore/mlx) using [Metal](https://developer.apple.com/documentation/metal/). Sometimes, additional context or instructions are too complex for a single command-line string. You can provide a path to a file containing these instructions.
95
99
 
96
100
  ```bash
97
- weco --source examples/simple-mlx/optimize.py \
98
- --eval-command "python examples/simple-mlx/evaluate.py --solution-path examples/simple-mlx/optimize.py" \
101
+ cd examples/metal
102
+ pip install mlx
103
+ weco --source optimize.py \
104
+ --eval-command "python evaluate.py --solution-path optimize.py" \
99
105
  --metric speedup \
100
106
  --maximize true \
101
107
  --steps 30 \
102
- --model o3-mini \
103
- --additional-instructions examples/simple-mlx/metal-examples.rst
108
+ --model gemini-2.5-pro-exp-03-25 \
109
+ --additional-instructions examples.rst
104
110
  ```
105
111
 
112
+ **Example 3: Level Agnostic Optimization: Causal Self Attention with Triton & CUDA**
113
+
114
+ Given how useful causal multihead self attention is to transformers, we've seen its wide adoption across ML engineering and AI research. Its great to keep things at a high-level (in PyTorch) when doing research, but when moving to production you often need to write highly customized low-level kernels to make things run as fast as they can. The `weco` CLI can optimize kernels across a variety of different abstraction levels and frameworks. Example 2 uses Metal but lets explore two more frameworks:
115
+
116
+ 1. [Triton](https://github.com/triton-lang/triton)
117
+ ```bash
118
+ cd examples/triton
119
+ pip install torch triton
120
+ weco --source optimize.py \
121
+ --eval-command "python evaluate.py --solution-path optimize.py" \
122
+ --metric speedup \
123
+ --maximize true \
124
+ --steps 30 \
125
+ --model gemini-2.5-pro-exp-03-25 \
126
+ --additional-instructions "Use triton to optimize the code while ensuring a small max float diff. Maintain the same code format."
127
+ ```
128
+
129
+ 2. [CUDA](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
130
+ ```bash
131
+ cd examples/cuda
132
+ pip install torch
133
+ weco --source optimize.py \
134
+ --eval-command "python evaluate.py --solution-path optimize.py" \
135
+ --metric speedup \
136
+ --maximize true \
137
+ --steps 30 \
138
+ --model gemini-2.5-pro-exp-03-25 \
139
+ --additional-instructions guide.md
140
+ ```
141
+
142
+ **Example 4: Optimizing a Classification Model**
143
+
144
+ This example demonstrates optimizing a script for a Kaggle competition ([Spaceship Titanic](https://www.kaggle.com/competitions/spaceship-titanic/overview)) to improve classification accuracy. The additional instructions are provided via a separate file (`examples/spaceship-titanic/README.md`).
145
+
146
+ First, install the requirements for the example environment:
147
+ ```bash
148
+ pip install -r examples/spaceship-titanic/requirements-test.txt
149
+ ```
150
+ And run utility function once to prepare the dataset
151
+ ```bash
152
+ python examples/spaceship-titanic/utils.py
153
+ ```
154
+
155
+ You should see the following structure at `examples/spaceship-titanic`. You need to prepare the kaggle credentials for downloading the dataset.
156
+ ```
157
+ .
158
+ ├── baseline.py
159
+ ├── evaluate.py
160
+ ├── optimize.py
161
+ ├── private
162
+ │ └── test.csv
163
+ ├── public
164
+ │ ├── sample_submission.csv
165
+ │ ├── test.csv
166
+ │ └── train.csv
167
+ ├── README.md
168
+ ├── requirements-test.txt
169
+ └── utils.py
170
+ ```
171
+
172
+ Then, execute the optimization command:
173
+ ```bash
174
+ weco --source examples/spaceship-titanic/optimize.py \
175
+ --eval-command "python examples/spaceship-titanic/optimize.py && python examples/spaceship-titanic/evaluate.py" \
176
+ --metric accuracy \
177
+ --maximize true \
178
+ --steps 10 \
179
+ --model gemini-2.5-pro-exp-03-25 \
180
+ --additional-instructions examples/spaceship-titanic/README.md
181
+ ```
182
+
183
+ *The [baseline.py](examples/spaceship-titanic/baseline.py) is provided as a start point for optimization*
184
+
106
185
  ---
107
186
 
108
187
  ### Command Line Arguments
@@ -110,16 +189,28 @@ weco --source examples/simple-mlx/optimize.py \
110
189
  | Argument | Description | Required |
111
190
  | :-------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------- |
112
191
  | `--source` | Path to the source code file that will be optimized (e.g., `optimize.py`). | Yes |
113
- | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
114
- | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
192
+ | `--eval-command` | Command to run for evaluating the code in `--source`. This command should print the target `--metric` and its value to the terminal (stdout/stderr). See note below. | Yes |
193
+ | `--metric` | The name of the metric you want to optimize (e.g., 'accuracy', 'speedup', 'loss'). This metric name should match what's printed by your `--eval-command`. | Yes |
115
194
  | `--maximize` | Whether to maximize (`true`) or minimize (`false`) the metric. | Yes |
116
195
  | `--steps` | Number of optimization steps (LLM iterations) to run. | Yes |
117
- | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`. | Yes |
118
- | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
196
+ | `--model` | Model identifier for the LLM to use (e.g., `gpt-4o`, `claude-3.5-sonnet`). Recommended models to try include `o3-mini`, `claude-3-haiku`, and `gemini-2.5-pro-exp-03-25`.| Yes |
197
+ | `--additional-instructions` | (Optional) Natural language description of specific instructions OR path to a file containing detailed instructions to guide the LLM. | No |
198
+ | `--log-dir` | (Optional) Path to the directory to log intermediate steps and final optimization result. Defaults to `.runs/`. | No |
119
199
 
120
200
  ---
121
201
 
202
+ ### Performance & Expectations
203
+
204
+ Weco, powered by the AIDE algorithm, optimizes code iteratively based on your evaluation results. Achieving significant improvements, especially on complex research-level tasks, often requires substantial exploration time.
205
+
206
+ The following plot from the independent [Research Engineering Benchmark (RE-Bench)](https://metr.org/AI_R_D_Evaluation_Report.pdf) report shows the performance of AIDE (the algorithm behind Weco) on challenging ML research engineering tasks over different time budgets.
207
+ <p align="center">
208
+ <img src="https://github.com/user-attachments/assets/ff0e471d-2f50-4e2d-b718-874862f533df" alt="RE-Bench Performance Across Time" width="60%"/>
209
+ </p>
122
210
 
211
+ As shown, AIDE demonstrates strong performance gains over time, surpassing lower human expert percentiles within hours and continuing to improve. This highlights the potential of evaluation-driven optimization but also indicates that reaching high levels of performance comparable to human experts on difficult benchmarks can take considerable time (tens of hours in this specific benchmark, corresponding to many `--steps` in the Weco CLI). Factor this into your planning when setting the number of `--steps` for your optimization runs.
212
+
213
+ ---
123
214
 
124
215
  ### Important Note on Evaluation
125
216
 
@@ -0,0 +1,157 @@
1
+ import time
2
+ import sys
3
+ import os
4
+ import pathlib
5
+ import importlib
6
+ import traceback
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import math
11
+
12
+
13
+ ########################################################
14
+ # Baseline
15
+ ########################################################
16
+ class Model(nn.Module):
17
+ """
18
+ A vanilla multi-head masked self-attention layer with a projection at the end.
19
+ """
20
+
21
+ def __init__(self, n_embd, n_head, attn_pdrop, resid_pdrop, max_seqlen):
22
+ super().__init__()
23
+ assert n_embd % n_head == 0
24
+ # key, query, value projections for all heads, but in a batch
25
+ self.c_attn = nn.Linear(n_embd, 3 * n_embd)
26
+ # output projection
27
+ self.c_proj = nn.Linear(n_embd, n_embd)
28
+ # regularization
29
+ self.attn_dropout = nn.Dropout(attn_pdrop)
30
+ self.resid_dropout = nn.Dropout(resid_pdrop)
31
+ # causal mask to ensure that attention is only applied to the left in the input sequence
32
+ self.register_buffer("bias", torch.tril(torch.ones(max_seqlen, max_seqlen)).view(1, 1, max_seqlen, max_seqlen))
33
+ self.n_head = n_head
34
+ self.n_embd = n_embd
35
+
36
+ def forward(self, x):
37
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
38
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
39
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
40
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
41
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
42
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
43
+
44
+ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
45
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
46
+ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
47
+ att = F.softmax(att, dim=-1)
48
+ att = self.attn_dropout(att)
49
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
50
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
51
+ # output projection
52
+ y = self.resid_dropout(self.c_proj(y))
53
+ return y
54
+
55
+
56
+ ########################################################
57
+ # Weco Solution
58
+ ########################################################
59
+ def load_module_from_path(module_path: str, add_to_sys_modules: bool = False):
60
+ # Clean out all old compiled extensions to prevent namespace collisions during build
61
+ module_path = pathlib.Path(module_path)
62
+ name = module_path.stem
63
+ spec = importlib.util.spec_from_file_location(name, module_path)
64
+ mod = importlib.util.module_from_spec(spec) # type: ignore
65
+ if add_to_sys_modules:
66
+ sys.modules[name] = mod
67
+ spec.loader.exec_module(mod) # type: ignore
68
+ return mod
69
+
70
+
71
+ ########################################################
72
+ # Benchmark
73
+ ########################################################
74
+ os.environ["MAX_JOBS"] = "1" # number of workers for building with ninja
75
+
76
+
77
+ def get_inputs(batch_size, seq_len, n_embd, device):
78
+ return torch.randn(batch_size, seq_len, n_embd, device=device, dtype=torch.float32)
79
+
80
+
81
+ def bench(f, inputs, n_warmup, n_rep):
82
+ with torch.no_grad():
83
+ # warmup
84
+ for _ in range(n_warmup):
85
+ f(inputs) # noqa
86
+
87
+ # benchmark
88
+ t_avg = 0.0
89
+ for _ in range(n_rep):
90
+ torch.cuda.empty_cache() # Clear cache before timing
91
+ start_time = time.time()
92
+ f(inputs)
93
+ torch.cuda.synchronize() # Wait for all computations to complete
94
+ t_avg += time.time() - start_time
95
+ t_avg /= n_rep * 1e-3
96
+ return t_avg
97
+
98
+
99
+ if __name__ == "__main__":
100
+ import argparse
101
+
102
+ parser = argparse.ArgumentParser()
103
+ parser.add_argument("--solution-path", type=str, required=True)
104
+ args = parser.parse_args()
105
+
106
+ # benchmarking parameters
107
+ n_correctness_trials = 10
108
+ n_warmup = 1000
109
+ n_rep = 5000
110
+
111
+ # init parameters
112
+ max_seqlen = 512
113
+ seq_len = 256
114
+ n_embd = 768
115
+ n_head = 8
116
+ # turn off dropout to measure correctness well
117
+ attn_pdrop = 0.0
118
+ resid_pdrop = 0.0
119
+
120
+ # input parameters
121
+ batch_size = 32
122
+
123
+ # load solution module
124
+ try:
125
+ torch.manual_seed(0)
126
+ solution_module = load_module_from_path(args.solution_path, add_to_sys_modules=False)
127
+ solution_model = solution_module.Model(
128
+ n_embd=n_embd, n_head=n_head, attn_pdrop=attn_pdrop, resid_pdrop=resid_pdrop, max_seqlen=max_seqlen
129
+ ).to("cuda")
130
+ assert isinstance(solution_model, nn.Module)
131
+ except Exception:
132
+ print(f"Candidate module initialization failed: {traceback.format_exc()}")
133
+ exit(1)
134
+
135
+ torch.manual_seed(0)
136
+ baseline_model = Model(
137
+ n_embd=n_embd, n_head=n_head, attn_pdrop=attn_pdrop, resid_pdrop=resid_pdrop, max_seqlen=max_seqlen
138
+ ).to("cuda")
139
+
140
+ # measure correctness
141
+ max_diff_avg = 0
142
+ for _ in range(n_correctness_trials):
143
+ inputs = get_inputs(batch_size=batch_size, seq_len=seq_len, n_embd=n_embd, device="cuda")
144
+ with torch.no_grad():
145
+ baseline_output = baseline_model(inputs)
146
+ optimized_output = solution_model(inputs)
147
+ max_diff_avg += torch.max(torch.abs(optimized_output - baseline_output))
148
+ max_diff_avg /= n_correctness_trials
149
+ print(f"max float diff between values of baseline and optimized model: {max_diff_avg}")
150
+
151
+ # measure performance
152
+ inputs = get_inputs(batch_size=batch_size, seq_len=seq_len, n_embd=n_embd, device="cuda")
153
+ t_avg_baseline = bench(baseline_model, inputs, n_warmup, n_rep)
154
+ print(f"baseline time: {t_avg_baseline:.2f}ms")
155
+ t_avg_optimized = bench(solution_model, inputs, n_warmup, n_rep)
156
+ print(f"optimized time: {t_avg_optimized:.2f}ms")
157
+ print(f"speedup: {t_avg_baseline / t_avg_optimized:.2f}x")
@@ -0,0 +1,113 @@
1
+ # Writing In-line CUDA Kernels: 101
2
+
3
+ This document outlines the strategy to improve speedup by writing fused and optimized CUDA kernels using a single-file implementation.
4
+
5
+ ## Requirements
6
+
7
+ - **Single-File Implementation:** Develop fused CUDA kernels within one file.
8
+ - **No Fallback Implementation:** Do not include any alternative or fallback code.
9
+ - **Simplicity & Readability:** Write simple, easy-to-understand code and include clear comments.
10
+ - **Avoid Templates:** Use plain fused kernel functions without templates.
11
+ - **Multiple Kernels Allowed:** You can define more than one kernel in the file if needed.
12
+ - **Model Class Requirement:** The solution must include a class `Model` (an instance of `nn.Module`), with the main computation in its `forward` method.
13
+ - **Preserve Initialization:** Do not change the initialization of the `Model` class.
14
+ - **Focus on Efficiency:** Concentrate solely on efficient PyTorch and CUDA coding without capturing logs.
15
+ - **Error Handling:** Any terminal output or errors will be reviewed by an LLM for feedback.
16
+
17
+ ## GPU Hardware Specifications
18
+
19
+ Here are some details on the hardware you have access to.
20
+
21
+ ```json
22
+ {
23
+ "GPU Architecture": "Ampere",
24
+ "GPU Memory": "40GB",
25
+ "Memory Bandwidth": "1935 GB/s",
26
+ "FP64 TFLOPS": "9.7",
27
+ "FP64 Tensor Core TFLOPS": "19.5",
28
+ "FP32 TFLOPS": "19.5",
29
+ "TF32 Tensor Core TFLOPS": "156 (312 with sparsity)",
30
+ "BFLOAT16 Tensore Core TFLOPS": "312 (624 with sparsity)",
31
+ "FP16 Tensor Core TFLOPS": "312 (624 with sparsity)",
32
+ "INT8 Tensor Core TOPS": "624 (1248 with sparsity)",
33
+ "Register File Size": "64K 32-bit registers per SM",
34
+ "Maximum number of registers per thread": "255",
35
+ "Maximum number of thread blocks per SM": "32",
36
+ "Shared memory capacity per SM": "164 KB",
37
+ "Maximum shared memory per thread block": "163 KB"
38
+ }
39
+ ```
40
+
41
+ ## Baseline Code
42
+
43
+ The baseline implementation of the `Model` class simply performs an element-wise addition.
44
+
45
+ ```python
46
+ import torch
47
+ import torch.nn as nn
48
+ import torch.nn.functional as F
49
+
50
+ class Model(nn.Module):
51
+ def __init__(self) -> None:
52
+ super().__init__()
53
+
54
+ def forward(self, a, b):
55
+ return a + b
56
+ ```
57
+
58
+ ## Optimized Code
59
+
60
+ The optimized version employs a custom CUDA kernel for fused element-wise addition. The kernel is defined and compiled inline using PyTorch's `load_inline`.
61
+
62
+ ```python
63
+ import torch
64
+ import torch.nn as nn
65
+ import torch.nn.functional as F
66
+ from torch.utils.cpp_extension import load_inline
67
+
68
+ # Define the custom CUDA kernel for element-wise addition
69
+ elementwise_add_source = '''
70
+ #include <torch/extension.h>
71
+ #include <cuda_runtime.h>
72
+
73
+ // CUDA kernel for element-wise addition
74
+ __global__ void elementwise_add_kernel(const float* a, const float* b, float* out, int size) {
75
+ int idx = blockIdx.x * blockDim.x + threadIdx.x;
76
+ if (idx < size) {
77
+ out[idx] = a[idx] + b[idx];
78
+ }
79
+ }
80
+
81
+ // Launch function for the CUDA kernel
82
+ torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor b) {
83
+ auto size = a.numel();
84
+ auto out = torch::zeros_like(a);
85
+ const int block_size = 256;
86
+ const int num_blocks = (size + block_size - 1) / block_size;
87
+ elementwise_add_kernel<<<num_blocks, block_size>>>(a.data_ptr<float>(), b.data_ptr<float>(), out.data_ptr<float>(), size);
88
+ return out;
89
+ }
90
+ '''
91
+
92
+ # C++ function prototype declaration
93
+ elementwise_add_cpp_source = "torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor b);"
94
+
95
+ # Compile the inline CUDA code for element-wise addition
96
+ elementwise_add = load_inline(
97
+ name="elementwise_add",
98
+ cpp_sources=elementwise_add_cpp_source,
99
+ cuda_sources=elementwise_add_source,
100
+ functions=["elementwise_add_cuda"],
101
+ verbose=True,
102
+ extra_cflags=[""],
103
+ extra_ldflags=[""],
104
+ )
105
+
106
+ class Model(nn.Module):
107
+ def __init__(self) -> None:
108
+ super().__init__()
109
+ self.elementwise_add = elementwise_add
110
+
111
+ def forward(self, a, b):
112
+ return self.elementwise_add.elementwise_add_cuda(a, b)
113
+ ```