weco 0.1.7__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {weco-0.1.7 → weco-0.1.8}/.github/workflows/release.yml +2 -5
- {weco-0.1.7 → weco-0.1.8}/PKG-INFO +8 -4
- {weco-0.1.7 → weco-0.1.8}/README.md +7 -3
- {weco-0.1.7 → weco-0.1.8}/examples/cookbook.ipynb +52 -6
- {weco-0.1.7 → weco-0.1.8}/pyproject.toml +1 -1
- {weco-0.1.7 → weco-0.1.8}/tests/test_asynchronous.py +4 -3
- {weco-0.1.7 → weco-0.1.8}/tests/test_batching.py +12 -5
- weco-0.1.8/tests/test_reasoning.py +54 -0
- {weco-0.1.7 → weco-0.1.8}/tests/test_synchronous.py +4 -3
- {weco-0.1.7 → weco-0.1.8}/weco/client.py +57 -22
- {weco-0.1.7 → weco-0.1.8}/weco/functional.py +24 -9
- {weco-0.1.7 → weco-0.1.8}/weco.egg-info/PKG-INFO +8 -4
- {weco-0.1.7 → weco-0.1.8}/weco.egg-info/SOURCES.txt +1 -0
- {weco-0.1.7 → weco-0.1.8}/.github/workflows/lint.yml +0 -0
- {weco-0.1.7 → weco-0.1.8}/.gitignore +0 -0
- {weco-0.1.7 → weco-0.1.8}/LICENSE +0 -0
- {weco-0.1.7 → weco-0.1.8}/assets/weco.svg +0 -0
- {weco-0.1.7 → weco-0.1.8}/setup.cfg +0 -0
- {weco-0.1.7 → weco-0.1.8}/weco/__init__.py +0 -0
- {weco-0.1.7 → weco-0.1.8}/weco/constants.py +0 -0
- {weco-0.1.7 → weco-0.1.8}/weco/utils.py +0 -0
- {weco-0.1.7 → weco-0.1.8}/weco.egg-info/dependency_links.txt +0 -0
- {weco-0.1.7 → weco-0.1.8}/weco.egg-info/requires.txt +0 -0
- {weco-0.1.7 → weco-0.1.8}/weco.egg-info/top_level.txt +0 -0
|
@@ -74,15 +74,12 @@ jobs:
|
|
|
74
74
|
inputs: >-
|
|
75
75
|
./dist/*.tar.gz
|
|
76
76
|
./dist/*.whl
|
|
77
|
-
- name: Debug Print github.ref_name
|
|
78
|
-
run: >-
|
|
79
|
-
echo "github.ref_name: ${{ github.ref_name }}"
|
|
80
77
|
- name: Create GitHub Release
|
|
81
78
|
env:
|
|
82
79
|
GITHUB_TOKEN: ${{ github.token }}
|
|
83
80
|
run: >-
|
|
84
81
|
gh release create
|
|
85
|
-
'v0.1.
|
|
82
|
+
'v0.1.8'
|
|
86
83
|
--repo '${{ github.repository }}'
|
|
87
84
|
--notes ""
|
|
88
85
|
- name: Upload artifact signatures to GitHub Release
|
|
@@ -93,5 +90,5 @@ jobs:
|
|
|
93
90
|
# sigstore-produced signatures and certificates.
|
|
94
91
|
run: >-
|
|
95
92
|
gh release upload
|
|
96
|
-
'v0.1.
|
|
93
|
+
'v0.1.8' dist/**
|
|
97
94
|
--repo '${{ github.repository }}'
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: weco
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: A client facing API for interacting with the WeCo AI function builder service.
|
|
5
5
|
Author-email: WeCo AI Team <dhruv@weco.ai>
|
|
6
6
|
License: MIT
|
|
@@ -52,12 +52,16 @@ pip install weco
|
|
|
52
52
|
```
|
|
53
53
|
|
|
54
54
|
## Features
|
|
55
|
+
- Synchronous & Asynchronous client.
|
|
56
|
+
- Batch API
|
|
57
|
+
- Multimodality (Language & Vision)
|
|
58
|
+
- Interpretability (view the reasoning behind outputs)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
## What We Offer
|
|
55
62
|
|
|
56
63
|
- The **build** function enables quick and easy prototyping of new functions via LLMs through just natural language. We encourage users to do this through our [web console](https://weco-app.vercel.app/function) for maximum control and ease of use, however, you can also do this through our API as shown in [here](examples/cookbook.ipynb).
|
|
57
64
|
- The **query** function allows you to test and use the newly created function in your own code.
|
|
58
|
-
- We offer asynchronous versions of the above clients.
|
|
59
|
-
- We provide a **batch_query** functions that allows users to batch functions for various inputs as well as multiple inputs for the same function in a query. This is helpful to make a large number of queries more efficiently.
|
|
60
|
-
- We also offer multimodality capabilities. You can now query our client with both **language** AND **vision** inputs!
|
|
61
65
|
|
|
62
66
|
We provide both services in two ways:
|
|
63
67
|
- `weco.WecoAI` client to be used when you want to maintain the same client service across a portion of code. This is better for dense service usage.
|
|
@@ -25,12 +25,16 @@ pip install weco
|
|
|
25
25
|
```
|
|
26
26
|
|
|
27
27
|
## Features
|
|
28
|
+
- Synchronous & Asynchronous client.
|
|
29
|
+
- Batch API
|
|
30
|
+
- Multimodality (Language & Vision)
|
|
31
|
+
- Interpretability (view the reasoning behind outputs)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
## What We Offer
|
|
28
35
|
|
|
29
36
|
- The **build** function enables quick and easy prototyping of new functions via LLMs through just natural language. We encourage users to do this through our [web console](https://weco-app.vercel.app/function) for maximum control and ease of use, however, you can also do this through our API as shown in [here](examples/cookbook.ipynb).
|
|
30
37
|
- The **query** function allows you to test and use the newly created function in your own code.
|
|
31
|
-
- We offer asynchronous versions of the above clients.
|
|
32
|
-
- We provide a **batch_query** functions that allows users to batch functions for various inputs as well as multiple inputs for the same function in a query. This is helpful to make a large number of queries more efficiently.
|
|
33
|
-
- We also offer multimodality capabilities. You can now query our client with both **language** AND **vision** inputs!
|
|
34
38
|
|
|
35
39
|
We provide both services in two ways:
|
|
36
40
|
- `weco.WecoAI` client to be used when you want to maintain the same client service across a portion of code. This is better for dense service usage.
|
|
@@ -144,7 +144,7 @@
|
|
|
144
144
|
"with open(\"/path/to/home_exterior.jpeg\", \"rb\") as img_file:\n",
|
|
145
145
|
" my_home_exterior = base64.b64encode(img_file.read()).decode('utf-8')\n",
|
|
146
146
|
"\n",
|
|
147
|
-
"
|
|
147
|
+
"query_response = query(\n",
|
|
148
148
|
" fn_name=fn_name,\n",
|
|
149
149
|
" text_input=request,\n",
|
|
150
150
|
" images_input=[\n",
|
|
@@ -154,7 +154,10 @@
|
|
|
154
154
|
" ]\n",
|
|
155
155
|
")\n",
|
|
156
156
|
"\n",
|
|
157
|
-
"print(
|
|
157
|
+
"for key, value in query_response[\"output\"].items(): print(f\"{key}: {value}\")\n",
|
|
158
|
+
"print(f\"Input Tokens: {query_response['in_tokens']}\")\n",
|
|
159
|
+
"print(f\"Output Tokens: {query_response['out_tokens']}\")\n",
|
|
160
|
+
"print(f\"Latency: {query_response['latency_ms']} ms\")"
|
|
158
161
|
]
|
|
159
162
|
},
|
|
160
163
|
{
|
|
@@ -214,7 +217,10 @@
|
|
|
214
217
|
" fn_name=fn_name,\n",
|
|
215
218
|
" text_input=\"I want to train a model to predict house prices using the Boston Housing dataset hosted on Kaggle.\"\n",
|
|
216
219
|
")\n",
|
|
217
|
-
"for key, value in query_response.items(): print(f\"{key}: {value}\")"
|
|
220
|
+
"for key, value in query_response[\"output\"].items(): print(f\"{key}: {value}\")\n",
|
|
221
|
+
"print(f\"Input Tokens: {query_response['in_tokens']}\")\n",
|
|
222
|
+
"print(f\"Output Tokens: {query_response['out_tokens']}\")\n",
|
|
223
|
+
"print(f\"Latency: {query_response['latency_ms']} ms\")"
|
|
218
224
|
]
|
|
219
225
|
},
|
|
220
226
|
{
|
|
@@ -274,7 +280,12 @@
|
|
|
274
280
|
"query_responses = batch_query(\n",
|
|
275
281
|
" fn_names=fn_name,\n",
|
|
276
282
|
" batch_inputs=[input_1, input_2]\n",
|
|
277
|
-
")"
|
|
283
|
+
")\n",
|
|
284
|
+
"for i, query_response in enumerate(query_responses):\n",
|
|
285
|
+
" print(\"-\"*50)\n",
|
|
286
|
+
" print(f\"For input {i + 1}\")\n",
|
|
287
|
+
" for key, value in query_response[\"output\"].items(): print(f\"{key}: {value}\")\n",
|
|
288
|
+
" print(\"-\"*50)"
|
|
278
289
|
]
|
|
279
290
|
},
|
|
280
291
|
{
|
|
@@ -323,14 +334,49 @@
|
|
|
323
334
|
" fn_name=fn_name,\n",
|
|
324
335
|
" text_input=\"I want to train a model to predict house prices using the Boston Housing dataset hosted on Kaggle.\"\n",
|
|
325
336
|
")\n",
|
|
326
|
-
"for key, value in query_response.items(): print(f\"{key}: {value}\")"
|
|
337
|
+
"for key, value in query_response[\"output\"].items(): print(f\"{key}: {value}\")\n",
|
|
338
|
+
"print(f\"Input Tokens: {query_response['in_tokens']}\")\n",
|
|
339
|
+
"print(f\"Output Tokens: {query_response['out_tokens']}\")\n",
|
|
340
|
+
"print(f\"Latency: {query_response['latency_ms']} ms\")"
|
|
327
341
|
]
|
|
328
342
|
},
|
|
329
343
|
{
|
|
330
344
|
"cell_type": "markdown",
|
|
331
345
|
"metadata": {},
|
|
332
346
|
"source": [
|
|
333
|
-
"##
|
|
347
|
+
"## Interpretability"
|
|
348
|
+
]
|
|
349
|
+
},
|
|
350
|
+
{
|
|
351
|
+
"cell_type": "markdown",
|
|
352
|
+
"metadata": {},
|
|
353
|
+
"source": [
|
|
354
|
+
"You can now understand why a model generated an output simply by passing `return_reasoning=True` at query time!"
|
|
355
|
+
]
|
|
356
|
+
},
|
|
357
|
+
{
|
|
358
|
+
"cell_type": "code",
|
|
359
|
+
"execution_count": null,
|
|
360
|
+
"metadata": {},
|
|
361
|
+
"outputs": [],
|
|
362
|
+
"source": [
|
|
363
|
+
"from weco import build, query\n",
|
|
364
|
+
"\n",
|
|
365
|
+
"# Describe the task you want the function to perform\n",
|
|
366
|
+
"fn_name, fn_desc = build(task_description=task_description)\n",
|
|
367
|
+
"print(f\"AI Function {fn_name} built. This does the following - \\n{fn_desc}.\")\n",
|
|
368
|
+
"\n",
|
|
369
|
+
"# Query the function with a specific input\n",
|
|
370
|
+
"query_response = query(\n",
|
|
371
|
+
" fn_name=fn_name,\n",
|
|
372
|
+
" text_input=\"I want to train a model to predict house prices using the Boston Housing dataset hosted on Kaggle.\",\n",
|
|
373
|
+
" return_reasoning=True\n",
|
|
374
|
+
")\n",
|
|
375
|
+
"for key, value in query_response[\"output\"].items(): print(f\"{key}: {value}\")\n",
|
|
376
|
+
"for i, step in enumerate(query_response[\"reasoning_steps\"]): print(f\"Step {i+1}: {step}\")\n",
|
|
377
|
+
"print(f\"Input Tokens: {query_response['in_tokens']}\")\n",
|
|
378
|
+
"print(f\"Output Tokens: {query_response['out_tokens']}\")\n",
|
|
379
|
+
"print(f\"Latency: {query_response['latency_ms']} ms\")"
|
|
334
380
|
]
|
|
335
381
|
},
|
|
336
382
|
{
|
|
@@ -10,7 +10,7 @@ authors = [
|
|
|
10
10
|
]
|
|
11
11
|
description = "A client facing API for interacting with the WeCo AI function builder service."
|
|
12
12
|
readme = "README.md"
|
|
13
|
-
version = "0.1.
|
|
13
|
+
version = "0.1.8"
|
|
14
14
|
license = {text = "MIT"}
|
|
15
15
|
requires-python = ">=3.8"
|
|
16
16
|
dependencies = ["asyncio", "httpx[http2]", "pillow"]
|
|
@@ -20,13 +20,14 @@ async def assert_query_response(query_response):
|
|
|
20
20
|
assert isinstance(query_response["in_tokens"], int)
|
|
21
21
|
assert isinstance(query_response["out_tokens"], int)
|
|
22
22
|
assert isinstance(query_response["latency_ms"], float)
|
|
23
|
+
assert "reasoning_steps" not in query_response
|
|
23
24
|
|
|
24
25
|
|
|
25
26
|
@pytest.fixture
|
|
26
27
|
async def text_evaluator():
|
|
27
28
|
fn_name, version_number, fn_desc = await abuild(
|
|
28
29
|
task_description="Evaluate the sentiment of the given text. Provide a json object with 'sentiment' and 'explanation' keys.",
|
|
29
|
-
multimodal=False
|
|
30
|
+
multimodal=False,
|
|
30
31
|
)
|
|
31
32
|
return fn_name, version_number, fn_desc
|
|
32
33
|
|
|
@@ -44,7 +45,7 @@ async def test_text_aquery(text_evaluator):
|
|
|
44
45
|
async def image_evaluator():
|
|
45
46
|
fn_name, version_number, fn_desc = await abuild(
|
|
46
47
|
task_description="Describe the contents of the given images. Provide a json object with 'description' and 'objects' keys.",
|
|
47
|
-
multimodal=True
|
|
48
|
+
multimodal=True,
|
|
48
49
|
)
|
|
49
50
|
return fn_name, version_number, fn_desc
|
|
50
51
|
|
|
@@ -69,7 +70,7 @@ async def test_image_aquery(image_evaluator):
|
|
|
69
70
|
async def text_and_image_evaluator():
|
|
70
71
|
fn_name, version_number, fn_desc = await abuild(
|
|
71
72
|
task_description="Evaluate, solve and arrive at a numerical answer for the image provided. Provide a json object with 'answer' and 'explanation' keys.",
|
|
72
|
-
multimodal=True
|
|
73
|
+
multimodal=True,
|
|
73
74
|
)
|
|
74
75
|
return fn_name, version_number, fn_desc
|
|
75
76
|
|
|
@@ -9,7 +9,7 @@ from weco import batch_query, build
|
|
|
9
9
|
def ml_task_evaluator():
|
|
10
10
|
fn_name, version_number, _ = build(
|
|
11
11
|
task_description="I want to evaluate the feasibility of a machine learning task. Give me a json object with three keys - 'feasibility', 'justification', and 'suggestions'.",
|
|
12
|
-
multimodal=False
|
|
12
|
+
multimodal=False,
|
|
13
13
|
)
|
|
14
14
|
return fn_name, version_number
|
|
15
15
|
|
|
@@ -18,7 +18,9 @@ def ml_task_evaluator():
|
|
|
18
18
|
def ml_task_inputs():
|
|
19
19
|
return [
|
|
20
20
|
{"text_input": "I want to train a model to predict house prices using the Boston Housing dataset hosted on Kaggle."},
|
|
21
|
-
{
|
|
21
|
+
{
|
|
22
|
+
"text_input": "I want to train a model to classify digits using the MNIST dataset hosted on Kaggle using a Google Colab notebook."
|
|
23
|
+
},
|
|
22
24
|
]
|
|
23
25
|
|
|
24
26
|
|
|
@@ -26,7 +28,7 @@ def ml_task_inputs():
|
|
|
26
28
|
def image_evaluator():
|
|
27
29
|
fn_name, version_number, _ = build(
|
|
28
30
|
task_description="Describe the contents of the given images. Provide a json object with 'description' and 'objects' keys.",
|
|
29
|
-
multimodal=True
|
|
31
|
+
multimodal=True,
|
|
30
32
|
)
|
|
31
33
|
return fn_name, version_number
|
|
32
34
|
|
|
@@ -34,7 +36,11 @@ def image_evaluator():
|
|
|
34
36
|
@pytest.fixture
|
|
35
37
|
def image_inputs():
|
|
36
38
|
return [
|
|
37
|
-
{
|
|
39
|
+
{
|
|
40
|
+
"images_input": [
|
|
41
|
+
"https://www.integratedtreatmentservices.co.uk/wp-content/uploads/2013/12/Objects-of-Reference.jpg"
|
|
42
|
+
]
|
|
43
|
+
},
|
|
38
44
|
{"images_input": ["https://t4.ftcdn.net/jpg/05/70/90/23/360_F_570902339_kNj1reH40GFXakTy98EmfiZHci2xvUCS.jpg"]},
|
|
39
45
|
]
|
|
40
46
|
|
|
@@ -70,6 +76,7 @@ def test_batch_query_image(image_evaluator, image_inputs):
|
|
|
70
76
|
assert isinstance(query_response["in_tokens"], int)
|
|
71
77
|
assert isinstance(query_response["out_tokens"], int)
|
|
72
78
|
assert isinstance(query_response["latency_ms"], float)
|
|
79
|
+
assert "reasoning_steps" not in query_response
|
|
73
80
|
|
|
74
81
|
output = query_response["output"]
|
|
75
|
-
assert set(output.keys()) == {"description", "objects"}
|
|
82
|
+
assert set(output.keys()) == {"description", "objects"}
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
|
|
3
|
+
from weco import build, query
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def assert_query_response(query_response):
|
|
7
|
+
assert isinstance(query_response, dict)
|
|
8
|
+
assert isinstance(query_response["output"], dict)
|
|
9
|
+
assert isinstance(query_response["reasoning_steps"], list)
|
|
10
|
+
for step in query_response["reasoning_steps"]: assert isinstance(step, str)
|
|
11
|
+
assert isinstance(query_response["in_tokens"], int)
|
|
12
|
+
assert isinstance(query_response["out_tokens"], int)
|
|
13
|
+
assert isinstance(query_response["latency_ms"], float)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@pytest.fixture
|
|
17
|
+
def text_reasoning_evaluator():
|
|
18
|
+
fn_name, version_number, fn_desc = build(
|
|
19
|
+
task_description="Evaluate the sentiment of the given text. Provide a json object with 'sentiment' and 'explanation' keys.",
|
|
20
|
+
multimodal=False,
|
|
21
|
+
)
|
|
22
|
+
return fn_name, version_number, fn_desc
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def test_text_reasoning_query(text_reasoning_evaluator):
|
|
26
|
+
fn_name, version_number, _ = text_reasoning_evaluator
|
|
27
|
+
query_response = query(fn_name=fn_name, version_number=version_number, text_input="I love this product!", return_reasoning=True)
|
|
28
|
+
|
|
29
|
+
assert_query_response(query_response)
|
|
30
|
+
assert set(query_response["output"].keys()) == {"sentiment", "explanation"}
|
|
31
|
+
|
|
32
|
+
@pytest.fixture
|
|
33
|
+
def vision_reasoning_evaluator():
|
|
34
|
+
fn_name, version_number, fn_desc = build(
|
|
35
|
+
task_description="Evaluate, solve and arrive at a numerical answer for the image provided. Perform any additional things if instructed. Provide a json object with 'answer' and 'explanation' keys.",
|
|
36
|
+
multimodal=True,
|
|
37
|
+
)
|
|
38
|
+
return fn_name, version_number, fn_desc
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def test_vision_reasoning_query(vision_reasoning_evaluator):
|
|
42
|
+
fn_name, version_number, _ = vision_reasoning_evaluator
|
|
43
|
+
query_response = query(
|
|
44
|
+
fn_name=fn_name,
|
|
45
|
+
version_number=version_number,
|
|
46
|
+
text_input="Find x and y.",
|
|
47
|
+
images_input=[
|
|
48
|
+
"https://i.ytimg.com/vi/cblHUeq3bkE/hq720.jpg?sqp=-oaymwEhCK4FEIIDSFryq4qpAxMIARUAAAAAGAElAADIQj0AgKJD&rs=AOn4CLAKn3piY91QRCBzRgnzAPf7MPrjDQ"
|
|
49
|
+
],
|
|
50
|
+
return_reasoning=True,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
assert_query_response(query_response)
|
|
54
|
+
assert set(query_response["output"].keys()) == {"answer", "explanation"}
|
|
@@ -19,13 +19,14 @@ def assert_query_response(query_response):
|
|
|
19
19
|
assert isinstance(query_response["in_tokens"], int)
|
|
20
20
|
assert isinstance(query_response["out_tokens"], int)
|
|
21
21
|
assert isinstance(query_response["latency_ms"], float)
|
|
22
|
+
assert "reasoning_steps" not in query_response
|
|
22
23
|
|
|
23
24
|
|
|
24
25
|
@pytest.fixture
|
|
25
26
|
def text_evaluator():
|
|
26
27
|
fn_name, version_number, fn_desc = build(
|
|
27
28
|
task_description="Evaluate the sentiment of the given text. Provide a json object with 'sentiment' and 'explanation' keys.",
|
|
28
|
-
multimodal=False
|
|
29
|
+
multimodal=False,
|
|
29
30
|
)
|
|
30
31
|
return fn_name, version_number, fn_desc
|
|
31
32
|
|
|
@@ -42,7 +43,7 @@ def test_text_query(text_evaluator):
|
|
|
42
43
|
def image_evaluator():
|
|
43
44
|
fn_name, version_number, fn_desc = build(
|
|
44
45
|
task_description="Describe the contents of the given images. Provide a json object with 'description' and 'objects' keys.",
|
|
45
|
-
multimodal=True
|
|
46
|
+
multimodal=True,
|
|
46
47
|
)
|
|
47
48
|
return fn_name, version_number, fn_desc
|
|
48
49
|
|
|
@@ -66,7 +67,7 @@ def test_image_query(image_evaluator):
|
|
|
66
67
|
def text_and_image_evaluator():
|
|
67
68
|
fn_name, version_number, fn_desc = build(
|
|
68
69
|
task_description="Evaluate, solve and arrive at a numerical answer for the image provided. Perform any additional things if instructed. Provide a json object with 'answer' and 'explanation' keys.",
|
|
69
|
-
multimodal=True
|
|
70
|
+
multimodal=True,
|
|
70
71
|
)
|
|
71
72
|
return fn_name, version_number, fn_desc
|
|
72
73
|
|
|
@@ -31,7 +31,7 @@ class WecoAI:
|
|
|
31
31
|
----------
|
|
32
32
|
api_key : str
|
|
33
33
|
The API key used for authentication.
|
|
34
|
-
|
|
34
|
+
|
|
35
35
|
timeout : float
|
|
36
36
|
The timeout for the HTTP requests in seconds. Default is 120.0.
|
|
37
37
|
|
|
@@ -39,7 +39,7 @@ class WecoAI:
|
|
|
39
39
|
Whether to use HTTP/2 protocol for the HTTP requests. Default is True.
|
|
40
40
|
"""
|
|
41
41
|
|
|
42
|
-
def __init__(self, api_key: str = None, timeout: float = 120.0, http2: bool = True) -> None:
|
|
42
|
+
def __init__(self, api_key: Union[str, None] = None, timeout: float = 120.0, http2: bool = True) -> None:
|
|
43
43
|
"""Initializes the WecoAI client with the provided API key and base URL.
|
|
44
44
|
|
|
45
45
|
Parameters
|
|
@@ -153,24 +153,29 @@ class WecoAI:
|
|
|
153
153
|
for _warning in response.get("warnings", []):
|
|
154
154
|
warnings.warn(_warning)
|
|
155
155
|
|
|
156
|
-
|
|
156
|
+
returned_response = {
|
|
157
157
|
"output": response["response"],
|
|
158
158
|
"in_tokens": response["num_input_tokens"],
|
|
159
159
|
"out_tokens": response["num_output_tokens"],
|
|
160
160
|
"latency_ms": response["latency_ms"],
|
|
161
161
|
}
|
|
162
|
+
if "reasoning_steps" in response:
|
|
163
|
+
returned_response["reasoning_steps"] = response["reasoning_steps"]
|
|
164
|
+
return returned_response
|
|
162
165
|
|
|
163
|
-
def _build(
|
|
166
|
+
def _build(
|
|
167
|
+
self, task_description: str, multimodal: bool, is_async: bool
|
|
168
|
+
) -> Union[Tuple[str, int, str], Coroutine[Any, Any, Tuple[str, int, str]]]:
|
|
164
169
|
"""Internal method to handle both synchronous and asynchronous build requests.
|
|
165
170
|
|
|
166
171
|
Parameters
|
|
167
172
|
----------
|
|
168
173
|
task_description : str
|
|
169
174
|
A description of the task for which the function is being built.
|
|
170
|
-
|
|
175
|
+
|
|
171
176
|
multimodal : bool
|
|
172
177
|
Whether the function is multimodal or not.
|
|
173
|
-
|
|
178
|
+
|
|
174
179
|
is_async : bool
|
|
175
180
|
Whether to perform an asynchronous request.
|
|
176
181
|
|
|
@@ -212,7 +217,7 @@ class WecoAI:
|
|
|
212
217
|
----------
|
|
213
218
|
task_description : str
|
|
214
219
|
A description of the task for which the function is being built.
|
|
215
|
-
|
|
220
|
+
|
|
216
221
|
multimodal : bool, optional
|
|
217
222
|
Whether the function is multimodal or not (default is False).
|
|
218
223
|
|
|
@@ -230,7 +235,7 @@ class WecoAI:
|
|
|
230
235
|
----------
|
|
231
236
|
task_description : str
|
|
232
237
|
A description of the task for which the function is being built.
|
|
233
|
-
|
|
238
|
+
|
|
234
239
|
multimodal : bool, optional
|
|
235
240
|
Whether the function is multimodal or not (default is False).
|
|
236
241
|
|
|
@@ -385,7 +390,13 @@ class WecoAI:
|
|
|
385
390
|
return image_info
|
|
386
391
|
|
|
387
392
|
def _query(
|
|
388
|
-
self,
|
|
393
|
+
self,
|
|
394
|
+
is_async: bool,
|
|
395
|
+
fn_name: str,
|
|
396
|
+
version_number: Optional[int],
|
|
397
|
+
text_input: Optional[str],
|
|
398
|
+
images_input: Optional[List[str]],
|
|
399
|
+
return_reasoning: Optional[bool]
|
|
389
400
|
) -> Union[Dict[str, Any], Coroutine[Any, Any, Dict[str, Any]]]:
|
|
390
401
|
"""Internal method to handle both synchronous and asynchronous query requests.
|
|
391
402
|
|
|
@@ -401,6 +412,8 @@ class WecoAI:
|
|
|
401
412
|
The text input to the function.
|
|
402
413
|
images_input : List[str], optional
|
|
403
414
|
A list of image URLs or images encoded in base64 with their metadata to be sent as input to the function.
|
|
415
|
+
return_reasoning : bool, optional
|
|
416
|
+
Whether to return reasoning for the output.
|
|
404
417
|
|
|
405
418
|
Returns
|
|
406
419
|
-------
|
|
@@ -427,7 +440,7 @@ class WecoAI:
|
|
|
427
440
|
|
|
428
441
|
# Make the request
|
|
429
442
|
endpoint = "query"
|
|
430
|
-
data = {"name": fn_name, "text": text_input, "images": image_urls, "version_number": version_number}
|
|
443
|
+
data = {"name": fn_name, "text": text_input, "images": image_urls, "version_number": version_number, "return_reasoning": return_reasoning}
|
|
431
444
|
request = self._make_request(endpoint=endpoint, data=data, is_async=is_async)
|
|
432
445
|
|
|
433
446
|
if is_async:
|
|
@@ -442,7 +455,12 @@ class WecoAI:
|
|
|
442
455
|
return self._process_query_response(response=response)
|
|
443
456
|
|
|
444
457
|
async def aquery(
|
|
445
|
-
self,
|
|
458
|
+
self,
|
|
459
|
+
fn_name: str,
|
|
460
|
+
version_number: Optional[int] = -1,
|
|
461
|
+
text_input: Optional[str] = "",
|
|
462
|
+
images_input: Optional[List[str]] = [],
|
|
463
|
+
return_reasoning: Optional[bool] = False
|
|
446
464
|
) -> Dict[str, Any]:
|
|
447
465
|
"""Asynchronously queries a function with the given function ID and input.
|
|
448
466
|
|
|
@@ -456,6 +474,8 @@ class WecoAI:
|
|
|
456
474
|
The text input to the function.
|
|
457
475
|
images_input : List[str], optional
|
|
458
476
|
A list of image URLs or images encoded in base64 with their metadata to be sent as input to the function.
|
|
477
|
+
return_reasoning : bool, optional
|
|
478
|
+
Whether to return reasoning for the output. Default is False.
|
|
459
479
|
|
|
460
480
|
Returns
|
|
461
481
|
-------
|
|
@@ -463,9 +483,18 @@ class WecoAI:
|
|
|
463
483
|
A dictionary containing the output of the function, the number of input tokens, the number of output tokens,
|
|
464
484
|
and the latency in milliseconds.
|
|
465
485
|
"""
|
|
466
|
-
return await self._query(
|
|
467
|
-
|
|
468
|
-
|
|
486
|
+
return await self._query(
|
|
487
|
+
fn_name=fn_name, version_number=version_number, text_input=text_input, images_input=images_input, return_reasoning=return_reasoning, is_async=True
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
def query(
|
|
491
|
+
self,
|
|
492
|
+
fn_name: str,
|
|
493
|
+
version_number: Optional[int] = -1,
|
|
494
|
+
text_input: Optional[str] = "",
|
|
495
|
+
images_input: Optional[List[str]] = [],
|
|
496
|
+
return_reasoning: Optional[bool] = False
|
|
497
|
+
) -> Dict[str, Any]:
|
|
469
498
|
"""Synchronously queries a function with the given function ID and input.
|
|
470
499
|
|
|
471
500
|
Parameters
|
|
@@ -478,6 +507,8 @@ class WecoAI:
|
|
|
478
507
|
The text input to the function.
|
|
479
508
|
images_input : List[str], optional
|
|
480
509
|
A list of image URLs or images encoded in base64 with their metadata to be sent as input to the function.
|
|
510
|
+
return_reasoning : bool, optional
|
|
511
|
+
Whether to return reasoning for the output. Default is False.
|
|
481
512
|
|
|
482
513
|
Returns
|
|
483
514
|
-------
|
|
@@ -485,23 +516,27 @@ class WecoAI:
|
|
|
485
516
|
A dictionary containing the output of the function, the number of input tokens, the number of output tokens,
|
|
486
517
|
and the latency in milliseconds.
|
|
487
518
|
"""
|
|
488
|
-
return self._query(
|
|
519
|
+
return self._query(
|
|
520
|
+
fn_name=fn_name, version_number=version_number, text_input=text_input, images_input=images_input, return_reasoning=return_reasoning, is_async=False
|
|
521
|
+
)
|
|
489
522
|
|
|
490
|
-
def batch_query(
|
|
523
|
+
def batch_query(
|
|
524
|
+
self, fn_name: str, batch_inputs: List[Dict[str, Any]], version_number: Optional[int] = -1, return_reasoning: Optional[bool] = False
|
|
525
|
+
) -> List[Dict[str, Any]]:
|
|
491
526
|
"""Batch queries a function version with a list of inputs.
|
|
492
527
|
|
|
493
528
|
Parameters
|
|
494
529
|
----------
|
|
495
530
|
fn_name : str
|
|
496
531
|
The name of the function or a list of function names to query.
|
|
497
|
-
|
|
498
532
|
batch_inputs : List[Dict[str, Any]]
|
|
499
533
|
A list of inputs for the functions to query. The input must be a dictionary containing the data to be processed. e.g.,
|
|
500
534
|
when providing for a text input, the dictionary should be {"text_input": "input text"}, for an image input, the dictionary should be {"images_input": ["url1", "url2", ...]}
|
|
501
535
|
and for a combination of text and image inputs, the dictionary should be {"text_input": "input text", "images_input": ["url1", "url2", ...]}.
|
|
502
|
-
|
|
503
536
|
version_number : int, optional
|
|
504
537
|
The version number of the function to query. If not provided, the latest version will be used. Pass -1 to use the latest version.
|
|
538
|
+
return_reasoning : bool, optional
|
|
539
|
+
Whether to return reasoning for the output. Default is False.
|
|
505
540
|
|
|
506
541
|
Returns
|
|
507
542
|
-------
|
|
@@ -509,11 +544,11 @@ class WecoAI:
|
|
|
509
544
|
A list of dictionaries, each containing the output of a function query,
|
|
510
545
|
in the same order as the input queries.
|
|
511
546
|
"""
|
|
547
|
+
|
|
512
548
|
async def run_queries():
|
|
513
|
-
tasks = list(
|
|
514
|
-
lambda fn_input: self.aquery(fn_name=fn_name, version_number=version_number, **fn_input),
|
|
515
|
-
|
|
516
|
-
))
|
|
549
|
+
tasks = list(
|
|
550
|
+
map(lambda fn_input: self.aquery(fn_name=fn_name, version_number=version_number, return_reasoning=return_reasoning, **fn_input), batch_inputs)
|
|
551
|
+
)
|
|
517
552
|
return await asyncio.gather(*tasks)
|
|
518
553
|
|
|
519
554
|
return asyncio.run(run_queries())
|
|
@@ -48,7 +48,12 @@ async def abuild(task_description: str, multimodal: bool = False, api_key: str =
|
|
|
48
48
|
|
|
49
49
|
|
|
50
50
|
def query(
|
|
51
|
-
fn_name: str,
|
|
51
|
+
fn_name: str,
|
|
52
|
+
version_number: Optional[int] = -1,
|
|
53
|
+
text_input: Optional[str] = "",
|
|
54
|
+
images_input: Optional[List[str]] = [],
|
|
55
|
+
return_reasoning: Optional[bool] = False,
|
|
56
|
+
api_key: Optional[str] = None,
|
|
52
57
|
) -> Dict[str, Any]:
|
|
53
58
|
"""Queries a function synchronously with the given function ID and input.
|
|
54
59
|
|
|
@@ -62,6 +67,8 @@ def query(
|
|
|
62
67
|
The text input to the function.
|
|
63
68
|
images_input : List[str], optional
|
|
64
69
|
A list of image URLs or base64 encoded images to be used as input to the function.
|
|
70
|
+
return_reasoning : bool, optional
|
|
71
|
+
A flag to indicate if the reasoning should be returned. Default is False.
|
|
65
72
|
api_key : str
|
|
66
73
|
The API key for the WecoAI service. If not provided, the API key must be set using the environment variable - WECO_API_KEY.
|
|
67
74
|
|
|
@@ -72,12 +79,17 @@ def query(
|
|
|
72
79
|
and the latency in milliseconds.
|
|
73
80
|
"""
|
|
74
81
|
client = WecoAI(api_key=api_key)
|
|
75
|
-
response = client.query(fn_name=fn_name, version_number=version_number, text_input=text_input, images_input=images_input)
|
|
82
|
+
response = client.query(fn_name=fn_name, version_number=version_number, text_input=text_input, images_input=images_input, return_reasoning=return_reasoning)
|
|
76
83
|
return response
|
|
77
84
|
|
|
78
85
|
|
|
79
86
|
async def aquery(
|
|
80
|
-
fn_name: str,
|
|
87
|
+
fn_name: str,
|
|
88
|
+
version_number: Optional[int] = -1,
|
|
89
|
+
text_input: Optional[str] = "",
|
|
90
|
+
images_input: Optional[List[str]] = [],
|
|
91
|
+
return_reasoning: Optional[bool] = False,
|
|
92
|
+
api_key: Optional[str] = None,
|
|
81
93
|
) -> Dict[str, Any]:
|
|
82
94
|
"""Queries a function asynchronously with the given function ID and input.
|
|
83
95
|
|
|
@@ -91,6 +103,8 @@ async def aquery(
|
|
|
91
103
|
The text input to the function.
|
|
92
104
|
images_input : List[str], optional
|
|
93
105
|
A list of image URLs to be used as input to the function.
|
|
106
|
+
return_reasoning : bool, optional
|
|
107
|
+
A flag to indicate if the reasoning should be returned. Default is False.
|
|
94
108
|
api_key : str
|
|
95
109
|
The API key for the WecoAI service. If not provided, the API key must be set using the environment variable - WECO_API_KEY.
|
|
96
110
|
|
|
@@ -101,12 +115,14 @@ async def aquery(
|
|
|
101
115
|
and the latency in milliseconds.
|
|
102
116
|
"""
|
|
103
117
|
client = WecoAI(api_key=api_key)
|
|
104
|
-
response = await client.aquery(
|
|
118
|
+
response = await client.aquery(
|
|
119
|
+
fn_name=fn_name, version_number=version_number, text_input=text_input, images_input=images_input, return_reasoning=return_reasoning
|
|
120
|
+
)
|
|
105
121
|
return response
|
|
106
122
|
|
|
107
123
|
|
|
108
124
|
def batch_query(
|
|
109
|
-
fn_name: str, batch_inputs: List[Dict[str, Any]], version_number: Optional[int] = -1, api_key: Optional[str] = None
|
|
125
|
+
fn_name: str, batch_inputs: List[Dict[str, Any]], version_number: Optional[int] = -1, return_reasoning: Optional[bool] = False, api_key: Optional[str] = None
|
|
110
126
|
) -> List[Dict[str, Any]]:
|
|
111
127
|
"""Synchronously queries multiple functions using asynchronous calls internally.
|
|
112
128
|
|
|
@@ -119,15 +135,14 @@ def batch_query(
|
|
|
119
135
|
The name of the function or a list of function names to query.
|
|
120
136
|
Note that if a single function name is provided, it will be used for all queries.
|
|
121
137
|
If a list of function names is provided, the length must match the number of queries.
|
|
122
|
-
|
|
123
138
|
batch_inputs : List[str]
|
|
124
139
|
A list of inputs for the functions to query. The input must be a dictionary containing the data to be processed. e.g.,
|
|
125
140
|
when providing for a text input, the dictionary should be {"text_input": "input text"}, for an image input, the dictionary should be {"images_input": ["url1", "url2", ...]}
|
|
126
141
|
and for a combination of text and image inputs, the dictionary should be {"text_input": "input text", "images_input": ["url1", "url2", ...]}.
|
|
127
|
-
|
|
128
142
|
version_number : int, optional
|
|
129
143
|
The version number of the function to query. If not provided, the latest version is used. Default is -1 for the same behavior.
|
|
130
|
-
|
|
144
|
+
return_reasoning : bool, optional
|
|
145
|
+
A flag to indicate if the reasoning should be returned. Default is False.
|
|
131
146
|
api_key : str, optional
|
|
132
147
|
The API key for the WecoAI service. If not provided, the API key must be set using the environment variable - WECO_API_KEY.
|
|
133
148
|
|
|
@@ -138,5 +153,5 @@ def batch_query(
|
|
|
138
153
|
in the same order as the input queries.
|
|
139
154
|
"""
|
|
140
155
|
client = WecoAI(api_key=api_key)
|
|
141
|
-
responses = client.batch_query(fn_name=fn_name, version_number=version_number, batch_inputs=batch_inputs)
|
|
156
|
+
responses = client.batch_query(fn_name=fn_name, version_number=version_number, batch_inputs=batch_inputs, return_reasoning=return_reasoning)
|
|
142
157
|
return responses
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: weco
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: A client facing API for interacting with the WeCo AI function builder service.
|
|
5
5
|
Author-email: WeCo AI Team <dhruv@weco.ai>
|
|
6
6
|
License: MIT
|
|
@@ -52,12 +52,16 @@ pip install weco
|
|
|
52
52
|
```
|
|
53
53
|
|
|
54
54
|
## Features
|
|
55
|
+
- Synchronous & Asynchronous client.
|
|
56
|
+
- Batch API
|
|
57
|
+
- Multimodality (Language & Vision)
|
|
58
|
+
- Interpretability (view the reasoning behind outputs)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
## What We Offer
|
|
55
62
|
|
|
56
63
|
- The **build** function enables quick and easy prototyping of new functions via LLMs through just natural language. We encourage users to do this through our [web console](https://weco-app.vercel.app/function) for maximum control and ease of use, however, you can also do this through our API as shown in [here](examples/cookbook.ipynb).
|
|
57
64
|
- The **query** function allows you to test and use the newly created function in your own code.
|
|
58
|
-
- We offer asynchronous versions of the above clients.
|
|
59
|
-
- We provide a **batch_query** functions that allows users to batch functions for various inputs as well as multiple inputs for the same function in a query. This is helpful to make a large number of queries more efficiently.
|
|
60
|
-
- We also offer multimodality capabilities. You can now query our client with both **language** AND **vision** inputs!
|
|
61
65
|
|
|
62
66
|
We provide both services in two ways:
|
|
63
67
|
- `weco.WecoAI` client to be used when you want to maintain the same client service across a portion of code. This is better for dense service usage.
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|