webscout 3.0__tar.gz → 3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of webscout might be problematic. Click here for more details.
- {webscout-3.0 → webscout-3.1}/PKG-INFO +90 -1
- {webscout-3.0 → webscout-3.1}/README.md +89 -0
- {webscout-3.0 → webscout-3.1}/setup.py +1 -1
- {webscout-3.0 → webscout-3.1}/webscout/Local/__init__.py +1 -0
- {webscout-3.0 → webscout-3.1}/webscout/Local/_version.py +1 -1
- webscout-3.1/webscout/Local/rawdog.py +946 -0
- webscout-3.1/webscout/version.py +2 -0
- {webscout-3.0 → webscout-3.1}/webscout.egg-info/PKG-INFO +90 -1
- {webscout-3.0 → webscout-3.1}/webscout.egg-info/SOURCES.txt +1 -0
- webscout-3.0/webscout/version.py +0 -2
- {webscout-3.0 → webscout-3.1}/DeepWEBS/__init__.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/documents/__init__.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/documents/query_results_extractor.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/documents/webpage_content_extractor.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/networks/__init__.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/networks/filepath_converter.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/networks/google_searcher.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/networks/network_configs.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/networks/webpage_fetcher.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/utilsdw/__init__.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/utilsdw/enver.py +0 -0
- {webscout-3.0 → webscout-3.1}/DeepWEBS/utilsdw/logger.py +0 -0
- {webscout-3.0 → webscout-3.1}/LICENSE.md +0 -0
- {webscout-3.0 → webscout-3.1}/setup.cfg +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/AIauto.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/AIbase.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/AIutel.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/DWEBS.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/LLM.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Local/formats.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Local/model.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Local/samplers.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Local/thread.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Local/utils.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/BasedGPT.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Berlin4h.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Blackboxai.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/ChatGPTUK.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Cohere.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Gemini.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Groq.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Koboldai.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Leo.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Llama2.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/OpenGPT.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Openai.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Perplexity.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Phind.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Poe.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Reka.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/ThinkAnyAI.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Xjai.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Yepchat.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/Youchat.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/Provider/__init__.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/__init__.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/__main__.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/async_providers.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/cli.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/exceptions.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/g4f.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/models.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/tempid.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/transcriber.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/utils.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/voice.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/webai.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/webscout_search.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout/webscout_search_async.py +0 -0
- {webscout-3.0 → webscout-3.1}/webscout.egg-info/dependency_links.txt +0 -0
- {webscout-3.0 → webscout-3.1}/webscout.egg-info/entry_points.txt +0 -0
- {webscout-3.0 → webscout-3.1}/webscout.egg-info/requires.txt +0 -0
- {webscout-3.0 → webscout-3.1}/webscout.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: webscout
|
|
3
|
-
Version: 3.
|
|
3
|
+
Version: 3.1
|
|
4
4
|
Summary: Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs
|
|
5
5
|
Author: OEvortex
|
|
6
6
|
Author-email: helpingai5@gmail.com
|
|
@@ -143,6 +143,7 @@ Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can
|
|
|
143
143
|
- [`LLM`](#llm)
|
|
144
144
|
- [`Local-LLM` webscout can now run GGUF models](#local-llm-webscout-can-now-run-gguf-models)
|
|
145
145
|
- [`Function-calling-local-llm`](#function-calling-local-llm)
|
|
146
|
+
- [`Local-rawdog`](#local-rawdog)
|
|
146
147
|
- [`LLM` with internet](#llm-with-internet)
|
|
147
148
|
- [LLM with deepwebs](#llm-with-deepwebs)
|
|
148
149
|
- [`Webai` - terminal gpt and a open interpeter](#webai---terminal-gpt-and-a-open-interpeter)
|
|
@@ -1245,6 +1246,7 @@ while True:
|
|
|
1245
1246
|
print("AI: ", response)
|
|
1246
1247
|
```
|
|
1247
1248
|
### `Local-LLM` webscout can now run GGUF models
|
|
1249
|
+
Local LLM's some functions are taken from easy-llama
|
|
1248
1250
|
```python
|
|
1249
1251
|
from webscout.Local.utils import download_model
|
|
1250
1252
|
from webscout.Local.model import Model
|
|
@@ -1336,6 +1338,93 @@ while True:
|
|
|
1336
1338
|
response = thread.send(user_input)
|
|
1337
1339
|
print("Bot: ", response)
|
|
1338
1340
|
```
|
|
1341
|
+
### `Local-rawdog`
|
|
1342
|
+
```python
|
|
1343
|
+
import webscout.Local as ws
|
|
1344
|
+
from webscout.Local.rawdog import RawDog
|
|
1345
|
+
from webscout.Local.samplers import DefaultSampling
|
|
1346
|
+
from webscout.Local.formats import chatml, AdvancedFormat
|
|
1347
|
+
from webscout.Local.utils import download_model
|
|
1348
|
+
import datetime
|
|
1349
|
+
import sys
|
|
1350
|
+
import os
|
|
1351
|
+
|
|
1352
|
+
repo_id = "YorkieOH10/granite-8b-code-instruct-Q8_0-GGUF"
|
|
1353
|
+
filename = "granite-8b-code-instruct.Q8_0.gguf"
|
|
1354
|
+
model_path = download_model(repo_id, filename, token='')
|
|
1355
|
+
|
|
1356
|
+
# Load the model using the downloaded path
|
|
1357
|
+
model = ws.Model(model_path, n_gpu_layers=10)
|
|
1358
|
+
|
|
1359
|
+
rawdog = RawDog()
|
|
1360
|
+
|
|
1361
|
+
# Create an AdvancedFormat and modify the system content
|
|
1362
|
+
# Use a lambda to generate the prompt dynamically:
|
|
1363
|
+
chat_format = AdvancedFormat(chatml)
|
|
1364
|
+
# **Pre-format the intro_prompt string:**
|
|
1365
|
+
system_content = f"""
|
|
1366
|
+
You are a command-line coding assistant called Rawdog that generates and auto-executes Python scripts.
|
|
1367
|
+
|
|
1368
|
+
A typical interaction goes like this:
|
|
1369
|
+
1. The user gives you a natural language PROMPT.
|
|
1370
|
+
2. You:
|
|
1371
|
+
i. Determine what needs to be done
|
|
1372
|
+
ii. Write a short Python SCRIPT to do it
|
|
1373
|
+
iii. Communicate back to the user by printing to the console in that SCRIPT
|
|
1374
|
+
3. The compiler extracts the script and then runs it using exec(). If there will be an exception raised,
|
|
1375
|
+
it will be send back to you starting with "PREVIOUS SCRIPT EXCEPTION:".
|
|
1376
|
+
4. In case of exception, regenerate error free script.
|
|
1377
|
+
|
|
1378
|
+
If you need to review script outputs before completing the task, you can print the word "CONTINUE" at the end of your SCRIPT.
|
|
1379
|
+
This can be useful for summarizing documents or technical readouts, reading instructions before
|
|
1380
|
+
deciding what to do, or other tasks that require multi-step reasoning.
|
|
1381
|
+
A typical 'CONTINUE' interaction looks like this:
|
|
1382
|
+
1. The user gives you a natural language PROMPT.
|
|
1383
|
+
2. You:
|
|
1384
|
+
i. Determine what needs to be done
|
|
1385
|
+
ii. Determine that you need to see the output of some subprocess call to complete the task
|
|
1386
|
+
iii. Write a short Python SCRIPT to print that and then print the word "CONTINUE"
|
|
1387
|
+
3. The compiler
|
|
1388
|
+
i. Checks and runs your SCRIPT
|
|
1389
|
+
ii. Captures the output and appends it to the conversation as "LAST SCRIPT OUTPUT:"
|
|
1390
|
+
iii. Finds the word "CONTINUE" and sends control back to you
|
|
1391
|
+
4. You again:
|
|
1392
|
+
i. Look at the original PROMPT + the "LAST SCRIPT OUTPUT:" to determine what needs to be done
|
|
1393
|
+
ii. Write a short Python SCRIPT to do it
|
|
1394
|
+
iii. Communicate back to the user by printing to the console in that SCRIPT
|
|
1395
|
+
5. The compiler...
|
|
1396
|
+
|
|
1397
|
+
Please follow these conventions carefully:
|
|
1398
|
+
- Decline any tasks that seem dangerous, irreversible, or that you don't understand.
|
|
1399
|
+
- Always review the full conversation prior to answering and maintain continuity.
|
|
1400
|
+
- If asked for information, just print the information clearly and concisely.
|
|
1401
|
+
- If asked to do something, print a concise summary of what you've done as confirmation.
|
|
1402
|
+
- If asked a question, respond in a friendly, conversational way. Use programmatically-generated and natural language responses as appropriate.
|
|
1403
|
+
- If you need clarification, return a SCRIPT that prints your question. In the next interaction, continue based on the user's response.
|
|
1404
|
+
- Assume the user would like something concise. For example rather than printing a massive table, filter or summarize it to what's likely of interest.
|
|
1405
|
+
- Actively clean up any temporary processes or files you use.
|
|
1406
|
+
- When looking through files, use git as available to skip files, and skip hidden files (.env, .git, etc) by default.
|
|
1407
|
+
- You can plot anything with matplotlib.
|
|
1408
|
+
- ALWAYS Return your SCRIPT inside of a single pair of ``` delimiters. Only the console output of the first such SCRIPT is visible to the user, so make sure that it's complete and don't bother returning anything else.
|
|
1409
|
+
"""
|
|
1410
|
+
chat_format.override('system_content', lambda: system_content)
|
|
1411
|
+
|
|
1412
|
+
thread = ws.Thread(model, format=chat_format, sampler=DefaultSampling)
|
|
1413
|
+
|
|
1414
|
+
while True:
|
|
1415
|
+
prompt = input(">: ")
|
|
1416
|
+
if prompt.lower() == "q":
|
|
1417
|
+
break
|
|
1418
|
+
|
|
1419
|
+
response = thread.send(prompt)
|
|
1420
|
+
|
|
1421
|
+
# Process the response using RawDog
|
|
1422
|
+
script_output = rawdog.main(response)
|
|
1423
|
+
|
|
1424
|
+
if script_output:
|
|
1425
|
+
print(script_output)
|
|
1426
|
+
|
|
1427
|
+
```
|
|
1339
1428
|
### `LLM` with internet
|
|
1340
1429
|
```python
|
|
1341
1430
|
from __future__ import annotations
|
|
@@ -78,6 +78,7 @@ Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can
|
|
|
78
78
|
- [`LLM`](#llm)
|
|
79
79
|
- [`Local-LLM` webscout can now run GGUF models](#local-llm-webscout-can-now-run-gguf-models)
|
|
80
80
|
- [`Function-calling-local-llm`](#function-calling-local-llm)
|
|
81
|
+
- [`Local-rawdog`](#local-rawdog)
|
|
81
82
|
- [`LLM` with internet](#llm-with-internet)
|
|
82
83
|
- [LLM with deepwebs](#llm-with-deepwebs)
|
|
83
84
|
- [`Webai` - terminal gpt and a open interpeter](#webai---terminal-gpt-and-a-open-interpeter)
|
|
@@ -1180,6 +1181,7 @@ while True:
|
|
|
1180
1181
|
print("AI: ", response)
|
|
1181
1182
|
```
|
|
1182
1183
|
### `Local-LLM` webscout can now run GGUF models
|
|
1184
|
+
Local LLM's some functions are taken from easy-llama
|
|
1183
1185
|
```python
|
|
1184
1186
|
from webscout.Local.utils import download_model
|
|
1185
1187
|
from webscout.Local.model import Model
|
|
@@ -1271,6 +1273,93 @@ while True:
|
|
|
1271
1273
|
response = thread.send(user_input)
|
|
1272
1274
|
print("Bot: ", response)
|
|
1273
1275
|
```
|
|
1276
|
+
### `Local-rawdog`
|
|
1277
|
+
```python
|
|
1278
|
+
import webscout.Local as ws
|
|
1279
|
+
from webscout.Local.rawdog import RawDog
|
|
1280
|
+
from webscout.Local.samplers import DefaultSampling
|
|
1281
|
+
from webscout.Local.formats import chatml, AdvancedFormat
|
|
1282
|
+
from webscout.Local.utils import download_model
|
|
1283
|
+
import datetime
|
|
1284
|
+
import sys
|
|
1285
|
+
import os
|
|
1286
|
+
|
|
1287
|
+
repo_id = "YorkieOH10/granite-8b-code-instruct-Q8_0-GGUF"
|
|
1288
|
+
filename = "granite-8b-code-instruct.Q8_0.gguf"
|
|
1289
|
+
model_path = download_model(repo_id, filename, token='')
|
|
1290
|
+
|
|
1291
|
+
# Load the model using the downloaded path
|
|
1292
|
+
model = ws.Model(model_path, n_gpu_layers=10)
|
|
1293
|
+
|
|
1294
|
+
rawdog = RawDog()
|
|
1295
|
+
|
|
1296
|
+
# Create an AdvancedFormat and modify the system content
|
|
1297
|
+
# Use a lambda to generate the prompt dynamically:
|
|
1298
|
+
chat_format = AdvancedFormat(chatml)
|
|
1299
|
+
# **Pre-format the intro_prompt string:**
|
|
1300
|
+
system_content = f"""
|
|
1301
|
+
You are a command-line coding assistant called Rawdog that generates and auto-executes Python scripts.
|
|
1302
|
+
|
|
1303
|
+
A typical interaction goes like this:
|
|
1304
|
+
1. The user gives you a natural language PROMPT.
|
|
1305
|
+
2. You:
|
|
1306
|
+
i. Determine what needs to be done
|
|
1307
|
+
ii. Write a short Python SCRIPT to do it
|
|
1308
|
+
iii. Communicate back to the user by printing to the console in that SCRIPT
|
|
1309
|
+
3. The compiler extracts the script and then runs it using exec(). If there will be an exception raised,
|
|
1310
|
+
it will be send back to you starting with "PREVIOUS SCRIPT EXCEPTION:".
|
|
1311
|
+
4. In case of exception, regenerate error free script.
|
|
1312
|
+
|
|
1313
|
+
If you need to review script outputs before completing the task, you can print the word "CONTINUE" at the end of your SCRIPT.
|
|
1314
|
+
This can be useful for summarizing documents or technical readouts, reading instructions before
|
|
1315
|
+
deciding what to do, or other tasks that require multi-step reasoning.
|
|
1316
|
+
A typical 'CONTINUE' interaction looks like this:
|
|
1317
|
+
1. The user gives you a natural language PROMPT.
|
|
1318
|
+
2. You:
|
|
1319
|
+
i. Determine what needs to be done
|
|
1320
|
+
ii. Determine that you need to see the output of some subprocess call to complete the task
|
|
1321
|
+
iii. Write a short Python SCRIPT to print that and then print the word "CONTINUE"
|
|
1322
|
+
3. The compiler
|
|
1323
|
+
i. Checks and runs your SCRIPT
|
|
1324
|
+
ii. Captures the output and appends it to the conversation as "LAST SCRIPT OUTPUT:"
|
|
1325
|
+
iii. Finds the word "CONTINUE" and sends control back to you
|
|
1326
|
+
4. You again:
|
|
1327
|
+
i. Look at the original PROMPT + the "LAST SCRIPT OUTPUT:" to determine what needs to be done
|
|
1328
|
+
ii. Write a short Python SCRIPT to do it
|
|
1329
|
+
iii. Communicate back to the user by printing to the console in that SCRIPT
|
|
1330
|
+
5. The compiler...
|
|
1331
|
+
|
|
1332
|
+
Please follow these conventions carefully:
|
|
1333
|
+
- Decline any tasks that seem dangerous, irreversible, or that you don't understand.
|
|
1334
|
+
- Always review the full conversation prior to answering and maintain continuity.
|
|
1335
|
+
- If asked for information, just print the information clearly and concisely.
|
|
1336
|
+
- If asked to do something, print a concise summary of what you've done as confirmation.
|
|
1337
|
+
- If asked a question, respond in a friendly, conversational way. Use programmatically-generated and natural language responses as appropriate.
|
|
1338
|
+
- If you need clarification, return a SCRIPT that prints your question. In the next interaction, continue based on the user's response.
|
|
1339
|
+
- Assume the user would like something concise. For example rather than printing a massive table, filter or summarize it to what's likely of interest.
|
|
1340
|
+
- Actively clean up any temporary processes or files you use.
|
|
1341
|
+
- When looking through files, use git as available to skip files, and skip hidden files (.env, .git, etc) by default.
|
|
1342
|
+
- You can plot anything with matplotlib.
|
|
1343
|
+
- ALWAYS Return your SCRIPT inside of a single pair of ``` delimiters. Only the console output of the first such SCRIPT is visible to the user, so make sure that it's complete and don't bother returning anything else.
|
|
1344
|
+
"""
|
|
1345
|
+
chat_format.override('system_content', lambda: system_content)
|
|
1346
|
+
|
|
1347
|
+
thread = ws.Thread(model, format=chat_format, sampler=DefaultSampling)
|
|
1348
|
+
|
|
1349
|
+
while True:
|
|
1350
|
+
prompt = input(">: ")
|
|
1351
|
+
if prompt.lower() == "q":
|
|
1352
|
+
break
|
|
1353
|
+
|
|
1354
|
+
response = thread.send(prompt)
|
|
1355
|
+
|
|
1356
|
+
# Process the response using RawDog
|
|
1357
|
+
script_output = rawdog.main(response)
|
|
1358
|
+
|
|
1359
|
+
if script_output:
|
|
1360
|
+
print(script_output)
|
|
1361
|
+
|
|
1362
|
+
```
|
|
1274
1363
|
### `LLM` with internet
|
|
1275
1364
|
```python
|
|
1276
1365
|
from __future__ import annotations
|
|
@@ -5,7 +5,7 @@ with open("README.md", encoding="utf-8") as f:
|
|
|
5
5
|
|
|
6
6
|
setup(
|
|
7
7
|
name="webscout",
|
|
8
|
-
version="3.
|
|
8
|
+
version="3.1",
|
|
9
9
|
description="Search for anything using Google, DuckDuckGo, phind.com, Contains AI models, can transcribe yt videos, temporary email and phone number generation, has TTS support, webai (terminal gpt and open interpreter) and offline LLMs",
|
|
10
10
|
long_description=README,
|
|
11
11
|
long_description_content_type="text/markdown",
|