wavetrainer 0.1.18__tar.gz → 0.1.19__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. {wavetrainer-0.1.18/wavetrainer.egg-info → wavetrainer-0.1.19}/PKG-INFO +1 -1
  2. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/setup.py +1 -1
  3. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/tests/trainer_test.py +2 -1
  4. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/__init__.py +1 -1
  5. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/calibrator/vennabers_calibrator.py +14 -5
  6. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/combined_reducer.py +2 -2
  7. {wavetrainer-0.1.18 → wavetrainer-0.1.19/wavetrainer.egg-info}/PKG-INFO +1 -1
  8. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/LICENSE +0 -0
  9. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/MANIFEST.in +0 -0
  10. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/README.md +0 -0
  11. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/requirements.txt +0 -0
  12. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/setup.cfg +0 -0
  13. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/tests/__init__.py +0 -0
  14. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/tests/model/__init__.py +0 -0
  15. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/tests/model/catboost_kwargs_test.py +0 -0
  16. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/calibrator/__init__.py +0 -0
  17. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/calibrator/calibrator.py +0 -0
  18. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/calibrator/calibrator_router.py +0 -0
  19. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/create.py +0 -0
  20. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/exceptions.py +0 -0
  21. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/fit.py +0 -0
  22. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/__init__.py +0 -0
  23. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/catboost/__init__.py +0 -0
  24. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/catboost/catboost_classifier_wrap.py +0 -0
  25. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/catboost/catboost_kwargs.py +0 -0
  26. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/catboost/catboost_model.py +0 -0
  27. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/catboost/catboost_regressor_wrap.py +0 -0
  28. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/lightgbm/__init__.py +0 -0
  29. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/lightgbm/lightgbm_model.py +0 -0
  30. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/model.py +0 -0
  31. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/model_router.py +0 -0
  32. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/tabpfn/__init__.py +0 -0
  33. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/tabpfn/tabpfn_model.py +0 -0
  34. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/xgboost/__init__.py +0 -0
  35. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/xgboost/early_stopper.py +0 -0
  36. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/xgboost/xgboost_logger.py +0 -0
  37. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model/xgboost/xgboost_model.py +0 -0
  38. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/model_type.py +0 -0
  39. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/params.py +0 -0
  40. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/__init__.py +0 -0
  41. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/base_selector_reducer.py +0 -0
  42. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/constant_reducer.py +0 -0
  43. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/correlation_reducer.py +0 -0
  44. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/duplicate_reducer.py +0 -0
  45. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/non_categorical_numeric_columns.py +0 -0
  46. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/nonnumeric_reducer.py +0 -0
  47. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/pca_reducer.py +0 -0
  48. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/reducer.py +0 -0
  49. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/select_by_single_feature_performance_reducer.py +0 -0
  50. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/smart_correlation_reducer.py +0 -0
  51. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/reducer/unseen_reducer.py +0 -0
  52. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/selector/__init__.py +0 -0
  53. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/selector/selector.py +0 -0
  54. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/trainer.py +0 -0
  55. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/__init__.py +0 -0
  56. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/class_weights.py +0 -0
  57. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/combined_weights.py +0 -0
  58. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/exponential_weights.py +0 -0
  59. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/linear_weights.py +0 -0
  60. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/noop_weights.py +0 -0
  61. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/sigmoid_weights.py +0 -0
  62. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/weights.py +0 -0
  63. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/weights/weights_router.py +0 -0
  64. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/windower/__init__.py +0 -0
  65. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer/windower/windower.py +0 -0
  66. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer.egg-info/SOURCES.txt +0 -0
  67. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer.egg-info/dependency_links.txt +0 -0
  68. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer.egg-info/not-zip-safe +0 -0
  69. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer.egg-info/requires.txt +0 -0
  70. {wavetrainer-0.1.18 → wavetrainer-0.1.19}/wavetrainer.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: wavetrainer
3
- Version: 0.1.18
3
+ Version: 0.1.19
4
4
  Summary: A library for automatically finding the optimal model within feature and hyperparameter space.
5
5
  Home-page: https://github.com/8W9aG/wavetrainer
6
6
  Author: Will Sackfield
@@ -23,7 +23,7 @@ def install_requires() -> typing.List[str]:
23
23
 
24
24
  setup(
25
25
  name='wavetrainer',
26
- version='0.1.18',
26
+ version='0.1.19',
27
27
  description='A library for automatically finding the optimal model within feature and hyperparameter space.',
28
28
  long_description=long_description,
29
29
  long_description_content_type='text/markdown',
@@ -40,7 +40,7 @@ class TestTrainer(unittest.TestCase):
40
40
 
41
41
  def test_trainer_dt_column(self):
42
42
  with tempfile.TemporaryDirectory() as tmpdir:
43
- trainer = Trainer(tmpdir, walkforward_timedelta=datetime.timedelta(days=7), trials=5, dt_column="dt_column")
43
+ trainer = Trainer(tmpdir, walkforward_timedelta=datetime.timedelta(days=7), trials=5, dt_column="dt_column", allowed_models={"catboost"})
44
44
  x_data = [i for i in range(100)]
45
45
  x_index = [datetime.datetime(2022, 1, 1) + datetime.timedelta(days=i) for i in range(len(x_data))]
46
46
  df = pd.DataFrame(
@@ -55,6 +55,7 @@ class TestTrainer(unittest.TestCase):
55
55
  },
56
56
  index=df.index,
57
57
  )
58
+ y["y"] = y["y"].astype(bool)
58
59
  trainer.fit(df, y=y)
59
60
  df = trainer.transform(df)
60
61
  print("df:")
@@ -2,5 +2,5 @@
2
2
 
3
3
  from .create import create
4
4
 
5
- __VERSION__ = "0.1.18"
5
+ __VERSION__ = "0.1.19"
6
6
  __all__ = ("create",)
@@ -5,6 +5,7 @@ import os
5
5
  from typing import Self
6
6
 
7
7
  import joblib # type: ignore
8
+ import numpy as np
8
9
  import optuna
9
10
  import pandas as pd
10
11
  from venn_abers import VennAbers # type: ignore
@@ -55,18 +56,26 @@ class VennabersCalibrator(Calibrator):
55
56
  raise ValueError("vennabers is null")
56
57
  if y is None:
57
58
  raise ValueError("y is null")
58
- prob_columns = [
59
- x for x in df.columns.values if x.startswith(PROBABILITY_COLUMN_PREFIX)
60
- ]
59
+ prob_columns = sorted(
60
+ [x for x in df.columns.values if x.startswith(PROBABILITY_COLUMN_PREFIX)]
61
+ )
62
+ probs = df[prob_columns].to_numpy()
61
63
  try:
62
- vennabers.fit(df[prob_columns].to_numpy(), y.to_numpy())
64
+ vennabers.fit(probs, y.to_numpy())
63
65
  except IndexError:
64
66
  logging.error(df)
65
67
  raise
66
68
  return self
67
69
 
68
70
  def transform(self, df: pd.DataFrame) -> pd.DataFrame:
69
- p_prime, _ = self._vennabers.predict_proba(df.to_numpy())
71
+ prob_columns = sorted(
72
+ [x for x in df.columns.values if x.startswith(PROBABILITY_COLUMN_PREFIX)]
73
+ )
74
+ probs = df[prob_columns].to_numpy()
75
+ p_prime, _ = self._vennabers.predict_proba(probs)
76
+ if np.mean(p_prime[:, 1] > 0.5) > 0.5 and np.mean(probs[:, 0] > 0.5) > 0.5:
77
+ print("⚠️ Warning: calibration seems inverted — flipping p_prime")
78
+ p_prime = p_prime[:, ::-1]
70
79
  for i in range(p_prime.shape[1]):
71
80
  prob = p_prime[:, i]
72
81
  df[f"{PROBABILITY_COLUMN_PREFIX}{i}"] = prob
@@ -41,8 +41,8 @@ class CombinedReducer(Reducer):
41
41
  UnseenReducer(),
42
42
  NonNumericReducer(),
43
43
  PCAReducer(embedding_cols),
44
- ConstantReducer(),
45
- DuplicateReducer(),
44
+ # ConstantReducer(),
45
+ # DuplicateReducer(),
46
46
  CorrelationReducer(correlation_chunk_size=correlation_chunk_size),
47
47
  SmartCorrelationReducer(),
48
48
  # SelectBySingleFeaturePerformanceReducer(),
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: wavetrainer
3
- Version: 0.1.18
3
+ Version: 0.1.19
4
4
  Summary: A library for automatically finding the optimal model within feature and hyperparameter space.
5
5
  Home-page: https://github.com/8W9aG/wavetrainer
6
6
  Author: Will Sackfield
File without changes
File without changes
File without changes
File without changes