wavetrainer 0.0.1__tar.gz → 0.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. wavetrainer-0.0.3/MANIFEST.in +3 -0
  2. {wavetrainer-0.0.1/wavetrainer.egg-info → wavetrainer-0.0.3}/PKG-INFO +14 -14
  3. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/README.md +10 -10
  4. wavetrainer-0.0.3/requirements.txt +11 -0
  5. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/setup.py +2 -2
  6. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/__init__.py +1 -1
  7. {wavetrainer-0.0.1 → wavetrainer-0.0.3/wavetrainer.egg-info}/PKG-INFO +14 -14
  8. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer.egg-info/SOURCES.txt +2 -0
  9. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer.egg-info/requires.txt +2 -2
  10. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/LICENSE +0 -0
  11. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/setup.cfg +0 -0
  12. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/tests/__init__.py +0 -0
  13. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/tests/trainer_test.py +0 -0
  14. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/calibrator/__init__.py +0 -0
  15. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/calibrator/calibrator.py +0 -0
  16. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/calibrator/calibrator_router.py +0 -0
  17. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/calibrator/mapie_calibrator.py +0 -0
  18. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/calibrator/vennabers_calibrator.py +0 -0
  19. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/create.py +0 -0
  20. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/exceptions.py +0 -0
  21. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/fit.py +0 -0
  22. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/load.py +0 -0
  23. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/model/__init__.py +0 -0
  24. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/model/catboost_model.py +0 -0
  25. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/model/model.py +0 -0
  26. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/model/model_router.py +0 -0
  27. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/model_type.py +0 -0
  28. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/params.py +0 -0
  29. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/__init__.py +0 -0
  30. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/base_selector_reducer.py +0 -0
  31. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/combined_reducer.py +0 -0
  32. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/constant_reducer.py +0 -0
  33. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/correlation_reducer.py +0 -0
  34. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/duplicate_reducer.py +0 -0
  35. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/reducer/reducer.py +0 -0
  36. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/selector/__init__.py +0 -0
  37. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/selector/selector.py +0 -0
  38. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/trainer.py +0 -0
  39. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/__init__.py +0 -0
  40. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/class_weights.py +0 -0
  41. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/combined_weights.py +0 -0
  42. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/exponential_weights.py +0 -0
  43. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/linear_weights.py +0 -0
  44. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/noop_weights.py +0 -0
  45. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/sigmoid_weights.py +0 -0
  46. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/weights.py +0 -0
  47. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/weights/weights_router.py +0 -0
  48. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/windower/__init__.py +0 -0
  49. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer/windower/windower.py +0 -0
  50. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer.egg-info/dependency_links.txt +0 -0
  51. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer.egg-info/not-zip-safe +0 -0
  52. {wavetrainer-0.0.1 → wavetrainer-0.0.3}/wavetrainer.egg-info/top_level.txt +0 -0
@@ -0,0 +1,3 @@
1
+ include requirements.txt
2
+ recursive-include wavetrainer *.py
3
+ recursive-include wavetrainer *.csv
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: wavetrainer
3
- Version: 0.0.1
3
+ Version: 0.0.3
4
4
  Summary: A library for automatically finding the optimal model within feature and hyperparameter space.
5
- Home-page: https://github.com/8W9aG/wavetrain
5
+ Home-page: https://github.com/8W9aG/wavetrainer
6
6
  Author: Will Sackfield
7
7
  Author-email: will.sackfield@gmail.com
8
8
  License: MIT
@@ -13,10 +13,10 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: pandas>=2.2.3
15
15
  Requires-Dist: optuna>=4.2.1
16
- Requires-Dist: scikit-learn>=1.6.1
16
+ Requires-Dist: scikit-learn>=1.5.2
17
17
  Requires-Dist: feature-engine>=1.8.3
18
18
  Requires-Dist: tqdm>=4.67.1
19
- Requires-Dist: numpy>=2.2.3
19
+ Requires-Dist: numpy>=1.26.4
20
20
  Requires-Dist: scipy>=1.15.2
21
21
  Requires-Dist: catboost>=1.2.7
22
22
  Requires-Dist: venn-abers>=1.4.6
@@ -25,8 +25,8 @@ Requires-Dist: shapiq>=1.2.2
25
25
 
26
26
  # wavetrainer
27
27
 
28
- <a href="https://pypi.org/project/wavetrain/">
29
- <img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrain">
28
+ <a href="https://pypi.org/project/wavetrainer/">
29
+ <img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrainer">
30
30
  </a>
31
31
 
32
32
  A library for automatically finding the optimal model within feature and hyperparameter space on time series models.
@@ -86,7 +86,7 @@ The use of `wavetrainer` is entirely through code due to it being a library. It
86
86
  To train a model:
87
87
 
88
88
  ```python
89
- import wavetrain as wt
89
+ import wavetrainer as wt
90
90
  import pandas as pd
91
91
  import numpy as np
92
92
  import random
@@ -102,8 +102,8 @@ df["Y"] = [random.choice([True, False]) for _ in range(data_size)]
102
102
  X = df["X"]
103
103
  Y = df["Y"]
104
104
 
105
- wavetrain = wt.create("my_wavetrain")
106
- wavetrain = wavetrain.fit(X, y=Y)
105
+ wavetrainer = wt.create("my_wavetrain")
106
+ wavetrainer = wavetrainer.fit(X, y=Y)
107
107
  ```
108
108
 
109
109
  This will save it to the folder `my_wavetrain`.
@@ -113,9 +113,9 @@ This will save it to the folder `my_wavetrain`.
113
113
  To load a trainer (as well as its composite states):
114
114
 
115
115
  ```python
116
- import wavetrain as wt
116
+ import wavetrainer as wt
117
117
 
118
- wavetrain = wt.load("my_wavetrain")
118
+ wavetrainer = wt.load("my_wavetrain")
119
119
  ```
120
120
 
121
121
  ### Predict
@@ -123,11 +123,11 @@ wavetrain = wt.load("my_wavetrain")
123
123
  To make a prediction from new data:
124
124
 
125
125
  ```python
126
- import wavetrain as wt
126
+ import wavetrainer as wt
127
127
  import pandas as pd
128
128
  import numpy as np
129
129
 
130
- wavetrain = wt.load("my_wavetrain")
130
+ wavetrainer = wt.load("my_wavetrain")
131
131
  data_size = 1
132
132
  df = pd.DataFrame(
133
133
  np.random.randint(0, 30, size=data_size),
@@ -136,7 +136,7 @@ df = pd.DataFrame(
136
136
  )
137
137
  X = df["X"]
138
138
 
139
- preds = wavetrain.predict(X)
139
+ preds = wavetrainer.predict(X)
140
140
  ```
141
141
 
142
142
  `preds` will now contain both the predictions and the probabilities associated with those predictions.
@@ -1,7 +1,7 @@
1
1
  # wavetrainer
2
2
 
3
- <a href="https://pypi.org/project/wavetrain/">
4
- <img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrain">
3
+ <a href="https://pypi.org/project/wavetrainer/">
4
+ <img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrainer">
5
5
  </a>
6
6
 
7
7
  A library for automatically finding the optimal model within feature and hyperparameter space on time series models.
@@ -61,7 +61,7 @@ The use of `wavetrainer` is entirely through code due to it being a library. It
61
61
  To train a model:
62
62
 
63
63
  ```python
64
- import wavetrain as wt
64
+ import wavetrainer as wt
65
65
  import pandas as pd
66
66
  import numpy as np
67
67
  import random
@@ -77,8 +77,8 @@ df["Y"] = [random.choice([True, False]) for _ in range(data_size)]
77
77
  X = df["X"]
78
78
  Y = df["Y"]
79
79
 
80
- wavetrain = wt.create("my_wavetrain")
81
- wavetrain = wavetrain.fit(X, y=Y)
80
+ wavetrainer = wt.create("my_wavetrain")
81
+ wavetrainer = wavetrainer.fit(X, y=Y)
82
82
  ```
83
83
 
84
84
  This will save it to the folder `my_wavetrain`.
@@ -88,9 +88,9 @@ This will save it to the folder `my_wavetrain`.
88
88
  To load a trainer (as well as its composite states):
89
89
 
90
90
  ```python
91
- import wavetrain as wt
91
+ import wavetrainer as wt
92
92
 
93
- wavetrain = wt.load("my_wavetrain")
93
+ wavetrainer = wt.load("my_wavetrain")
94
94
  ```
95
95
 
96
96
  ### Predict
@@ -98,11 +98,11 @@ wavetrain = wt.load("my_wavetrain")
98
98
  To make a prediction from new data:
99
99
 
100
100
  ```python
101
- import wavetrain as wt
101
+ import wavetrainer as wt
102
102
  import pandas as pd
103
103
  import numpy as np
104
104
 
105
- wavetrain = wt.load("my_wavetrain")
105
+ wavetrainer = wt.load("my_wavetrain")
106
106
  data_size = 1
107
107
  df = pd.DataFrame(
108
108
  np.random.randint(0, 30, size=data_size),
@@ -111,7 +111,7 @@ df = pd.DataFrame(
111
111
  )
112
112
  X = df["X"]
113
113
 
114
- preds = wavetrain.predict(X)
114
+ preds = wavetrainer.predict(X)
115
115
  ```
116
116
 
117
117
  `preds` will now contain both the predictions and the probabilities associated with those predictions.
@@ -0,0 +1,11 @@
1
+ pandas>=2.2.3
2
+ optuna>=4.2.1
3
+ scikit-learn>=1.5.2
4
+ feature-engine>=1.8.3
5
+ tqdm>=4.67.1
6
+ numpy>=1.26.4
7
+ scipy>=1.15.2
8
+ catboost>=1.2.7
9
+ venn-abers>=1.4.6
10
+ mapie>=0.9.2
11
+ shapiq>=1.2.2
@@ -23,7 +23,7 @@ def install_requires() -> typing.List[str]:
23
23
 
24
24
  setup(
25
25
  name='wavetrainer',
26
- version='0.0.1',
26
+ version='0.0.3',
27
27
  description='A library for automatically finding the optimal model within feature and hyperparameter space.',
28
28
  long_description=long_description,
29
29
  long_description_content_type='text/markdown',
@@ -32,7 +32,7 @@ setup(
32
32
  'Programming Language :: Python :: 3',
33
33
  ],
34
34
  keywords='machine-learning, ML, hyperparameter, features',
35
- url='https://github.com/8W9aG/wavetrain',
35
+ url='https://github.com/8W9aG/wavetrainer',
36
36
  author='Will Sackfield',
37
37
  author_email='will.sackfield@gmail.com',
38
38
  license='MIT',
@@ -3,7 +3,7 @@
3
3
  from .create import create
4
4
  from .load import load
5
5
 
6
- __VERSION__ = "0.0.1"
6
+ __VERSION__ = "0.0.3"
7
7
  __all__ = (
8
8
  "create",
9
9
  "load",
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: wavetrainer
3
- Version: 0.0.1
3
+ Version: 0.0.3
4
4
  Summary: A library for automatically finding the optimal model within feature and hyperparameter space.
5
- Home-page: https://github.com/8W9aG/wavetrain
5
+ Home-page: https://github.com/8W9aG/wavetrainer
6
6
  Author: Will Sackfield
7
7
  Author-email: will.sackfield@gmail.com
8
8
  License: MIT
@@ -13,10 +13,10 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: pandas>=2.2.3
15
15
  Requires-Dist: optuna>=4.2.1
16
- Requires-Dist: scikit-learn>=1.6.1
16
+ Requires-Dist: scikit-learn>=1.5.2
17
17
  Requires-Dist: feature-engine>=1.8.3
18
18
  Requires-Dist: tqdm>=4.67.1
19
- Requires-Dist: numpy>=2.2.3
19
+ Requires-Dist: numpy>=1.26.4
20
20
  Requires-Dist: scipy>=1.15.2
21
21
  Requires-Dist: catboost>=1.2.7
22
22
  Requires-Dist: venn-abers>=1.4.6
@@ -25,8 +25,8 @@ Requires-Dist: shapiq>=1.2.2
25
25
 
26
26
  # wavetrainer
27
27
 
28
- <a href="https://pypi.org/project/wavetrain/">
29
- <img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrain">
28
+ <a href="https://pypi.org/project/wavetrainer/">
29
+ <img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrainer">
30
30
  </a>
31
31
 
32
32
  A library for automatically finding the optimal model within feature and hyperparameter space on time series models.
@@ -86,7 +86,7 @@ The use of `wavetrainer` is entirely through code due to it being a library. It
86
86
  To train a model:
87
87
 
88
88
  ```python
89
- import wavetrain as wt
89
+ import wavetrainer as wt
90
90
  import pandas as pd
91
91
  import numpy as np
92
92
  import random
@@ -102,8 +102,8 @@ df["Y"] = [random.choice([True, False]) for _ in range(data_size)]
102
102
  X = df["X"]
103
103
  Y = df["Y"]
104
104
 
105
- wavetrain = wt.create("my_wavetrain")
106
- wavetrain = wavetrain.fit(X, y=Y)
105
+ wavetrainer = wt.create("my_wavetrain")
106
+ wavetrainer = wavetrainer.fit(X, y=Y)
107
107
  ```
108
108
 
109
109
  This will save it to the folder `my_wavetrain`.
@@ -113,9 +113,9 @@ This will save it to the folder `my_wavetrain`.
113
113
  To load a trainer (as well as its composite states):
114
114
 
115
115
  ```python
116
- import wavetrain as wt
116
+ import wavetrainer as wt
117
117
 
118
- wavetrain = wt.load("my_wavetrain")
118
+ wavetrainer = wt.load("my_wavetrain")
119
119
  ```
120
120
 
121
121
  ### Predict
@@ -123,11 +123,11 @@ wavetrain = wt.load("my_wavetrain")
123
123
  To make a prediction from new data:
124
124
 
125
125
  ```python
126
- import wavetrain as wt
126
+ import wavetrainer as wt
127
127
  import pandas as pd
128
128
  import numpy as np
129
129
 
130
- wavetrain = wt.load("my_wavetrain")
130
+ wavetrainer = wt.load("my_wavetrain")
131
131
  data_size = 1
132
132
  df = pd.DataFrame(
133
133
  np.random.randint(0, 30, size=data_size),
@@ -136,7 +136,7 @@ df = pd.DataFrame(
136
136
  )
137
137
  X = df["X"]
138
138
 
139
- preds = wavetrain.predict(X)
139
+ preds = wavetrainer.predict(X)
140
140
  ```
141
141
 
142
142
  `preds` will now contain both the predictions and the probabilities associated with those predictions.
@@ -1,5 +1,7 @@
1
1
  LICENSE
2
+ MANIFEST.in
2
3
  README.md
4
+ requirements.txt
3
5
  setup.py
4
6
  tests/__init__.py
5
7
  tests/trainer_test.py
@@ -1,9 +1,9 @@
1
1
  pandas>=2.2.3
2
2
  optuna>=4.2.1
3
- scikit-learn>=1.6.1
3
+ scikit-learn>=1.5.2
4
4
  feature-engine>=1.8.3
5
5
  tqdm>=4.67.1
6
- numpy>=2.2.3
6
+ numpy>=1.26.4
7
7
  scipy>=1.15.2
8
8
  catboost>=1.2.7
9
9
  venn-abers>=1.4.6
File without changes
File without changes