wavetrainer 0.0.1__tar.gz → 0.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wavetrainer-0.0.2/MANIFEST.in +3 -0
- {wavetrainer-0.0.1/wavetrainer.egg-info → wavetrainer-0.0.2}/PKG-INFO +12 -12
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/README.md +10 -10
- wavetrainer-0.0.2/requirements.txt +11 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/setup.py +2 -2
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/__init__.py +1 -1
- {wavetrainer-0.0.1 → wavetrainer-0.0.2/wavetrainer.egg-info}/PKG-INFO +12 -12
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer.egg-info/SOURCES.txt +2 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/LICENSE +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/setup.cfg +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/tests/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/tests/trainer_test.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/calibrator/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/calibrator/calibrator.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/calibrator/calibrator_router.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/calibrator/mapie_calibrator.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/calibrator/vennabers_calibrator.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/create.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/exceptions.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/fit.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/load.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/model/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/model/catboost_model.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/model/model.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/model/model_router.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/model_type.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/params.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/base_selector_reducer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/combined_reducer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/constant_reducer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/correlation_reducer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/duplicate_reducer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/reducer/reducer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/selector/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/selector/selector.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/trainer.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/class_weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/combined_weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/exponential_weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/linear_weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/noop_weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/sigmoid_weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/weights.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/weights/weights_router.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/windower/__init__.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer/windower/windower.py +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer.egg-info/dependency_links.txt +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer.egg-info/not-zip-safe +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer.egg-info/requires.txt +0 -0
- {wavetrainer-0.0.1 → wavetrainer-0.0.2}/wavetrainer.egg-info/top_level.txt +0 -0
@@ -1,8 +1,8 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: wavetrainer
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.2
|
4
4
|
Summary: A library for automatically finding the optimal model within feature and hyperparameter space.
|
5
|
-
Home-page: https://github.com/8W9aG/
|
5
|
+
Home-page: https://github.com/8W9aG/wavetrainer
|
6
6
|
Author: Will Sackfield
|
7
7
|
Author-email: will.sackfield@gmail.com
|
8
8
|
License: MIT
|
@@ -25,8 +25,8 @@ Requires-Dist: shapiq>=1.2.2
|
|
25
25
|
|
26
26
|
# wavetrainer
|
27
27
|
|
28
|
-
<a href="https://pypi.org/project/
|
29
|
-
<img alt="PyPi" src="https://img.shields.io/pypi/v/
|
28
|
+
<a href="https://pypi.org/project/wavetrainer/">
|
29
|
+
<img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrainer">
|
30
30
|
</a>
|
31
31
|
|
32
32
|
A library for automatically finding the optimal model within feature and hyperparameter space on time series models.
|
@@ -86,7 +86,7 @@ The use of `wavetrainer` is entirely through code due to it being a library. It
|
|
86
86
|
To train a model:
|
87
87
|
|
88
88
|
```python
|
89
|
-
import
|
89
|
+
import wavetrainer as wt
|
90
90
|
import pandas as pd
|
91
91
|
import numpy as np
|
92
92
|
import random
|
@@ -102,8 +102,8 @@ df["Y"] = [random.choice([True, False]) for _ in range(data_size)]
|
|
102
102
|
X = df["X"]
|
103
103
|
Y = df["Y"]
|
104
104
|
|
105
|
-
|
106
|
-
|
105
|
+
wavetrainer = wt.create("my_wavetrain")
|
106
|
+
wavetrainer = wavetrainer.fit(X, y=Y)
|
107
107
|
```
|
108
108
|
|
109
109
|
This will save it to the folder `my_wavetrain`.
|
@@ -113,9 +113,9 @@ This will save it to the folder `my_wavetrain`.
|
|
113
113
|
To load a trainer (as well as its composite states):
|
114
114
|
|
115
115
|
```python
|
116
|
-
import
|
116
|
+
import wavetrainer as wt
|
117
117
|
|
118
|
-
|
118
|
+
wavetrainer = wt.load("my_wavetrain")
|
119
119
|
```
|
120
120
|
|
121
121
|
### Predict
|
@@ -123,11 +123,11 @@ wavetrain = wt.load("my_wavetrain")
|
|
123
123
|
To make a prediction from new data:
|
124
124
|
|
125
125
|
```python
|
126
|
-
import
|
126
|
+
import wavetrainer as wt
|
127
127
|
import pandas as pd
|
128
128
|
import numpy as np
|
129
129
|
|
130
|
-
|
130
|
+
wavetrainer = wt.load("my_wavetrain")
|
131
131
|
data_size = 1
|
132
132
|
df = pd.DataFrame(
|
133
133
|
np.random.randint(0, 30, size=data_size),
|
@@ -136,7 +136,7 @@ df = pd.DataFrame(
|
|
136
136
|
)
|
137
137
|
X = df["X"]
|
138
138
|
|
139
|
-
preds =
|
139
|
+
preds = wavetrainer.predict(X)
|
140
140
|
```
|
141
141
|
|
142
142
|
`preds` will now contain both the predictions and the probabilities associated with those predictions.
|
@@ -1,7 +1,7 @@
|
|
1
1
|
# wavetrainer
|
2
2
|
|
3
|
-
<a href="https://pypi.org/project/
|
4
|
-
<img alt="PyPi" src="https://img.shields.io/pypi/v/
|
3
|
+
<a href="https://pypi.org/project/wavetrainer/">
|
4
|
+
<img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrainer">
|
5
5
|
</a>
|
6
6
|
|
7
7
|
A library for automatically finding the optimal model within feature and hyperparameter space on time series models.
|
@@ -61,7 +61,7 @@ The use of `wavetrainer` is entirely through code due to it being a library. It
|
|
61
61
|
To train a model:
|
62
62
|
|
63
63
|
```python
|
64
|
-
import
|
64
|
+
import wavetrainer as wt
|
65
65
|
import pandas as pd
|
66
66
|
import numpy as np
|
67
67
|
import random
|
@@ -77,8 +77,8 @@ df["Y"] = [random.choice([True, False]) for _ in range(data_size)]
|
|
77
77
|
X = df["X"]
|
78
78
|
Y = df["Y"]
|
79
79
|
|
80
|
-
|
81
|
-
|
80
|
+
wavetrainer = wt.create("my_wavetrain")
|
81
|
+
wavetrainer = wavetrainer.fit(X, y=Y)
|
82
82
|
```
|
83
83
|
|
84
84
|
This will save it to the folder `my_wavetrain`.
|
@@ -88,9 +88,9 @@ This will save it to the folder `my_wavetrain`.
|
|
88
88
|
To load a trainer (as well as its composite states):
|
89
89
|
|
90
90
|
```python
|
91
|
-
import
|
91
|
+
import wavetrainer as wt
|
92
92
|
|
93
|
-
|
93
|
+
wavetrainer = wt.load("my_wavetrain")
|
94
94
|
```
|
95
95
|
|
96
96
|
### Predict
|
@@ -98,11 +98,11 @@ wavetrain = wt.load("my_wavetrain")
|
|
98
98
|
To make a prediction from new data:
|
99
99
|
|
100
100
|
```python
|
101
|
-
import
|
101
|
+
import wavetrainer as wt
|
102
102
|
import pandas as pd
|
103
103
|
import numpy as np
|
104
104
|
|
105
|
-
|
105
|
+
wavetrainer = wt.load("my_wavetrain")
|
106
106
|
data_size = 1
|
107
107
|
df = pd.DataFrame(
|
108
108
|
np.random.randint(0, 30, size=data_size),
|
@@ -111,7 +111,7 @@ df = pd.DataFrame(
|
|
111
111
|
)
|
112
112
|
X = df["X"]
|
113
113
|
|
114
|
-
preds =
|
114
|
+
preds = wavetrainer.predict(X)
|
115
115
|
```
|
116
116
|
|
117
117
|
`preds` will now contain both the predictions and the probabilities associated with those predictions.
|
@@ -23,7 +23,7 @@ def install_requires() -> typing.List[str]:
|
|
23
23
|
|
24
24
|
setup(
|
25
25
|
name='wavetrainer',
|
26
|
-
version='0.0.
|
26
|
+
version='0.0.2',
|
27
27
|
description='A library for automatically finding the optimal model within feature and hyperparameter space.',
|
28
28
|
long_description=long_description,
|
29
29
|
long_description_content_type='text/markdown',
|
@@ -32,7 +32,7 @@ setup(
|
|
32
32
|
'Programming Language :: Python :: 3',
|
33
33
|
],
|
34
34
|
keywords='machine-learning, ML, hyperparameter, features',
|
35
|
-
url='https://github.com/8W9aG/
|
35
|
+
url='https://github.com/8W9aG/wavetrainer',
|
36
36
|
author='Will Sackfield',
|
37
37
|
author_email='will.sackfield@gmail.com',
|
38
38
|
license='MIT',
|
@@ -1,8 +1,8 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: wavetrainer
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.2
|
4
4
|
Summary: A library for automatically finding the optimal model within feature and hyperparameter space.
|
5
|
-
Home-page: https://github.com/8W9aG/
|
5
|
+
Home-page: https://github.com/8W9aG/wavetrainer
|
6
6
|
Author: Will Sackfield
|
7
7
|
Author-email: will.sackfield@gmail.com
|
8
8
|
License: MIT
|
@@ -25,8 +25,8 @@ Requires-Dist: shapiq>=1.2.2
|
|
25
25
|
|
26
26
|
# wavetrainer
|
27
27
|
|
28
|
-
<a href="https://pypi.org/project/
|
29
|
-
<img alt="PyPi" src="https://img.shields.io/pypi/v/
|
28
|
+
<a href="https://pypi.org/project/wavetrainer/">
|
29
|
+
<img alt="PyPi" src="https://img.shields.io/pypi/v/wavetrainer">
|
30
30
|
</a>
|
31
31
|
|
32
32
|
A library for automatically finding the optimal model within feature and hyperparameter space on time series models.
|
@@ -86,7 +86,7 @@ The use of `wavetrainer` is entirely through code due to it being a library. It
|
|
86
86
|
To train a model:
|
87
87
|
|
88
88
|
```python
|
89
|
-
import
|
89
|
+
import wavetrainer as wt
|
90
90
|
import pandas as pd
|
91
91
|
import numpy as np
|
92
92
|
import random
|
@@ -102,8 +102,8 @@ df["Y"] = [random.choice([True, False]) for _ in range(data_size)]
|
|
102
102
|
X = df["X"]
|
103
103
|
Y = df["Y"]
|
104
104
|
|
105
|
-
|
106
|
-
|
105
|
+
wavetrainer = wt.create("my_wavetrain")
|
106
|
+
wavetrainer = wavetrainer.fit(X, y=Y)
|
107
107
|
```
|
108
108
|
|
109
109
|
This will save it to the folder `my_wavetrain`.
|
@@ -113,9 +113,9 @@ This will save it to the folder `my_wavetrain`.
|
|
113
113
|
To load a trainer (as well as its composite states):
|
114
114
|
|
115
115
|
```python
|
116
|
-
import
|
116
|
+
import wavetrainer as wt
|
117
117
|
|
118
|
-
|
118
|
+
wavetrainer = wt.load("my_wavetrain")
|
119
119
|
```
|
120
120
|
|
121
121
|
### Predict
|
@@ -123,11 +123,11 @@ wavetrain = wt.load("my_wavetrain")
|
|
123
123
|
To make a prediction from new data:
|
124
124
|
|
125
125
|
```python
|
126
|
-
import
|
126
|
+
import wavetrainer as wt
|
127
127
|
import pandas as pd
|
128
128
|
import numpy as np
|
129
129
|
|
130
|
-
|
130
|
+
wavetrainer = wt.load("my_wavetrain")
|
131
131
|
data_size = 1
|
132
132
|
df = pd.DataFrame(
|
133
133
|
np.random.randint(0, 30, size=data_size),
|
@@ -136,7 +136,7 @@ df = pd.DataFrame(
|
|
136
136
|
)
|
137
137
|
X = df["X"]
|
138
138
|
|
139
|
-
preds =
|
139
|
+
preds = wavetrainer.predict(X)
|
140
140
|
```
|
141
141
|
|
142
142
|
`preds` will now contain both the predictions and the probabilities associated with those predictions.
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|