warpgbm 0.1.13__tar.gz → 0.1.14__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {warpgbm-0.1.13/warpgbm.egg-info → warpgbm-0.1.14}/PKG-INFO +23 -7
- {warpgbm-0.1.13 → warpgbm-0.1.14}/README.md +22 -6
- {warpgbm-0.1.13 → warpgbm-0.1.14}/pyproject.toml +1 -1
- warpgbm-0.1.14/version.txt +1 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14/warpgbm.egg-info}/PKG-INFO +23 -7
- warpgbm-0.1.13/version.txt +0 -1
- {warpgbm-0.1.13 → warpgbm-0.1.14}/LICENSE +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/MANIFEST.in +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/setup.cfg +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/setup.py +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/tests/__init__.py +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/tests/test_fit_predict_corr.py +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm/__init__.py +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm/core.py +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm/cuda/__init__.py +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm/cuda/best_split_kernel.cu +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm/cuda/histogram_kernel.cu +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm/cuda/node_kernel.cpp +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm.egg-info/SOURCES.txt +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm.egg-info/dependency_links.txt +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm.egg-info/requires.txt +0 -0
- {warpgbm-0.1.13 → warpgbm-0.1.14}/warpgbm.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: warpgbm
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.14
|
4
4
|
Summary: A fast GPU-accelerated Gradient Boosted Decision Tree library with PyTorch + CUDA
|
5
5
|
License: GNU GENERAL PUBLIC LICENSE
|
6
6
|
Version 3, 29 June 2007
|
@@ -700,7 +700,6 @@ WarpGBM is a high-performance, GPU-accelerated Gradient Boosted Decision Tree (G
|
|
700
700
|
- GPU-accelerated training and histogram construction using custom CUDA kernels
|
701
701
|
- Drop-in scikit-learn style interface
|
702
702
|
- Supports pre-binned data or automatic quantile binning
|
703
|
-
- Fully differentiable prediction path
|
704
703
|
- Simple install with `pip`
|
705
704
|
|
706
705
|
---
|
@@ -713,7 +712,7 @@ In our initial tests on an NVIDIA 3090 (local) and A100 (Google Colab Pro), Warp
|
|
713
712
|
|
714
713
|
## Installation
|
715
714
|
|
716
|
-
###
|
715
|
+
### Recommended (GitHub, always latest):
|
717
716
|
|
718
717
|
```bash
|
719
718
|
pip install git+https://github.com/jefferythewind/warpgbm.git
|
@@ -721,7 +720,7 @@ pip install git+https://github.com/jefferythewind/warpgbm.git
|
|
721
720
|
|
722
721
|
This installs the latest version directly from GitHub and compiles CUDA extensions on your machine using your **local PyTorch and CUDA setup**. It's the most reliable method for ensuring compatibility and staying up to date with the latest features.
|
723
722
|
|
724
|
-
###
|
723
|
+
### Alternatively (PyPI, stable releases):
|
725
724
|
|
726
725
|
```bash
|
727
726
|
pip install warpgbm
|
@@ -729,7 +728,7 @@ pip install warpgbm
|
|
729
728
|
|
730
729
|
This installs from PyPI and also compiles CUDA code locally during installation. This method works well **if your environment already has PyTorch with GPU support** installed and configured.
|
731
730
|
|
732
|
-
>
|
731
|
+
> **Tip:**\
|
733
732
|
> If you encounter an error related to mismatched or missing CUDA versions, try installing with the following flag:
|
734
733
|
>
|
735
734
|
> ```bash
|
@@ -737,7 +736,7 @@ This installs from PyPI and also compiles CUDA code locally during installation.
|
|
737
736
|
> ```
|
738
737
|
|
739
738
|
Before either method, make sure you’ve installed PyTorch with GPU support:\
|
740
|
-
|
739
|
+
[https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)
|
741
740
|
|
742
741
|
---
|
743
742
|
|
@@ -774,7 +773,7 @@ print(f"LightGBM: corr = {np.corrcoef(lgb_preds, y)[0,1]:.4f}, time = {lgb_tim
|
|
774
773
|
print(f"WarpGBM: corr = {np.corrcoef(wgbm_preds, y)[0,1]:.4f}, time = {wgbm_time:.2f}s")
|
775
774
|
```
|
776
775
|
|
777
|
-
|
776
|
+
**Results (Ryzen 9 CPU, NVIDIA 3090 GPU):**
|
778
777
|
|
779
778
|
```
|
780
779
|
LightGBM: corr = 0.8742, time = 37.33s
|
@@ -824,6 +823,23 @@ print(f"LightGBM: corr = {np.corrcoef(lgb_preds, Y_np)[0,1]:.4f}, time = {lgb_
|
|
824
823
|
print(f"WarpGBM: corr = {np.corrcoef(wgbm_preds, Y_np)[0,1]:.4f}, time = {wgbm_time:.2f}s")
|
825
824
|
```
|
826
825
|
|
826
|
+
**Results (Google Colab Pro, A100 GPU):**
|
827
|
+
|
828
|
+
```
|
829
|
+
LightGBM: corr = 0.0703, time = 643.88s
|
830
|
+
WarpGBM: corr = 0.0660, time = 49.16s
|
831
|
+
```
|
832
|
+
|
833
|
+
---
|
834
|
+
|
835
|
+
### Run it live in Colab
|
836
|
+
|
837
|
+
You can try WarpGBM in a live Colab notebook using real pre-binned Numerai tournament data:
|
838
|
+
|
839
|
+
[Open in Colab](https://colab.research.google.com/drive/10mKSjs9UvmMgM5_lOXAylq5LUQAnNSi7?usp=sharing)
|
840
|
+
|
841
|
+
No installation required — just press **"Open in Playground"**, then **Run All**!
|
842
|
+
|
827
843
|
---
|
828
844
|
|
829
845
|
## Documentation
|
@@ -12,7 +12,6 @@ WarpGBM is a high-performance, GPU-accelerated Gradient Boosted Decision Tree (G
|
|
12
12
|
- GPU-accelerated training and histogram construction using custom CUDA kernels
|
13
13
|
- Drop-in scikit-learn style interface
|
14
14
|
- Supports pre-binned data or automatic quantile binning
|
15
|
-
- Fully differentiable prediction path
|
16
15
|
- Simple install with `pip`
|
17
16
|
|
18
17
|
---
|
@@ -25,7 +24,7 @@ In our initial tests on an NVIDIA 3090 (local) and A100 (Google Colab Pro), Warp
|
|
25
24
|
|
26
25
|
## Installation
|
27
26
|
|
28
|
-
###
|
27
|
+
### Recommended (GitHub, always latest):
|
29
28
|
|
30
29
|
```bash
|
31
30
|
pip install git+https://github.com/jefferythewind/warpgbm.git
|
@@ -33,7 +32,7 @@ pip install git+https://github.com/jefferythewind/warpgbm.git
|
|
33
32
|
|
34
33
|
This installs the latest version directly from GitHub and compiles CUDA extensions on your machine using your **local PyTorch and CUDA setup**. It's the most reliable method for ensuring compatibility and staying up to date with the latest features.
|
35
34
|
|
36
|
-
###
|
35
|
+
### Alternatively (PyPI, stable releases):
|
37
36
|
|
38
37
|
```bash
|
39
38
|
pip install warpgbm
|
@@ -41,7 +40,7 @@ pip install warpgbm
|
|
41
40
|
|
42
41
|
This installs from PyPI and also compiles CUDA code locally during installation. This method works well **if your environment already has PyTorch with GPU support** installed and configured.
|
43
42
|
|
44
|
-
>
|
43
|
+
> **Tip:**\
|
45
44
|
> If you encounter an error related to mismatched or missing CUDA versions, try installing with the following flag:
|
46
45
|
>
|
47
46
|
> ```bash
|
@@ -49,7 +48,7 @@ This installs from PyPI and also compiles CUDA code locally during installation.
|
|
49
48
|
> ```
|
50
49
|
|
51
50
|
Before either method, make sure you’ve installed PyTorch with GPU support:\
|
52
|
-
|
51
|
+
[https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)
|
53
52
|
|
54
53
|
---
|
55
54
|
|
@@ -86,7 +85,7 @@ print(f"LightGBM: corr = {np.corrcoef(lgb_preds, y)[0,1]:.4f}, time = {lgb_tim
|
|
86
85
|
print(f"WarpGBM: corr = {np.corrcoef(wgbm_preds, y)[0,1]:.4f}, time = {wgbm_time:.2f}s")
|
87
86
|
```
|
88
87
|
|
89
|
-
|
88
|
+
**Results (Ryzen 9 CPU, NVIDIA 3090 GPU):**
|
90
89
|
|
91
90
|
```
|
92
91
|
LightGBM: corr = 0.8742, time = 37.33s
|
@@ -136,6 +135,23 @@ print(f"LightGBM: corr = {np.corrcoef(lgb_preds, Y_np)[0,1]:.4f}, time = {lgb_
|
|
136
135
|
print(f"WarpGBM: corr = {np.corrcoef(wgbm_preds, Y_np)[0,1]:.4f}, time = {wgbm_time:.2f}s")
|
137
136
|
```
|
138
137
|
|
138
|
+
**Results (Google Colab Pro, A100 GPU):**
|
139
|
+
|
140
|
+
```
|
141
|
+
LightGBM: corr = 0.0703, time = 643.88s
|
142
|
+
WarpGBM: corr = 0.0660, time = 49.16s
|
143
|
+
```
|
144
|
+
|
145
|
+
---
|
146
|
+
|
147
|
+
### Run it live in Colab
|
148
|
+
|
149
|
+
You can try WarpGBM in a live Colab notebook using real pre-binned Numerai tournament data:
|
150
|
+
|
151
|
+
[Open in Colab](https://colab.research.google.com/drive/10mKSjs9UvmMgM5_lOXAylq5LUQAnNSi7?usp=sharing)
|
152
|
+
|
153
|
+
No installation required — just press **"Open in Playground"**, then **Run All**!
|
154
|
+
|
139
155
|
---
|
140
156
|
|
141
157
|
## Documentation
|
@@ -0,0 +1 @@
|
|
1
|
+
0.1.14
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: warpgbm
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.14
|
4
4
|
Summary: A fast GPU-accelerated Gradient Boosted Decision Tree library with PyTorch + CUDA
|
5
5
|
License: GNU GENERAL PUBLIC LICENSE
|
6
6
|
Version 3, 29 June 2007
|
@@ -700,7 +700,6 @@ WarpGBM is a high-performance, GPU-accelerated Gradient Boosted Decision Tree (G
|
|
700
700
|
- GPU-accelerated training and histogram construction using custom CUDA kernels
|
701
701
|
- Drop-in scikit-learn style interface
|
702
702
|
- Supports pre-binned data or automatic quantile binning
|
703
|
-
- Fully differentiable prediction path
|
704
703
|
- Simple install with `pip`
|
705
704
|
|
706
705
|
---
|
@@ -713,7 +712,7 @@ In our initial tests on an NVIDIA 3090 (local) and A100 (Google Colab Pro), Warp
|
|
713
712
|
|
714
713
|
## Installation
|
715
714
|
|
716
|
-
###
|
715
|
+
### Recommended (GitHub, always latest):
|
717
716
|
|
718
717
|
```bash
|
719
718
|
pip install git+https://github.com/jefferythewind/warpgbm.git
|
@@ -721,7 +720,7 @@ pip install git+https://github.com/jefferythewind/warpgbm.git
|
|
721
720
|
|
722
721
|
This installs the latest version directly from GitHub and compiles CUDA extensions on your machine using your **local PyTorch and CUDA setup**. It's the most reliable method for ensuring compatibility and staying up to date with the latest features.
|
723
722
|
|
724
|
-
###
|
723
|
+
### Alternatively (PyPI, stable releases):
|
725
724
|
|
726
725
|
```bash
|
727
726
|
pip install warpgbm
|
@@ -729,7 +728,7 @@ pip install warpgbm
|
|
729
728
|
|
730
729
|
This installs from PyPI and also compiles CUDA code locally during installation. This method works well **if your environment already has PyTorch with GPU support** installed and configured.
|
731
730
|
|
732
|
-
>
|
731
|
+
> **Tip:**\
|
733
732
|
> If you encounter an error related to mismatched or missing CUDA versions, try installing with the following flag:
|
734
733
|
>
|
735
734
|
> ```bash
|
@@ -737,7 +736,7 @@ This installs from PyPI and also compiles CUDA code locally during installation.
|
|
737
736
|
> ```
|
738
737
|
|
739
738
|
Before either method, make sure you’ve installed PyTorch with GPU support:\
|
740
|
-
|
739
|
+
[https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)
|
741
740
|
|
742
741
|
---
|
743
742
|
|
@@ -774,7 +773,7 @@ print(f"LightGBM: corr = {np.corrcoef(lgb_preds, y)[0,1]:.4f}, time = {lgb_tim
|
|
774
773
|
print(f"WarpGBM: corr = {np.corrcoef(wgbm_preds, y)[0,1]:.4f}, time = {wgbm_time:.2f}s")
|
775
774
|
```
|
776
775
|
|
777
|
-
|
776
|
+
**Results (Ryzen 9 CPU, NVIDIA 3090 GPU):**
|
778
777
|
|
779
778
|
```
|
780
779
|
LightGBM: corr = 0.8742, time = 37.33s
|
@@ -824,6 +823,23 @@ print(f"LightGBM: corr = {np.corrcoef(lgb_preds, Y_np)[0,1]:.4f}, time = {lgb_
|
|
824
823
|
print(f"WarpGBM: corr = {np.corrcoef(wgbm_preds, Y_np)[0,1]:.4f}, time = {wgbm_time:.2f}s")
|
825
824
|
```
|
826
825
|
|
826
|
+
**Results (Google Colab Pro, A100 GPU):**
|
827
|
+
|
828
|
+
```
|
829
|
+
LightGBM: corr = 0.0703, time = 643.88s
|
830
|
+
WarpGBM: corr = 0.0660, time = 49.16s
|
831
|
+
```
|
832
|
+
|
833
|
+
---
|
834
|
+
|
835
|
+
### Run it live in Colab
|
836
|
+
|
837
|
+
You can try WarpGBM in a live Colab notebook using real pre-binned Numerai tournament data:
|
838
|
+
|
839
|
+
[Open in Colab](https://colab.research.google.com/drive/10mKSjs9UvmMgM5_lOXAylq5LUQAnNSi7?usp=sharing)
|
840
|
+
|
841
|
+
No installation required — just press **"Open in Playground"**, then **Run All**!
|
842
|
+
|
827
843
|
---
|
828
844
|
|
829
845
|
## Documentation
|
warpgbm-0.1.13/version.txt
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
0.1.13
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|