warp-lang 1.11.0.dev20251120__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,459 @@
1
+ Metadata-Version: 2.4
2
+ Name: warp-lang
3
+ Version: 1.11.0.dev20251120
4
+ Summary: A Python framework for high-performance simulation and graphics programming
5
+ Author-email: NVIDIA Corporation <warp-python@nvidia.com>
6
+ License: Apache-2.0
7
+ Project-URL: Homepage, https://developer.nvidia.com/warp-python
8
+ Project-URL: Documentation, https://nvidia.github.io/warp
9
+ Project-URL: Repository, https://github.com/NVIDIA/warp
10
+ Project-URL: Issues, https://github.com/NVIDIA/warp/issues
11
+ Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
12
+ Classifier: Development Status :: 5 - Production/Stable
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: Natural Language :: English
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Programming Language :: Python :: 3.13
22
+ Classifier: Programming Language :: Python :: 3.14
23
+ Classifier: Programming Language :: Python :: 3 :: Only
24
+ Classifier: Environment :: GPU :: NVIDIA CUDA
25
+ Classifier: Environment :: GPU :: NVIDIA CUDA :: 12
26
+ Classifier: Operating System :: OS Independent
27
+ Classifier: Topic :: Scientific/Engineering
28
+ Requires-Python: >=3.8
29
+ Description-Content-Type: text/markdown
30
+ License-File: LICENSE.md
31
+ License-File: licenses/Gaia-LICENSE.txt
32
+ License-File: licenses/appdirs-LICENSE.txt
33
+ License-File: licenses/asset_pixel_jpg-LICENSE.txt
34
+ License-File: licenses/cuda-LICENSE.txt
35
+ License-File: licenses/dlpack-LICENSE.txt
36
+ License-File: licenses/fp16-LICENSE.txt
37
+ License-File: licenses/libmathdx-LICENSE.txt
38
+ License-File: licenses/llvm-LICENSE.txt
39
+ License-File: licenses/moller-LICENSE.txt
40
+ License-File: licenses/nanovdb-LICENSE.txt
41
+ License-File: licenses/nvrtc-LICENSE.txt
42
+ License-File: licenses/svd-LICENSE.txt
43
+ License-File: licenses/unittest_parallel-LICENSE.txt
44
+ License-File: licenses/usd-LICENSE.txt
45
+ License-File: licenses/windingnumber-LICENSE.txt
46
+ Requires-Dist: numpy
47
+ Provides-Extra: docs
48
+ Requires-Dist: nvidia-sphinx-theme; python_version >= "3.9" and extra == "docs"
49
+ Requires-Dist: sphinx-copybutton; extra == "docs"
50
+ Requires-Dist: pre-commit; extra == "docs"
51
+ Requires-Dist: myst_parser; extra == "docs"
52
+ Provides-Extra: benchmark
53
+ Requires-Dist: usd-core>=25.5; (platform_machine != "aarch64" and python_version < "3.14") and extra == "benchmark"
54
+ Requires-Dist: usd-exchange>=2.1.0a3; (python_full_version >= "3.10" and platform_machine == "aarch64") and extra == "benchmark"
55
+ Provides-Extra: examples
56
+ Requires-Dist: blosc>=1.11.1; extra == "examples"
57
+ Requires-Dist: matplotlib>=3.7.5; extra == "examples"
58
+ Requires-Dist: pillow>=10.4.0; extra == "examples"
59
+ Requires-Dist: psutil>=7.1.0; extra == "examples"
60
+ Requires-Dist: pyglet>=2.1.9; extra == "examples"
61
+ Requires-Dist: usd-core>=25.5; (platform_machine != "aarch64" and python_version < "3.14") and extra == "examples"
62
+ Requires-Dist: usd-exchange>=2.1.0a3; (python_full_version >= "3.10" and platform_machine == "aarch64") and extra == "examples"
63
+ Provides-Extra: torch-cu12
64
+ Requires-Dist: warp-lang[examples]; extra == "torch-cu12"
65
+ Requires-Dist: torch>=2.7.0; python_version >= "3.9" and extra == "torch-cu12"
66
+ Provides-Extra: dev
67
+ Requires-Dist: warp-lang[examples]; extra == "dev"
68
+ Requires-Dist: warp-lang[docs]; extra == "dev"
69
+ Requires-Dist: nvtx; extra == "dev"
70
+ Requires-Dist: coverage[toml]; extra == "dev"
71
+ Dynamic: license-file
72
+
73
+ [![PyPI version](https://badge.fury.io/py/warp-lang.svg)](https://badge.fury.io/py/warp-lang)
74
+ [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
75
+ ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/NVIDIA/warp?link=https%3A%2F%2Fgithub.com%2FNVIDIA%2Fwarp%2Fcommits%2Fmain)
76
+ [![Downloads](https://static.pepy.tech/badge/warp-lang/month)](https://pepy.tech/project/warp-lang)
77
+ [![codecov](https://codecov.io/github/NVIDIA/warp/graph/badge.svg?token=7O1KSM79FG)](https://codecov.io/github/NVIDIA/warp)
78
+ ![GitHub - CI](https://github.com/NVIDIA/warp/actions/workflows/ci.yml/badge.svg)
79
+
80
+ # NVIDIA Warp
81
+
82
+ Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
83
+ regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
84
+
85
+ Warp is designed for [spatial computing](https://en.wikipedia.org/wiki/Spatial_computing)
86
+ and comes with a rich set of primitives that make it easy to write
87
+ programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
88
+ are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch, JAX and Paddle.
89
+
90
+ Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and
91
+ [CHANGELOG.md](https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md) for release history.
92
+
93
+ <div align="center">
94
+ <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
95
+ <p><i>A selection of physical simulations computed with Warp</i></p>
96
+ </div>
97
+
98
+ ## Installing
99
+
100
+ Python version 3.9 or newer is recommended. Warp can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS.
101
+ GPU support requires a CUDA-capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
102
+
103
+ The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
104
+
105
+ ```text
106
+ pip install warp-lang
107
+ ```
108
+
109
+ You can also use `pip install warp-lang[examples]` to install additional dependencies for running examples and USD-related features.
110
+
111
+ The binaries hosted on PyPI are currently built with the CUDA 12 runtime.
112
+ We also provide binaries built with the CUDA 13.0 runtime on the [GitHub Releases](https://github.com/NVIDIA/warp/releases) page.
113
+ Copy the URL of the appropriate wheel file (`warp-lang-{ver}+cu13-py3-none-{platform}.whl`) and pass it to
114
+ the `pip install` command, e.g.
115
+
116
+ | Platform | Install Command |
117
+ | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
118
+ | Linux aarch64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.10.0/warp_lang-1.10.0+cu13-py3-none-manylinux_2_34_aarch64.whl` |
119
+ | Linux x86-64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.10.0/warp_lang-1.10.0+cu13-py3-none-manylinux_2_28_x86_64.whl` |
120
+ | Windows x86-64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.10.0/warp_lang-1.10.0+cu13-py3-none-win_amd64.whl` |
121
+
122
+ The `--force-reinstall` option may need to be used to overwrite a previous installation.
123
+
124
+ ### Nightly Builds
125
+
126
+ Nightly builds of Warp from the `main` branch are available on the [NVIDIA Package Index](https://pypi.nvidia.com/warp-lang/).
127
+
128
+ To install the latest nightly build, use the following command:
129
+
130
+ ```text
131
+ pip install -U --pre warp-lang --extra-index-url=https://pypi.nvidia.com/
132
+ ```
133
+
134
+ Note that the nightly builds are built with the CUDA 12 runtime and are not published for macOS.
135
+
136
+ If you plan to install nightly builds regularly, you can simplify future installations by adding NVIDIA's package
137
+ repository as an extra index via the `PIP_EXTRA_INDEX_URL` environment variable. For example:
138
+
139
+ ```text
140
+ export PIP_EXTRA_INDEX_URL="https://pypi.nvidia.com"
141
+ ```
142
+
143
+ This ensures the index is automatically used for `pip` commands, avoiding the need to specify it explicitly.
144
+
145
+ ### CUDA Requirements
146
+
147
+ * Warp packages built with CUDA Toolkit 12.x require NVIDIA driver 525 or newer.
148
+ * Warp packages built with CUDA Toolkit 13.x require NVIDIA driver 580 or newer.
149
+
150
+ This applies to pre-built packages distributed on PyPI and GitHub and also when building Warp from source.
151
+
152
+ Note that building Warp with the `--quick` flag changes the driver requirements. The quick build skips CUDA backward compatibility, so the minimum required driver is determined by the CUDA Toolkit version. Refer to the [latest CUDA Toolkit release notes](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html) to find the minimum required driver for different CUDA Toolkit versions (e.g., [this table from CUDA Toolkit 12.6](https://docs.nvidia.com/cuda/archive/12.6.0/cuda-toolkit-release-notes/index.html#id5)).
153
+
154
+ Warp checks the installed driver during initialization and will report a warning if the driver is not suitable, e.g.:
155
+
156
+ ```text
157
+ Warp UserWarning:
158
+ Insufficient CUDA driver version.
159
+ The minimum required CUDA driver version is 12.0, but the installed CUDA driver version is 11.8.
160
+ Visit https://github.com/NVIDIA/warp/blob/main/README.md#installing for guidance.
161
+ ```
162
+
163
+ This will make CUDA devices unavailable, but the CPU can still be used.
164
+
165
+ To remedy the situation there are a few options:
166
+
167
+ * Update the driver.
168
+ * Install a compatible pre-built Warp package.
169
+ * Build Warp from source using a CUDA Toolkit that's compatible with the installed driver.
170
+
171
+ ## Tutorial Notebooks
172
+
173
+ The [NVIDIA Accelerated Computing Hub](https://github.com/NVIDIA/accelerated-computing-hub) contains the current,
174
+ actively maintained set of Warp tutorials:
175
+
176
+ | Notebook | Colab Link |
177
+ |----------|------------|
178
+ | [Introduction to NVIDIA Warp](https://github.com/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12_Intro_to_NVIDIA_Warp.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12_Intro_to_NVIDIA_Warp.ipynb) |
179
+ | [GPU-Accelerated Ising Model Simulation in NVIDIA Warp](https://github.com/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12.1_IsingModel_In_Warp.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12.1_IsingModel_In_Warp.ipynb) |
180
+
181
+ Additionally, several notebooks in the [notebooks](https://github.com/NVIDIA/warp/tree/main/notebooks) directory
182
+ provide additional examples and cover key Warp features:
183
+
184
+ | Notebook | Colab Link |
185
+ |----------|------------|
186
+ | [Warp Core Tutorial: Basics](https://github.com/NVIDIA/warp/blob/main/notebooks/core_01_basics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_01_basics.ipynb) |
187
+ | [Warp Core Tutorial: Generics](https://github.com/NVIDIA/warp/blob/main/notebooks/core_02_generics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_02_generics.ipynb) |
188
+ | [Warp Core Tutorial: Points](https://github.com/NVIDIA/warp/blob/main/notebooks/core_03_points.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_03_points.ipynb) |
189
+ | [Warp Core Tutorial: Meshes](https://github.com/NVIDIA/warp/blob/main/notebooks/core_04_meshes.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_04_meshes.ipynb) |
190
+ | [Warp Core Tutorial: Volumes](https://github.com/NVIDIA/warp/blob/main/notebooks/core_05_volumes.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_05_volumes.ipynb) |
191
+ | [Warp PyTorch Tutorial: Basics](https://github.com/NVIDIA/warp/blob/main/notebooks/pytorch_01_basics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/pytorch_01_basics.ipynb) |
192
+ | [Warp PyTorch Tutorial: Custom Operators](https://github.com/NVIDIA/warp/blob/main/notebooks/pytorch_02_custom_operators.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/pytorch_02_custom_operators.ipynb) |
193
+
194
+ ## Running Examples
195
+
196
+ The [warp/examples](https://github.com/NVIDIA/warp/tree/main/warp/examples) directory contains a number of scripts categorized under subdirectories
197
+ that show how to implement various simulation methods using the Warp API.
198
+ Most examples will generate USD files containing time-sampled animations in the current working directory.
199
+ Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using:
200
+
201
+ ```text
202
+ pip install warp-lang[extras]
203
+ ```
204
+
205
+ These dependencies can also be manually installed using:
206
+
207
+ ```text
208
+ pip install usd-core matplotlib pyglet
209
+ ```
210
+
211
+ Examples can be run from the command-line as follows:
212
+
213
+ ```text
214
+ python -m warp.examples.<example_subdir>.<example>
215
+ ```
216
+
217
+ To browse the example source code, you can open the directory where the files are located like this:
218
+
219
+ ```text
220
+ python -m warp.examples.browse
221
+ ```
222
+
223
+ Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
224
+
225
+ USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
226
+
227
+ Built-in unit tests can be run from the command-line as follows:
228
+
229
+ ```text
230
+ python -m warp.tests
231
+ ```
232
+
233
+ ### warp/examples/core
234
+
235
+ <table>
236
+ <tbody>
237
+ <tr>
238
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_dem.png"></a></td>
239
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_fluid.png"></a></td>
240
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_graph_capture.png"></a></td>
241
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_marching_cubes.png"></a></td>
242
+ </tr>
243
+ <tr>
244
+ <td align="center">dem</td>
245
+ <td align="center">fluid</td>
246
+ <td align="center">graph capture</td>
247
+ <td align="center">marching cubes</td>
248
+ </tr>
249
+ <tr>
250
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_mesh.png"></a></td>
251
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_nvdb.png"></a></td>
252
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_raycast.png"></a></td>
253
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_raymarch.png"></a></td>
254
+ </tr>
255
+ <tr>
256
+ <td align="center">mesh</td>
257
+ <td align="center">nvdb</td>
258
+ <td align="center">raycast</td>
259
+ <td align="center">raymarch</td>
260
+ </tr>
261
+ <tr>
262
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sample_mesh.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_sample_mesh.png"></a></td>
263
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_sph.png"></a></td>
264
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_torch.png"></a></td>
265
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_wave.png"></a></td>
266
+ </tr>
267
+ <tr>
268
+ <td align="center">sample mesh</td>
269
+ <td align="center">sph</td>
270
+ <td align="center">torch</td>
271
+ <td align="center">wave</td>
272
+ </tr>
273
+ </tbody>
274
+ </table>
275
+
276
+ ### warp/examples/fem
277
+
278
+ <table>
279
+ <tbody>
280
+ <tr>
281
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
282
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
283
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_apic_fluid.png"></a></td>
284
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_streamlines.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_streamlines.png"></a></td>
285
+ </tr>
286
+ <tr>
287
+ <td align="center">diffusion 3d</td>
288
+ <td align="center">mixed elasticity</td>
289
+ <td align="center">apic fluid</td>
290
+ <td align="center">streamlines</td>
291
+ </tr>
292
+ <tr>
293
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_distortion_energy.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_distortion_energy.png"></a></td>
294
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_navier_stokes.png"></a></td>
295
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_burgers.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_burgers.png"></a></td>
296
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_magnetostatics.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_magnetostatics.png"></a></td>
297
+ </tr>
298
+ <tr>
299
+ <td align="center">distortion energy</td>
300
+ <td align="center">navier stokes</td>
301
+ <td align="center">burgers</td>
302
+ <td align="center">magnetostatics</td>
303
+ </tr>
304
+ <tr>
305
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_adaptive_grid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_adaptive_grid.png"></a></td>
306
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_nonconforming_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_nonconforming_contact.png"></a></td>
307
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_darcy_ls_optimization.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_darcy_ls_optimization.png"></a></td>
308
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_elastic_shape_optimization.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_elastic_shape_optimization.png"></a></td>
309
+ </tr>
310
+ <tr>
311
+ <td align="center">adaptive grid</td>
312
+ <td align="center">nonconforming contact</td>
313
+ <td align="center">darcy level-set optimization</td>
314
+ <td align="center">elastic shape optimization</td>
315
+ </tr>
316
+ </tbody>
317
+ </table>
318
+
319
+ ### warp/examples/optim
320
+
321
+ <table>
322
+ <tbody>
323
+ <tr>
324
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_diffray.png"></a></td>
325
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_fluid_checkpoint.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_fluid_checkpoint.png"></a></td>
326
+ <td></td>
327
+ <td></td>
328
+ </tr>
329
+ <tr>
330
+ <td align="center">diffray</td>
331
+ <td align="center">fluid checkpoint</td>
332
+ <td align="center"></td>
333
+ <td align="center"></td>
334
+ </tr>
335
+ </tbody>
336
+ </table>
337
+
338
+ ### warp/examples/tile
339
+
340
+ <table>
341
+ <tbody>
342
+ <tr>
343
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_mlp.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_mlp.png"></a></td>
344
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_nbody.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_nbody.png"></a></td>
345
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_mcgp.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_mcgp.png"></a></td>
346
+ <td></td>
347
+ </tr>
348
+ <tr>
349
+ <td align="center">mlp</td>
350
+ <td align="center">nbody</td>
351
+ <td align="center">mcgp</td>
352
+ <td align="center"></td>
353
+ </tr>
354
+ </tbody>
355
+ </table>
356
+
357
+ ## Building
358
+
359
+ For developers who want to build the library themselves, the following tools are required:
360
+
361
+ * Microsoft Visual Studio 2019 upwards (Windows)
362
+ * GCC 9.4 upwards (Linux)
363
+ * CUDA Toolkit 12.0 or higher
364
+ * [Git LFS](https://git-lfs.github.com/) installed
365
+
366
+ After cloning the repository, users should run:
367
+
368
+ ```text
369
+ python build_lib.py
370
+ ```
371
+
372
+ Upon success, the script will output platform-specific binary files in `warp/bin/`.
373
+ The build script will look for the CUDA Toolkit in its default installation path.
374
+ This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively,
375
+ the path to the CUDA Toolkit can be passed to the build command as
376
+ `--cuda_path="..."`. After building, the Warp package should be installed using:
377
+
378
+ ```text
379
+ pip install -e .
380
+ ```
381
+
382
+ This ensures that subsequent modifications to the library will be reflected in the Python package.
383
+
384
+ ## Learn More
385
+
386
+ Please see the following resources for additional background on Warp:
387
+
388
+ * [Product Page](https://developer.nvidia.com/warp-python)
389
+ * [SIGGRAPH 2024 Course Slides](https://dl.acm.org/doi/10.1145/3664475.3664543)
390
+ * [GTC 2024 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtc24-s63345/)
391
+ * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
392
+ * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
393
+ * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
394
+
395
+ The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
396
+
397
+ * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
398
+ * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
399
+ * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
400
+
401
+ ## Frequently Asked Questions
402
+
403
+ See the [FAQ](https://nvidia.github.io/warp/faq.html) in the Warp documentation.
404
+
405
+ ## Support
406
+
407
+ Problems, questions, and feature requests can be opened on [GitHub Issues](https://github.com/NVIDIA/warp/issues).
408
+
409
+ For inquiries not suited for GitHub Issues, please email warp-python@nvidia.com.
410
+
411
+ ## Versioning
412
+
413
+ Versions take the format X.Y.Z, similar to [Python itself](https://devguide.python.org/developer-workflow/development-cycle/#devcycle):
414
+
415
+ * Increments in X are reserved for major reworks of the project causing disruptive incompatibility (or reaching the 1.0 milestone).
416
+ * Increments in Y are for regular releases with a new set of features.
417
+ * Increments in Z are for bug fixes. In principle, there are no new features. Can be omitted if 0 or not relevant.
418
+
419
+ This is similar to [Semantic Versioning](https://semver.org/) but is less strict regarding backward compatibility.
420
+ Like with Python, some breaking changes can be present between minor versions if well-documented and gradually introduced.
421
+
422
+ Note that prior to 0.11.0, this schema was not strictly adhered to.
423
+
424
+ ## License
425
+
426
+ Warp is provided under the Apache License, Version 2.0.
427
+ Please see [LICENSE.md](https://github.com/NVIDIA/warp/blob/main/LICENSE.md) for full license text.
428
+
429
+ This project will download and install additional third-party open source software projects.
430
+ Review the license terms of these open source projects before use.
431
+
432
+ ## Contributing
433
+
434
+ Contributions and pull requests from the community are welcome.
435
+ Please see the [Contribution Guide](https://nvidia.github.io/warp/modules/contribution_guide.html) for more
436
+ information on contributing to the development of Warp.
437
+
438
+ ## Publications & Citation
439
+
440
+ ### Research Using Warp
441
+
442
+ Our [PUBLICATIONS.md](https://github.com/NVIDIA/warp/blob/main/PUBLICATIONS.md) file lists academic and research
443
+ publications that leverage the capabilities of Warp.
444
+ We encourage you to add your own published work using Warp to this list.
445
+
446
+ ### Citing Warp
447
+
448
+ To cite Warp itself in your own publications, please use the following BibTeX entry:
449
+
450
+ ```bibtex
451
+ @misc{warp2022,
452
+ title = {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
453
+ author = {Miles Macklin},
454
+ month = {March},
455
+ year = {2022},
456
+ note = {NVIDIA GPU Technology Conference (GTC)},
457
+ howpublished = {\url{https://github.com/nvidia/warp}}
458
+ }
459
+ ```
@@ -0,0 +1,10 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2
3
+
4
+ [build-system]
5
+ requires = ["wheel-stub"]
6
+ build-backend = "wheel_stub.buildapi"
7
+
8
+ [tool.wheel_stub]
9
+ index_url = "https://pypi.nvidia.com/"
10
+ include_cuda_debuginfo = true