warp-lang 0.8.0__tar.gz → 1.10.0.dev20250930__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (183) hide show
  1. warp_lang-1.10.0.dev20250930/PKG-INFO +513 -0
  2. warp_lang-1.10.0.dev20250930/pyproject.toml +10 -0
  3. warp-lang-0.8.0/LICENSE.md +0 -36
  4. warp-lang-0.8.0/PKG-INFO +0 -19
  5. warp-lang-0.8.0/README.md +0 -208
  6. warp-lang-0.8.0/pyproject.toml +0 -3
  7. warp-lang-0.8.0/setup.cfg +0 -4
  8. warp-lang-0.8.0/setup.py +0 -29
  9. warp-lang-0.8.0/warp/__init__.py +0 -68
  10. warp-lang-0.8.0/warp/bin/libwarp.dylib +0 -0
  11. warp-lang-0.8.0/warp/bin/warp.dll +0 -0
  12. warp-lang-0.8.0/warp/bin/warp.exp +0 -0
  13. warp-lang-0.8.0/warp/bin/warp.lib +0 -0
  14. warp-lang-0.8.0/warp/bin/warp.so +0 -0
  15. warp-lang-0.8.0/warp/build.py +0 -548
  16. warp-lang-0.8.0/warp/builtins.py +0 -1236
  17. warp-lang-0.8.0/warp/codegen.py +0 -2126
  18. warp-lang-0.8.0/warp/config.py +0 -29
  19. warp-lang-0.8.0/warp/constants.py +0 -28
  20. warp-lang-0.8.0/warp/context.py +0 -3282
  21. warp-lang-0.8.0/warp/dlpack.py +0 -356
  22. warp-lang-0.8.0/warp/jax.py +0 -50
  23. warp-lang-0.8.0/warp/native/array.h +0 -831
  24. warp-lang-0.8.0/warp/native/builtin.h +0 -1548
  25. warp-lang-0.8.0/warp/native/bvh.cpp +0 -651
  26. warp-lang-0.8.0/warp/native/bvh.cu +0 -142
  27. warp-lang-0.8.0/warp/native/bvh.h +0 -437
  28. warp-lang-0.8.0/warp/native/crt.cpp +0 -107
  29. warp-lang-0.8.0/warp/native/crt.h +0 -324
  30. warp-lang-0.8.0/warp/native/cuda_util.cpp +0 -385
  31. warp-lang-0.8.0/warp/native/cuda_util.h +0 -166
  32. warp-lang-0.8.0/warp/native/cutlass_gemm.cpp +0 -34
  33. warp-lang-0.8.0/warp/native/cutlass_gemm.cu +0 -368
  34. warp-lang-0.8.0/warp/native/exports.h +0 -930
  35. warp-lang-0.8.0/warp/native/hashgrid.cpp +0 -279
  36. warp-lang-0.8.0/warp/native/hashgrid.cu +0 -77
  37. warp-lang-0.8.0/warp/native/hashgrid.h +0 -203
  38. warp-lang-0.8.0/warp/native/initializer_array.h +0 -32
  39. warp-lang-0.8.0/warp/native/intersect.h +0 -1189
  40. warp-lang-0.8.0/warp/native/intersect_adj.h +0 -366
  41. warp-lang-0.8.0/warp/native/intersect_tri.h +0 -325
  42. warp-lang-0.8.0/warp/native/marching.cpp +0 -3
  43. warp-lang-0.8.0/warp/native/marching.cu +0 -501
  44. warp-lang-0.8.0/warp/native/marching.h +0 -2
  45. warp-lang-0.8.0/warp/native/mat.h +0 -1351
  46. warp-lang-0.8.0/warp/native/matnn.h +0 -334
  47. warp-lang-0.8.0/warp/native/mesh.cpp +0 -188
  48. warp-lang-0.8.0/warp/native/mesh.cu +0 -56
  49. warp-lang-0.8.0/warp/native/mesh.h +0 -791
  50. warp-lang-0.8.0/warp/native/nanovdb/NanoVDB.h +0 -4782
  51. warp-lang-0.8.0/warp/native/nanovdb/PNanoVDB.h +0 -2553
  52. warp-lang-0.8.0/warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  53. warp-lang-0.8.0/warp/native/noise.h +0 -907
  54. warp-lang-0.8.0/warp/native/quat.h +0 -1042
  55. warp-lang-0.8.0/warp/native/rand.h +0 -290
  56. warp-lang-0.8.0/warp/native/range.h +0 -105
  57. warp-lang-0.8.0/warp/native/scan.cpp +0 -30
  58. warp-lang-0.8.0/warp/native/scan.cu +0 -38
  59. warp-lang-0.8.0/warp/native/scan.h +0 -6
  60. warp-lang-0.8.0/warp/native/sort.cpp +0 -81
  61. warp-lang-0.8.0/warp/native/sort.cu +0 -89
  62. warp-lang-0.8.0/warp/native/sort.h +0 -15
  63. warp-lang-0.8.0/warp/native/spatial.h +0 -631
  64. warp-lang-0.8.0/warp/native/svd.h +0 -562
  65. warp-lang-0.8.0/warp/native/vec.h +0 -922
  66. warp-lang-0.8.0/warp/native/volume.cpp +0 -297
  67. warp-lang-0.8.0/warp/native/volume.cu +0 -32
  68. warp-lang-0.8.0/warp/native/volume.h +0 -418
  69. warp-lang-0.8.0/warp/native/volume_builder.cu +0 -425
  70. warp-lang-0.8.0/warp/native/volume_builder.h +0 -19
  71. warp-lang-0.8.0/warp/native/warp.cpp +0 -380
  72. warp-lang-0.8.0/warp/native/warp.cu +0 -1319
  73. warp-lang-0.8.0/warp/native/warp.h +0 -177
  74. warp-lang-0.8.0/warp/optim/__init__.py +0 -8
  75. warp-lang-0.8.0/warp/optim/adam.py +0 -115
  76. warp-lang-0.8.0/warp/render/__init__.py +0 -10
  77. warp-lang-0.8.0/warp/render/render_tiny.py +0 -1080
  78. warp-lang-0.8.0/warp/render/render_usd.py +0 -626
  79. warp-lang-0.8.0/warp/render/utils.py +0 -139
  80. warp-lang-0.8.0/warp/sim/__init__.py +0 -50
  81. warp-lang-0.8.0/warp/sim/articulation.py +0 -497
  82. warp-lang-0.8.0/warp/sim/collide.py +0 -1403
  83. warp-lang-0.8.0/warp/sim/import_mjcf.py +0 -305
  84. warp-lang-0.8.0/warp/sim/import_snu.py +0 -231
  85. warp-lang-0.8.0/warp/sim/import_urdf.py +0 -299
  86. warp-lang-0.8.0/warp/sim/import_usd.py +0 -709
  87. warp-lang-0.8.0/warp/sim/inertia.py +0 -319
  88. warp-lang-0.8.0/warp/sim/integrator_euler.py +0 -1873
  89. warp-lang-0.8.0/warp/sim/integrator_xpbd.py +0 -2174
  90. warp-lang-0.8.0/warp/sim/model.py +0 -3108
  91. warp-lang-0.8.0/warp/sim/optimizer.py +0 -156
  92. warp-lang-0.8.0/warp/sim/particles.py +0 -110
  93. warp-lang-0.8.0/warp/sim/render.py +0 -304
  94. warp-lang-0.8.0/warp/sim/utils.py +0 -199
  95. warp-lang-0.8.0/warp/stubs.py +0 -1654
  96. warp-lang-0.8.0/warp/tape.py +0 -164
  97. warp-lang-0.8.0/warp/tests/__init__.py +0 -1
  98. warp-lang-0.8.0/warp/tests/__main__.py +0 -8
  99. warp-lang-0.8.0/warp/tests/assets/curlnoise_golden.npy +0 -0
  100. warp-lang-0.8.0/warp/tests/assets/mlp_golden.npy +0 -0
  101. warp-lang-0.8.0/warp/tests/assets/pnoise_golden.npy +0 -0
  102. warp-lang-0.8.0/warp/tests/assets/spiky.usd +0 -0
  103. warp-lang-0.8.0/warp/tests/assets/test_grid.nvdb +0 -0
  104. warp-lang-0.8.0/warp/tests/assets/test_int32_grid.nvdb +0 -0
  105. warp-lang-0.8.0/warp/tests/assets/test_vec_grid.nvdb +0 -0
  106. warp-lang-0.8.0/warp/tests/assets/torus.nvdb +0 -0
  107. warp-lang-0.8.0/warp/tests/assets/torus.usda +0 -105
  108. warp-lang-0.8.0/warp/tests/test_adam.py +0 -152
  109. warp-lang-0.8.0/warp/tests/test_all.py +0 -216
  110. warp-lang-0.8.0/warp/tests/test_arithmetic.py +0 -1055
  111. warp-lang-0.8.0/warp/tests/test_array.py +0 -713
  112. warp-lang-0.8.0/warp/tests/test_array_scan.py +0 -59
  113. warp-lang-0.8.0/warp/tests/test_atomic.py +0 -105
  114. warp-lang-0.8.0/warp/tests/test_base.py +0 -220
  115. warp-lang-0.8.0/warp/tests/test_bvh.py +0 -146
  116. warp-lang-0.8.0/warp/tests/test_class_kernel.py +0 -21
  117. warp-lang-0.8.0/warp/tests/test_closest_point_edge_edge.py +0 -186
  118. warp-lang-0.8.0/warp/tests/test_codegen.py +0 -308
  119. warp-lang-0.8.0/warp/tests/test_compile_consts.py +0 -95
  120. warp-lang-0.8.0/warp/tests/test_compile_consts_dummy.py +0 -10
  121. warp-lang-0.8.0/warp/tests/test_conditional.py +0 -137
  122. warp-lang-0.8.0/warp/tests/test_copy.py +0 -218
  123. warp-lang-0.8.0/warp/tests/test_ctypes.py +0 -600
  124. warp-lang-0.8.0/warp/tests/test_dense.py +0 -48
  125. warp-lang-0.8.0/warp/tests/test_dependent.py +0 -20
  126. warp-lang-0.8.0/warp/tests/test_dlpack.py +0 -349
  127. warp-lang-0.8.0/warp/tests/test_fast_math.py +0 -54
  128. warp-lang-0.8.0/warp/tests/test_fp16.py +0 -103
  129. warp-lang-0.8.0/warp/tests/test_func.py +0 -183
  130. warp-lang-0.8.0/warp/tests/test_generics.py +0 -382
  131. warp-lang-0.8.0/warp/tests/test_grad.py +0 -448
  132. warp-lang-0.8.0/warp/tests/test_hash_grid.py +0 -145
  133. warp-lang-0.8.0/warp/tests/test_import.py +0 -53
  134. warp-lang-0.8.0/warp/tests/test_indexedarray.py +0 -643
  135. warp-lang-0.8.0/warp/tests/test_intersect.py +0 -53
  136. warp-lang-0.8.0/warp/tests/test_launch.py +0 -99
  137. warp-lang-0.8.0/warp/tests/test_lerp.py +0 -257
  138. warp-lang-0.8.0/warp/tests/test_marching_cubes.py +0 -74
  139. warp-lang-0.8.0/warp/tests/test_mat.py +0 -3210
  140. warp-lang-0.8.0/warp/tests/test_math.py +0 -94
  141. warp-lang-0.8.0/warp/tests/test_matmul.py +0 -161
  142. warp-lang-0.8.0/warp/tests/test_mesh_query_aabb.py +0 -222
  143. warp-lang-0.8.0/warp/tests/test_mesh_query_point.py +0 -394
  144. warp-lang-0.8.0/warp/tests/test_mesh_query_ray.py +0 -274
  145. warp-lang-0.8.0/warp/tests/test_misc.py +0 -9
  146. warp-lang-0.8.0/warp/tests/test_mlp.py +0 -282
  147. warp-lang-0.8.0/warp/tests/test_model.py +0 -84
  148. warp-lang-0.8.0/warp/tests/test_multigpu.py +0 -168
  149. warp-lang-0.8.0/warp/tests/test_noise.py +0 -266
  150. warp-lang-0.8.0/warp/tests/test_operators.py +0 -256
  151. warp-lang-0.8.0/warp/tests/test_options.py +0 -103
  152. warp-lang-0.8.0/warp/tests/test_pinned.py +0 -80
  153. warp-lang-0.8.0/warp/tests/test_print.py +0 -38
  154. warp-lang-0.8.0/warp/tests/test_quat.py +0 -1721
  155. warp-lang-0.8.0/warp/tests/test_rand.py +0 -249
  156. warp-lang-0.8.0/warp/tests/test_reference.py +0 -10
  157. warp-lang-0.8.0/warp/tests/test_reference_reference.py +0 -9
  158. warp-lang-0.8.0/warp/tests/test_reload.py +0 -223
  159. warp-lang-0.8.0/warp/tests/test_rounding.py +0 -140
  160. warp-lang-0.8.0/warp/tests/test_smoothstep.py +0 -172
  161. warp-lang-0.8.0/warp/tests/test_spatial.py +0 -1799
  162. warp-lang-0.8.0/warp/tests/test_square.py +0 -15
  163. warp-lang-0.8.0/warp/tests/test_streams.py +0 -416
  164. warp-lang-0.8.0/warp/tests/test_struct.py +0 -287
  165. warp-lang-0.8.0/warp/tests/test_tape.py +0 -147
  166. warp-lang-0.8.0/warp/tests/test_torch.py +0 -651
  167. warp-lang-0.8.0/warp/tests/test_transient_module.py +0 -82
  168. warp-lang-0.8.0/warp/tests/test_unresolved_func.py +0 -7
  169. warp-lang-0.8.0/warp/tests/test_unresolved_symbol.py +0 -7
  170. warp-lang-0.8.0/warp/tests/test_vec.py +0 -2525
  171. warp-lang-0.8.0/warp/tests/test_volume.py +0 -505
  172. warp-lang-0.8.0/warp/tests/test_volume_write.py +0 -252
  173. warp-lang-0.8.0/warp/thirdparty/__init__.py +0 -0
  174. warp-lang-0.8.0/warp/thirdparty/appdirs.py +0 -608
  175. warp-lang-0.8.0/warp/thirdparty/dlpack.py +0 -137
  176. warp-lang-0.8.0/warp/torch.py +0 -204
  177. warp-lang-0.8.0/warp/types.py +0 -2771
  178. warp-lang-0.8.0/warp/utils.py +0 -684
  179. warp-lang-0.8.0/warp_lang.egg-info/PKG-INFO +0 -19
  180. warp-lang-0.8.0/warp_lang.egg-info/SOURCES.txt +0 -179
  181. warp-lang-0.8.0/warp_lang.egg-info/dependency_links.txt +0 -1
  182. warp-lang-0.8.0/warp_lang.egg-info/requires.txt +0 -1
  183. warp-lang-0.8.0/warp_lang.egg-info/top_level.txt +0 -1
@@ -0,0 +1,513 @@
1
+ Metadata-Version: 2.4
2
+ Name: warp-lang
3
+ Version: 1.10.0.dev20250930
4
+ Summary: A Python framework for high-performance simulation and graphics programming
5
+ Author-email: NVIDIA Corporation <warp-python@nvidia.com>
6
+ License: Apache-2.0
7
+ Project-URL: Homepage, https://developer.nvidia.com/warp-python
8
+ Project-URL: Documentation, https://nvidia.github.io/warp
9
+ Project-URL: Repository, https://github.com/NVIDIA/warp
10
+ Project-URL: Issues, https://github.com/NVIDIA/warp/issues
11
+ Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
12
+ Classifier: Development Status :: 5 - Production/Stable
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: Natural Language :: English
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Programming Language :: Python :: 3.13
22
+ Classifier: Programming Language :: Python :: 3 :: Only
23
+ Classifier: Environment :: GPU :: NVIDIA CUDA
24
+ Classifier: Environment :: GPU :: NVIDIA CUDA :: 12
25
+ Classifier: Operating System :: OS Independent
26
+ Classifier: Topic :: Scientific/Engineering
27
+ Requires-Python: >=3.8
28
+ Description-Content-Type: text/markdown
29
+ License-File: LICENSE.md
30
+ Requires-Dist: numpy
31
+ Provides-Extra: docs
32
+ Requires-Dist: nvidia-sphinx-theme; python_version >= "3.9" and extra == "docs"
33
+ Requires-Dist: sphinx-copybutton; extra == "docs"
34
+ Requires-Dist: ruff==0.11.10; extra == "docs"
35
+ Requires-Dist: myst_parser; extra == "docs"
36
+ Provides-Extra: dev
37
+ Requires-Dist: pre-commit; extra == "dev"
38
+ Requires-Dist: ruff==0.11.10; extra == "dev"
39
+ Requires-Dist: nvtx; extra == "dev"
40
+ Requires-Dist: nvidia-sphinx-theme; python_version >= "3.9" and extra == "dev"
41
+ Requires-Dist: sphinx-copybutton; extra == "dev"
42
+ Requires-Dist: coverage[toml]; extra == "dev"
43
+ Provides-Extra: benchmark
44
+ Requires-Dist: usd-core; platform_machine != "aarch64" and extra == "benchmark"
45
+ Provides-Extra: extras
46
+ Requires-Dist: usd-core; extra == "extras"
47
+ Requires-Dist: matplotlib; extra == "extras"
48
+ Requires-Dist: pillow; extra == "extras"
49
+ Requires-Dist: pyglet; extra == "extras"
50
+ Requires-Dist: psutil; extra == "extras"
51
+ Dynamic: license-file
52
+
53
+ [![PyPI version](https://badge.fury.io/py/warp-lang.svg)](https://badge.fury.io/py/warp-lang)
54
+ [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
55
+ ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/NVIDIA/warp?link=https%3A%2F%2Fgithub.com%2FNVIDIA%2Fwarp%2Fcommits%2Fmain)
56
+ [![Downloads](https://static.pepy.tech/badge/warp-lang/month)](https://pepy.tech/project/warp-lang)
57
+ [![codecov](https://codecov.io/github/NVIDIA/warp/graph/badge.svg?token=7O1KSM79FG)](https://codecov.io/github/NVIDIA/warp)
58
+ ![GitHub - CI](https://github.com/NVIDIA/warp/actions/workflows/ci.yml/badge.svg)
59
+
60
+ # NVIDIA Warp
61
+
62
+ Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
63
+ regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
64
+
65
+ Warp is designed for [spatial computing](https://en.wikipedia.org/wiki/Spatial_computing)
66
+ and comes with a rich set of primitives that make it easy to write
67
+ programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
68
+ are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch, JAX and Paddle.
69
+
70
+ Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and
71
+ [CHANGELOG.md](https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md) for release history.
72
+
73
+ <div align="center">
74
+ <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
75
+ <p><i>A selection of physical simulations computed with Warp</i></p>
76
+ </div>
77
+
78
+ ## Installing
79
+
80
+ Python version 3.9 or newer is recommended. Warp can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS.
81
+ GPU support requires a CUDA-capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
82
+
83
+ The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
84
+
85
+ ```text
86
+ pip install warp-lang
87
+ ```
88
+
89
+ You can also use `pip install warp-lang[extras]` to install additional dependencies for running examples and USD-related features.
90
+
91
+ The binaries hosted on PyPI are currently built with the CUDA 12 runtime.
92
+ We also provide binaries built with the CUDA 13.0 runtime on the [GitHub Releases](https://github.com/NVIDIA/warp/releases) page.
93
+ Copy the URL of the appropriate wheel file (`warp-lang-{ver}+cu13-py3-none-{platform}.whl`) and pass it to
94
+ the `pip install` command, e.g.
95
+
96
+ | Platform | Install Command |
97
+ | --------------- | ----------------------------------------------------------------------------------------------------------------------------- |
98
+ | Linux aarch64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.9.0/warp_lang-1.9.0+cu13-py3-none-manylinux_2_34_aarch64.whl` |
99
+ | Linux x86-64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.9.0/warp_lang-1.9.0+cu13-py3-none-manylinux_2_34_x86_64.whl` |
100
+ | Windows x86-64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.9.0/warp_lang-1.9.0+cu13-py3-none-win_amd64.whl` |
101
+
102
+ The `--force-reinstall` option may need to be used to overwrite a previous installation.
103
+
104
+ ### Nightly Builds
105
+
106
+ Nightly builds of Warp from the `main` branch are available on the [NVIDIA Package Index](https://pypi.nvidia.com/warp-lang/).
107
+
108
+ To install the latest nightly build, use the following command:
109
+
110
+ ```text
111
+ pip install -U --pre warp-lang --extra-index-url=https://pypi.nvidia.com/
112
+ ```
113
+
114
+ Note that the nightly builds are built with the CUDA 12 runtime and are not published for macOS.
115
+
116
+ If you plan to install nightly builds regularly, you can simplify future installations by adding NVIDIA's package
117
+ repository as an extra index via the `PIP_EXTRA_INDEX_URL` environment variable. For example:
118
+
119
+ ```text
120
+ export PIP_EXTRA_INDEX_URL="https://pypi.nvidia.com"
121
+ ```
122
+
123
+ This ensures the index is automatically used for `pip` commands, avoiding the need to specify it explicitly.
124
+
125
+ ### CUDA Requirements
126
+
127
+ * Warp packages built with CUDA Toolkit 12.x require NVIDIA driver 525 or newer.
128
+ * Warp packages built with CUDA Toolkit 13.x require NVIDIA driver 580 or newer.
129
+
130
+ This applies to pre-built packages distributed on PyPI and GitHub and also when building Warp from source.
131
+
132
+ Note that building Warp with the `--quick` flag changes the driver requirements. The quick build skips CUDA backward compatibility, so the minimum required driver is determined by the CUDA Toolkit version. Refer to the [latest CUDA Toolkit release notes](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html) to find the minimum required driver for different CUDA Toolkit versions (e.g., [this table from CUDA Toolkit 12.6](https://docs.nvidia.com/cuda/archive/12.6.0/cuda-toolkit-release-notes/index.html#id5)).
133
+
134
+ Warp checks the installed driver during initialization and will report a warning if the driver is not suitable, e.g.:
135
+
136
+ ```text
137
+ Warp UserWarning:
138
+ Insufficient CUDA driver version.
139
+ The minimum required CUDA driver version is 12.0, but the installed CUDA driver version is 11.8.
140
+ Visit https://github.com/NVIDIA/warp/blob/main/README.md#installing for guidance.
141
+ ```
142
+
143
+ This will make CUDA devices unavailable, but the CPU can still be used.
144
+
145
+ To remedy the situation there are a few options:
146
+
147
+ * Update the driver.
148
+ * Install a compatible pre-built Warp package.
149
+ * Build Warp from source using a CUDA Toolkit that's compatible with the installed driver.
150
+
151
+ ## Tutorial Notebooks
152
+
153
+ The [NVIDIA Accelerated Computing Hub](https://github.com/NVIDIA/accelerated-computing-hub) contains the current,
154
+ actively maintained set of Warp tutorials:
155
+
156
+ | Notebook | Colab Link |
157
+ |----------|------------|
158
+ | [Introduction to NVIDIA Warp](https://github.com/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12_Intro_to_NVIDIA_Warp.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12_Intro_to_NVIDIA_Warp.ipynb) |
159
+ | [GPU-Accelerated Ising Model Simulation in NVIDIA Warp](https://github.com/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12.1_IsingModel_In_Warp.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/accelerated-computing-hub/blob/9c334fcfcbbaf8d0cff91d012cdb2c11bf0f3dba/Accelerated_Python_User_Guide/notebooks/Chapter_12.1_IsingModel_In_Warp.ipynb) |
160
+
161
+ Additionally, several notebooks in the [notebooks](https://github.com/NVIDIA/warp/tree/main/notebooks) directory
162
+ provide additional examples and cover key Warp features:
163
+
164
+ | Notebook | Colab Link |
165
+ |----------|------------|
166
+ | [Warp Core Tutorial: Basics](https://github.com/NVIDIA/warp/blob/main/notebooks/core_01_basics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_01_basics.ipynb) |
167
+ | [Warp Core Tutorial: Generics](https://github.com/NVIDIA/warp/blob/main/notebooks/core_02_generics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_02_generics.ipynb) |
168
+ | [Warp Core Tutorial: Points](https://github.com/NVIDIA/warp/blob/main/notebooks/core_03_points.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_03_points.ipynb) |
169
+ | [Warp Core Tutorial: Meshes](https://github.com/NVIDIA/warp/blob/main/notebooks/core_04_meshes.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_04_meshes.ipynb) |
170
+ | [Warp Core Tutorial: Volumes](https://github.com/NVIDIA/warp/blob/main/notebooks/core_05_volumes.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_05_volumes.ipynb) |
171
+ | [Warp PyTorch Tutorial: Basics](https://github.com/NVIDIA/warp/blob/main/notebooks/pytorch_01_basics.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/pytorch_01_basics.ipynb) |
172
+ | [Warp PyTorch Tutorial: Custom Operators](https://github.com/NVIDIA/warp/blob/main/notebooks/pytorch_02_custom_operators.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/pytorch_02_custom_operators.ipynb) |
173
+
174
+ ## Running Examples
175
+
176
+ The [warp/examples](https://github.com/NVIDIA/warp/tree/main/warp/examples) directory contains a number of scripts categorized under subdirectories
177
+ that show how to implement various simulation methods using the Warp API.
178
+ Most examples will generate USD files containing time-sampled animations in the current working directory.
179
+ Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using:
180
+
181
+ ```text
182
+ pip install warp-lang[extras]
183
+ ```
184
+
185
+ These dependencies can also be manually installed using:
186
+
187
+ ```text
188
+ pip install usd-core matplotlib pyglet
189
+ ```
190
+
191
+ Examples can be run from the command-line as follows:
192
+
193
+ ```text
194
+ python -m warp.examples.<example_subdir>.<example>
195
+ ```
196
+
197
+ To browse the example source code, you can open the directory where the files are located like this:
198
+
199
+ ```text
200
+ python -m warp.examples.browse
201
+ ```
202
+
203
+ Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
204
+
205
+ USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
206
+
207
+ Built-in unit tests can be run from the command-line as follows:
208
+
209
+ ```text
210
+ python -m warp.tests
211
+ ```
212
+
213
+ ### warp/examples/core
214
+
215
+ <table>
216
+ <tbody>
217
+ <tr>
218
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_dem.png"></a></td>
219
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_fluid.png"></a></td>
220
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_graph_capture.png"></a></td>
221
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_marching_cubes.png"></a></td>
222
+ </tr>
223
+ <tr>
224
+ <td align="center">dem</td>
225
+ <td align="center">fluid</td>
226
+ <td align="center">graph capture</td>
227
+ <td align="center">marching cubes</td>
228
+ </tr>
229
+ <tr>
230
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_mesh.png"></a></td>
231
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_nvdb.png"></a></td>
232
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_raycast.png"></a></td>
233
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_raymarch.png"></a></td>
234
+ </tr>
235
+ <tr>
236
+ <td align="center">mesh</td>
237
+ <td align="center">nvdb</td>
238
+ <td align="center">raycast</td>
239
+ <td align="center">raymarch</td>
240
+ </tr>
241
+ <tr>
242
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sample_mesh.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_sample_mesh.png"></a></td>
243
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_sph.png"></a></td>
244
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_torch.png"></a></td>
245
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_wave.png"></a></td>
246
+ </tr>
247
+ <tr>
248
+ <td align="center">sample mesh</td>
249
+ <td align="center">sph</td>
250
+ <td align="center">torch</td>
251
+ <td align="center">wave</td>
252
+ </tr>
253
+ </tbody>
254
+ </table>
255
+
256
+ ### warp/examples/fem
257
+
258
+ <table>
259
+ <tbody>
260
+ <tr>
261
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
262
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
263
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_apic_fluid.png"></a></td>
264
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_streamlines.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_streamlines.png"></a></td>
265
+ </tr>
266
+ <tr>
267
+ <td align="center">diffusion 3d</td>
268
+ <td align="center">mixed elasticity</td>
269
+ <td align="center">apic fluid</td>
270
+ <td align="center">streamlines</td>
271
+ </tr>
272
+ <tr>
273
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_distortion_energy.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_distortion_energy.png"></a></td>
274
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_navier_stokes.png"></a></td>
275
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_burgers.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_burgers.png"></a></td>
276
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_magnetostatics.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_magnetostatics.png"></a></td>
277
+ </tr>
278
+ <tr>
279
+ <td align="center">distortion energy</td>
280
+ <td align="center">navier stokes</td>
281
+ <td align="center">burgers</td>
282
+ <td align="center">magnetostatics</td>
283
+ </tr>
284
+ <tr>
285
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_adaptive_grid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_adaptive_grid.png"></a></td>
286
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_nonconforming_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_nonconforming_contact.png"></a></td>
287
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_darcy_ls_optimization.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_darcy_ls_optimization.png"></a></td>
288
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_elastic_shape_optimization.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_elastic_shape_optimization.png"></a></td>
289
+ </tr>
290
+ <tr>
291
+ <td align="center">adaptive grid</td>
292
+ <td align="center">nonconforming contact</td>
293
+ <td align="center">darcy level-set optimization</td>
294
+ <td align="center">elastic shape optimization</td>
295
+ </tr>
296
+ </tbody>
297
+ </table>
298
+
299
+ ### warp/examples/optim
300
+
301
+ <table>
302
+ <tbody>
303
+ <tr>
304
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_bounce.png"></a></td>
305
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_cloth_throw.png"></a></td>
306
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_diffray.png"></a></td>
307
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_drone.png"></a></td>
308
+ </tr>
309
+ <tr>
310
+ <td align="center">bounce</td>
311
+ <td align="center">cloth throw</td>
312
+ <td align="center">diffray</td>
313
+ <td align="center">drone</td>
314
+ </tr>
315
+ <tr>
316
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_inverse_kinematics.png"></a></td>
317
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_spring_cage.png"></a></td>
318
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_trajectory.png"></a></td>
319
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_softbody_properties.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_softbody_properties.png"></a></td>
320
+ </tr>
321
+ <tr>
322
+ <td align="center">inverse kinematics</td>
323
+ <td align="center">spring cage</td>
324
+ <td align="center">trajectory</td>
325
+ <td align="center">soft body properties</td>
326
+ </tr>
327
+ <tr>
328
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_fluid_checkpoint.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_fluid_checkpoint.png"></a></td>
329
+ <td></td>
330
+ <td></td>
331
+ <td></td>
332
+ </tr>
333
+ <tr>
334
+ <td align="center">fluid checkpoint</td>
335
+ <td align="center"></td>
336
+ <td align="center"></td>
337
+ <td align="center"></td>
338
+ </tr>
339
+ </tbody>
340
+ </table>
341
+
342
+ ### warp/examples/sim
343
+
344
+ <table>
345
+ <tbody>
346
+ <tr>
347
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_cartpole.png"></a></td>
348
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_cloth.png"></a></td>
349
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_granular.png"></a></td>
350
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td>
351
+ </tr>
352
+ <tr>
353
+ <td align="center">cartpole</td>
354
+ <td align="center">cloth</td>
355
+ <td align="center">granular</td>
356
+ <td align="center">granular collision sdf</td>
357
+ </tr>
358
+ <tr>
359
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_jacobian_ik.png"></a></td>
360
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_quadruped.png"></a></td>
361
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_chain.png"></a></td>
362
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_contact.png"></a></td>
363
+ </tr>
364
+ <tr>
365
+ <td align="center">jacobian ik</td>
366
+ <td align="center">quadruped</td>
367
+ <td align="center">rigid chain</td>
368
+ <td align="center">rigid contact</td>
369
+ </tr>
370
+ <tr>
371
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_force.png"></a></td>
372
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td>
373
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td>
374
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_soft_body.png"></a></td>
375
+ </tr>
376
+ <tr>
377
+ <td align="center">rigid force</td>
378
+ <td align="center">rigid gyroscopic</td>
379
+ <td align="center">rigid soft contact</td>
380
+ <td align="center">soft body</td>
381
+ </tr>
382
+ <tr>
383
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth_self_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_example_cloth_self_contact.png"></a></td>
384
+ <td></td>
385
+ <td></td>
386
+ <td></td>
387
+ </tr>
388
+ <tr>
389
+ <td align="center">cloth self contact</td>
390
+ <td align="center"></td>
391
+ <td align="center"></td>
392
+ <td align="center"></td>
393
+ </tr>
394
+ </tbody>
395
+ </table>
396
+
397
+ ### warp/examples/tile
398
+
399
+ <table>
400
+ <tbody>
401
+ <tr>
402
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_mlp.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_mlp.png"></a></td>
403
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_nbody.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_nbody.png"></a></td>
404
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_walker.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_walker.png"></a></td>
405
+ </tr>
406
+ <tr>
407
+ <td align="center">mlp</td>
408
+ <td align="center">nbody</td>
409
+ <td align="center">walker</td>
410
+ </tr>
411
+ </tbody>
412
+ </table>
413
+
414
+ ## Building
415
+
416
+ For developers who want to build the library themselves, the following tools are required:
417
+
418
+ * Microsoft Visual Studio 2019 upwards (Windows)
419
+ * GCC 9.4 upwards (Linux)
420
+ * CUDA Toolkit 12.0 or higher
421
+ * [Git LFS](https://git-lfs.github.com/) installed
422
+
423
+ After cloning the repository, users should run:
424
+
425
+ ```text
426
+ python build_lib.py
427
+ ```
428
+
429
+ Upon success, the script will output platform-specific binary files in `warp/bin/`.
430
+ The build script will look for the CUDA Toolkit in its default installation path.
431
+ This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively,
432
+ the path to the CUDA Toolkit can be passed to the build command as
433
+ `--cuda_path="..."`. After building, the Warp package should be installed using:
434
+
435
+ ```text
436
+ pip install -e .
437
+ ```
438
+
439
+ This ensures that subsequent modifications to the library will be reflected in the Python package.
440
+
441
+ ## Learn More
442
+
443
+ Please see the following resources for additional background on Warp:
444
+
445
+ * [Product Page](https://developer.nvidia.com/warp-python)
446
+ * [SIGGRAPH 2024 Course Slides](https://dl.acm.org/doi/10.1145/3664475.3664543)
447
+ * [GTC 2024 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtc24-s63345/)
448
+ * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
449
+ * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
450
+ * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
451
+
452
+ The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
453
+
454
+ * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
455
+ * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
456
+ * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
457
+
458
+ ## Frequently Asked Questions
459
+
460
+ See the [FAQ](https://nvidia.github.io/warp/faq.html) in the Warp documentation.
461
+
462
+ ## Support
463
+
464
+ Problems, questions, and feature requests can be opened on [GitHub Issues](https://github.com/NVIDIA/warp/issues).
465
+
466
+ For inquiries not suited for GitHub Issues, please email warp-python@nvidia.com.
467
+
468
+ ## Versioning
469
+
470
+ Versions take the format X.Y.Z, similar to [Python itself](https://devguide.python.org/developer-workflow/development-cycle/#devcycle):
471
+
472
+ * Increments in X are reserved for major reworks of the project causing disruptive incompatibility (or reaching the 1.0 milestone).
473
+ * Increments in Y are for regular releases with a new set of features.
474
+ * Increments in Z are for bug fixes. In principle, there are no new features. Can be omitted if 0 or not relevant.
475
+
476
+ This is similar to [Semantic Versioning](https://semver.org/) but is less strict regarding backward compatibility.
477
+ Like with Python, some breaking changes can be present between minor versions if well-documented and gradually introduced.
478
+
479
+ Note that prior to 0.11.0, this schema was not strictly adhered to.
480
+
481
+ ## License
482
+
483
+ Warp is provided under the Apache License, Version 2.0.
484
+ Please see [LICENSE.md](https://github.com/NVIDIA/warp/blob/main/LICENSE.md) for full license text.
485
+
486
+ ## Contributing
487
+
488
+ Contributions and pull requests from the community are welcome.
489
+ Please see the [Contribution Guide](https://nvidia.github.io/warp/modules/contribution_guide.html) for more
490
+ information on contributing to the development of Warp.
491
+
492
+ ## Publications & Citation
493
+
494
+ ### Research Using Warp
495
+
496
+ Our [PUBLICATIONS.md](https://github.com/NVIDIA/warp/blob/main/PUBLICATIONS.md) file lists academic and research
497
+ publications that leverage the capabilities of Warp.
498
+ We encourage you to add your own published work using Warp to this list.
499
+
500
+ ### Citing Warp
501
+
502
+ To cite Warp itself in your own publications, please use the following BibTeX entry:
503
+
504
+ ```bibtex
505
+ @misc{warp2022,
506
+ title = {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
507
+ author = {Miles Macklin},
508
+ month = {March},
509
+ year = {2022},
510
+ note = {NVIDIA GPU Technology Conference (GTC)},
511
+ howpublished = {\url{https://github.com/nvidia/warp}}
512
+ }
513
+ ```
@@ -0,0 +1,10 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2
3
+
4
+ [build-system]
5
+ requires = ["wheel-stub"]
6
+ build-backend = "wheel_stub.buildapi"
7
+
8
+ [tool.wheel_stub]
9
+ index_url = "https://pypi.nvidia.com/"
10
+ include_cuda_debuginfo = true
@@ -1,36 +0,0 @@
1
- # NVIDIA Source Code License for Warp
2
-
3
- ## 1. Definitions
4
-
5
- “Licensor” means any person or entity that distributes its Work.
6
- “Software” means the original work of authorship made available under this License.
7
- “Work” means the Software and any additions to or derivative works of the Software that are made available under this License.
8
- The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the meaning as provided under U.S. copyright law; provided, however, that for the purposes of this License, derivative works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work.
9
- Works, including the Software, are “made available” under this License by including in or with the Work either (a) a copyright notice referencing the applicability of this License to the Work, or (b) a copy of this License.
10
-
11
- ## 2. License Grant
12
-
13
- 2.1 Copyright Grant. Subject to the terms and conditions of this License, each Licensor grants to you a perpetual, worldwide, non-exclusive, royalty-free, copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense and distribute its Work and any resulting derivative works in any form.
14
-
15
- ## 3. Limitations
16
-
17
- 3.1 Redistribution. You may reproduce or distribute the Work only if (a) you do so under this License, (b) you include a complete copy of this License with your distribution, and (c) you retain without modification any copyright, patent, trademark, or attribution notices that are present in the Work.
18
-
19
- 3.2 Derivative Works. You may specify that additional or different terms apply to the use, reproduction, and distribution of your derivative works of the Work (“Your Terms”) only if (a) Your Terms provide that the use limitation in Section 3.3 applies to your derivative works, and (b) you identify the specific derivative works that are subject to Your Terms. Notwithstanding Your Terms, this License (including the redistribution requirements in Section 3.1) will continue to apply to the Work itself.
20
-
21
- 3.3 Use Limitation. The Work and any derivative works thereof only may be used or intended for use non-commercially. Notwithstanding the foregoing, NVIDIA and its affiliates may use the Work and any derivative works commercially. As used herein, “non-commercially” means for research or evaluation purposes only.
22
-
23
- 3.4 Patent Claims. If you bring or threaten to bring a patent claim against any Licensor (including any claim, cross-claim or counterclaim in a lawsuit) to enforce any patents that you allege are infringed by any Work, then your rights under this License from such Licensor (including the grant in Section 2.1) will terminate immediately.
24
-
25
- 3.5 Trademarks. This License does not grant any rights to use any Licensor’s or its affiliates’ names, logos, or trademarks, except as necessary to reproduce the notices described in this License.
26
-
27
- 3.6 Termination. If you violate any term of this License, then your rights under this License (including the grant in Section 2.1) will terminate immediately.
28
-
29
- ## 4. Disclaimer of Warranty.
30
-
31
- THE WORK IS PROVIDED “AS IS” WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
32
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER THIS LICENSE.
33
-
34
- ## 5. Limitation of Liability.
35
-
36
- EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER COMM ERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
warp-lang-0.8.0/PKG-INFO DELETED
@@ -1,19 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: warp-lang
3
- Version: 0.8.0
4
- Summary: A Python framework for high-performance simulation and graphics programming
5
- Home-page: https://github.com/NVIDIA/warp
6
- Author: NVIDIA
7
- Author-email: mmacklin@nvidia.com
8
- License: NVSCL
9
- Project-URL: Documentation, https://nvidia.github.io/warp
10
- Classifier: Programming Language :: Python :: 3.7
11
- Classifier: Programming Language :: Python :: 3.8
12
- Classifier: Programming Language :: Python :: 3.9
13
- Classifier: Programming Language :: Python :: 3.10
14
- Classifier: Programming Language :: Python :: 3.11
15
- Classifier: License :: Other/Proprietary License
16
- Classifier: Operating System :: OS Independent
17
- Requires-Python: >=3.7
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE.md