voly 0.0.83__tar.gz → 0.0.85__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: voly
3
- Version: 0.0.83
3
+ Version: 0.0.85
4
4
  Summary: Options & volatility research package
5
5
  Author-email: Manu de Cara <manu.de.cara@gmail.com>
6
6
  License: MIT
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "voly"
7
- version = "0.0.83"
7
+ version = "0.0.85"
8
8
  description = "Options & volatility research package"
9
9
  readme = "README.md"
10
10
  authors = [
@@ -60,7 +60,7 @@ line_length = 100
60
60
  multi_line_output = 3
61
61
 
62
62
  [tool.mypy]
63
- python_version = "0.0.83"
63
+ python_version = "0.0.85"
64
64
  warn_return_any = true
65
65
  warn_unused_configs = true
66
66
  disallow_untyped_defs = true
@@ -348,7 +348,7 @@ class VolyClient:
348
348
  return fit_results
349
349
 
350
350
  @staticmethod
351
- def get_iv_surface(fit_results: pd.DataFrame,
351
+ def get_iv_surface(model_results: pd.DataFrame,
352
352
  log_moneyness_params: Tuple[float, float, int] = (-2, 2, 500),
353
353
  return_domain: str = 'log_moneyness',
354
354
  ) -> Dict[str, Any]:
@@ -356,7 +356,7 @@ class VolyClient:
356
356
  Generate implied volatility surface using optimized SVI parameters.
357
357
 
358
358
  Parameters:
359
- - fit_results: DataFrame from fit_model()
359
+ - model_results: DataFrame from fit_model() or interpolate_model()
360
360
  - log_moneyness_params: Tuple of (min, max, num_points) for the moneyness grid
361
361
  - return_domain: str Domain for x-axis values ('log_moneyness', 'moneyness', 'strikes', 'delta')
362
362
 
@@ -365,7 +365,7 @@ class VolyClient:
365
365
  """
366
366
  # Generate the surface
367
367
  iv_surface, x_surface = get_iv_surface(
368
- fit_results=fit_results,
368
+ model_results=model_results,
369
369
  log_moneyness_params=log_moneyness_params,
370
370
  return_domain=return_domain
371
371
  )
@@ -223,13 +223,13 @@ def get_iv_surface(model_results: pd.DataFrame,
223
223
  for i in model_results.index:
224
224
  # Calculate SVI total implied variance and convert to IV
225
225
  params = [
226
- fit_results.loc[i, 'a'],
227
- fit_results.loc[i, 'b'],
228
- fit_results.loc[i, 'sigma'],
229
- fit_results.loc[i, 'rho'],
230
- fit_results.loc[i, 'm']
226
+ model_results.loc[i, 'a'],
227
+ model_results.loc[i, 'b'],
228
+ model_results.loc[i, 'sigma'],
229
+ model_results.loc[i, 'rho'],
230
+ model_results.loc[i, 'm']
231
231
  ]
232
- ytm = fit_results.loc[i, 'ytm']
232
+ ytm = model_results.loc[i, 'ytm']
233
233
 
234
234
  # Calculate implied volatility
235
235
  w_svi = np.array([SVIModel.svi(x, *params) for x in log_moneyness_array])
@@ -240,8 +240,8 @@ def get_iv_surface(model_results: pd.DataFrame,
240
240
  x_surface[maturity] = get_x_domain(
241
241
  log_moneyness_params=log_moneyness_params,
242
242
  return_domain=return_domain,
243
- s=fit_results.loc[i, 's'],
244
- r=fit_results.loc[i, 'r'],
243
+ s=model_results.loc[i, 's'],
244
+ r=model_results.loc[i, 'r'],
245
245
  iv_array=iv_array,
246
246
  ytm=ytm
247
247
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: voly
3
- Version: 0.0.83
3
+ Version: 0.0.85
4
4
  Summary: Options & volatility research package
5
5
  Author-email: Manu de Cara <manu.de.cara@gmail.com>
6
6
  License: MIT
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes