vision-agent 0.2.99__tar.gz → 0.2.101__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (33) hide show
  1. {vision_agent-0.2.99 → vision_agent-0.2.101}/PKG-INFO +1 -1
  2. {vision_agent-0.2.99 → vision_agent-0.2.101}/pyproject.toml +1 -1
  3. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/tools/tool_utils.py +7 -4
  4. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/tools/tools.py +51 -57
  5. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/type_defs.py +1 -1
  6. {vision_agent-0.2.99 → vision_agent-0.2.101}/LICENSE +0 -0
  7. {vision_agent-0.2.99 → vision_agent-0.2.101}/README.md +0 -0
  8. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/__init__.py +0 -0
  9. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/__init__.py +0 -0
  10. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/agent.py +0 -0
  11. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/agent_utils.py +0 -0
  12. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/vision_agent.py +0 -0
  13. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/vision_agent_coder.py +0 -0
  14. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/vision_agent_coder_prompts.py +0 -0
  15. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/agent/vision_agent_prompts.py +0 -0
  16. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/clients/__init__.py +0 -0
  17. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/clients/http.py +0 -0
  18. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/clients/landing_public_api.py +0 -0
  19. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/fonts/__init__.py +0 -0
  20. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
  21. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/lmm/__init__.py +0 -0
  22. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/lmm/lmm.py +0 -0
  23. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/lmm/types.py +0 -0
  24. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/tools/__init__.py +0 -0
  25. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/tools/meta_tools.py +0 -0
  26. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/tools/meta_tools_types.py +0 -0
  27. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/tools/prompts.py +0 -0
  28. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/__init__.py +0 -0
  29. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/exceptions.py +0 -0
  30. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/execute.py +0 -0
  31. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/image_utils.py +0 -0
  32. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/sim.py +0 -0
  33. {vision_agent-0.2.99 → vision_agent-0.2.101}/vision_agent/utils/video.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vision-agent
3
- Version: 0.2.99
3
+ Version: 0.2.101
4
4
  Summary: Toolset for Vision Agent
5
5
  Author: Landing AI
6
6
  Author-email: dev@landing.ai
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "vision-agent"
7
- version = "0.2.99"
7
+ version = "0.2.101"
8
8
  description = "Toolset for Vision Agent"
9
9
  authors = ["Landing AI <dev@landing.ai>"]
10
10
  readme = "README.md"
@@ -16,7 +16,8 @@ from vision_agent.utils.type_defs import LandingaiAPIKey
16
16
 
17
17
  _LOGGER = logging.getLogger(__name__)
18
18
  _LND_API_KEY = LandingaiAPIKey().api_key
19
- _LND_API_URL = "https://api.landing.ai/v1/agent"
19
+ _LND_API_URL = "https://api.landing.ai/v1/agent/model"
20
+ _LND_API_URL_v2 = "https://api.landing.ai/v1/tools"
20
21
 
21
22
 
22
23
  class ToolCallTrace(BaseModel):
@@ -27,13 +28,13 @@ class ToolCallTrace(BaseModel):
27
28
 
28
29
 
29
30
  def send_inference_request(
30
- payload: Dict[str, Any], endpoint_name: str
31
+ payload: Dict[str, Any], endpoint_name: str, v2: bool = False
31
32
  ) -> Dict[str, Any]:
32
33
  try:
33
34
  if runtime_tag := os.environ.get("RUNTIME_TAG", ""):
34
35
  payload["runtime_tag"] = runtime_tag
35
36
 
36
- url = f"{_LND_API_URL}/model/{endpoint_name}"
37
+ url = f"{_LND_API_URL_v2 if v2 else _LND_API_URL}/{endpoint_name}"
37
38
  if "TOOL_ENDPOINT_URL" in os.environ:
38
39
  url = os.environ["TOOL_ENDPOINT_URL"]
39
40
 
@@ -61,7 +62,9 @@ def send_inference_request(
61
62
  traceback_raw=[],
62
63
  )
63
64
  _LOGGER.error(f"Request failed: {res.status_code} {res.text}")
64
- raise RemoteToolCallFailed(payload["tool"], res.status_code, res.text)
65
+ raise RemoteToolCallFailed(
66
+ payload["function_name"], res.status_code, res.text
67
+ )
65
68
 
66
69
  resp = res.json()
67
70
  tool_call_trace.response = resp
@@ -126,7 +126,6 @@ def owl_v2(
126
126
  prompt: str,
127
127
  image: np.ndarray,
128
128
  box_threshold: float = 0.10,
129
- iou_threshold: float = 0.10,
130
129
  ) -> List[Dict[str, Any]]:
131
130
  """'owl_v2' is a tool that can detect and count multiple objects given a text
132
131
  prompt such as category names or referring expressions. The categories in text prompt
@@ -138,8 +137,6 @@ def owl_v2(
138
137
  image (np.ndarray): The image to ground the prompt to.
139
138
  box_threshold (float, optional): The threshold for the box detection. Defaults
140
139
  to 0.10.
141
- iou_threshold (float, optional): The threshold for the Intersection over Union
142
- (IoU). Defaults to 0.10.
143
140
 
144
141
  Returns:
145
142
  List[Dict[str, Any]]: A list of dictionaries containing the score, label, and
@@ -159,22 +156,22 @@ def owl_v2(
159
156
  image_size = image.shape[:2]
160
157
  image_b64 = convert_to_b64(image)
161
158
  request_data = {
162
- "prompt": prompt,
159
+ "prompts": prompt.split("."),
163
160
  "image": image_b64,
164
- "tool": "open_vocab_detection",
165
- "kwargs": {"box_threshold": box_threshold, "iou_threshold": iou_threshold},
161
+ "confidence": box_threshold,
166
162
  "function_name": "owl_v2",
167
163
  }
168
- data: Dict[str, Any] = send_inference_request(request_data, "tools")
164
+ data: Dict[str, Any] = send_inference_request(request_data, "owlv2", v2=True)
169
165
  return_data = []
170
- for i in range(len(data["bboxes"])):
171
- return_data.append(
172
- {
173
- "score": round(data["scores"][i], 2),
174
- "label": data["labels"][i].strip(),
175
- "bbox": normalize_bbox(data["bboxes"][i], image_size),
176
- }
177
- )
166
+ if data is not None:
167
+ for elt in data:
168
+ return_data.append(
169
+ {
170
+ "bbox": normalize_bbox(elt["bbox"], image_size), # type: ignore
171
+ "label": elt["label"], # type: ignore
172
+ "score": round(elt["score"], 2), # type: ignore
173
+ }
174
+ )
178
175
  return return_data
179
176
 
180
177
 
@@ -367,11 +364,10 @@ def loca_zero_shot_counting(image: np.ndarray) -> Dict[str, Any]:
367
364
  image_b64 = convert_to_b64(image)
368
365
  data = {
369
366
  "image": image_b64,
370
- "tool": "zero_shot_counting",
371
367
  "function_name": "loca_zero_shot_counting",
372
368
  }
373
- resp_data = send_inference_request(data, "tools")
374
- resp_data["heat_map"] = np.array(b64_to_pil(resp_data["heat_map"][0]))
369
+ resp_data = send_inference_request(data, "loca", v2=True)
370
+ resp_data["heat_map"] = np.array(resp_data["heat_map"][0]).astype(np.uint8)
375
371
  return resp_data
376
372
 
377
373
 
@@ -397,17 +393,15 @@ def loca_visual_prompt_counting(
397
393
 
398
394
  image_size = get_image_size(image)
399
395
  bbox = visual_prompt["bbox"]
400
- bbox_str = ", ".join(map(str, denormalize_bbox(bbox, image_size)))
401
396
  image_b64 = convert_to_b64(image)
402
397
 
403
398
  data = {
404
399
  "image": image_b64,
405
- "prompt": bbox_str,
406
- "tool": "few_shot_counting",
400
+ "bbox": list(map(int, denormalize_bbox(bbox, image_size))),
407
401
  "function_name": "loca_visual_prompt_counting",
408
402
  }
409
- resp_data = send_inference_request(data, "tools")
410
- resp_data["heat_map"] = np.array(b64_to_pil(resp_data["heat_map"][0]))
403
+ resp_data = send_inference_request(data, "loca", v2=True)
404
+ resp_data["heat_map"] = np.array(resp_data["heat_map"][0]).astype(np.uint8)
411
405
  return resp_data
412
406
 
413
407
 
@@ -432,13 +426,12 @@ def florencev2_roberta_vqa(prompt: str, image: np.ndarray) -> str:
432
426
  image_b64 = convert_to_b64(image)
433
427
  data = {
434
428
  "image": image_b64,
435
- "prompt": prompt,
436
- "tool": "image_question_answering_with_context",
429
+ "question": prompt,
437
430
  "function_name": "florencev2_roberta_vqa",
438
431
  }
439
432
 
440
- answer = send_inference_request(data, "tools")
441
- return answer["text"][0] # type: ignore
433
+ answer = send_inference_request(data, "florence2-qa", v2=True)
434
+ return answer # type: ignore
442
435
 
443
436
 
444
437
  def git_vqa_v2(prompt: str, image: np.ndarray) -> str:
@@ -544,17 +537,16 @@ def vit_nsfw_classification(image: np.ndarray) -> Dict[str, Any]:
544
537
  Example
545
538
  -------
546
539
  >>> vit_nsfw_classification(image)
547
- {"labels": "normal", "scores": 0.68},
540
+ {"label": "normal", "scores": 0.68},
548
541
  """
549
542
 
550
543
  image_b64 = convert_to_b64(image)
551
544
  data = {
552
545
  "image": image_b64,
553
- "tool": "nsfw_image_classification",
554
546
  "function_name": "vit_nsfw_classification",
555
547
  }
556
- resp_data = send_inference_request(data, "tools")
557
- resp_data["scores"] = round(resp_data["scores"], 4)
548
+ resp_data = send_inference_request(data, "nsfw-classification", v2=True)
549
+ resp_data["score"] = round(resp_data["score"], 4)
558
550
  return resp_data
559
551
 
560
552
 
@@ -603,21 +595,21 @@ def florencev2_image_caption(image: np.ndarray, detail_caption: bool = True) ->
603
595
  'This image contains a cat sitting on a table with a bowl of milk.'
604
596
  """
605
597
  image_b64 = convert_to_b64(image)
598
+ task = "<MORE_DETAILED_CAPTION>" if detail_caption else "<DETAILED_CAPTION>"
606
599
  data = {
607
600
  "image": image_b64,
608
- "tool": "florence2_image_captioning",
609
- "detail_caption": detail_caption,
601
+ "task": task,
610
602
  "function_name": "florencev2_image_caption",
611
603
  }
612
604
 
613
- answer = send_inference_request(data, "tools")
614
- return answer["text"][0] # type: ignore
605
+ answer = send_inference_request(data, "florence2", v2=True)
606
+ return answer[task] # type: ignore
615
607
 
616
608
 
617
- def florencev2_object_detection(image: np.ndarray) -> List[Dict[str, Any]]:
618
- """'florencev2_object_detection' is a tool that can detect common objects in an
619
- image without any text prompt or thresholding. It returns a list of detected objects
620
- as labels and their location as bounding boxes.
609
+ def florencev2_object_detection(image: np.ndarray, prompt: str) -> List[Dict[str, Any]]:
610
+ """'florencev2_object_detection' is a tool that can detect objects given a text
611
+ prompt such as a phrase or class names separated by commas. It returns a list of
612
+ detected objects as labels and their location as bounding boxes with score of 1.0.
621
613
 
622
614
  Parameters:
623
615
  image (np.ndarray): The image to used to detect objects
@@ -631,29 +623,30 @@ def florencev2_object_detection(image: np.ndarray) -> List[Dict[str, Any]]:
631
623
 
632
624
  Example
633
625
  -------
634
- >>> florencev2_object_detection(image)
626
+ >>> florencev2_object_detection(image, 'person looking at a coyote')
635
627
  [
636
- {'score': 1.0, 'label': 'window', 'bbox': [0.1, 0.11, 0.35, 0.4]},
637
- {'score': 1.0, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
638
- {'score': 1.0, 'label': 'person', 'bbox': [0.34, 0.21, 0.85, 0.5},
628
+ {'score': 1.0, 'label': 'person', 'bbox': [0.1, 0.11, 0.35, 0.4]},
629
+ {'score': 1.0, 'label': 'coyote', 'bbox': [0.34, 0.21, 0.85, 0.5},
639
630
  ]
640
631
  """
641
632
  image_size = image.shape[:2]
642
633
  image_b64 = convert_to_b64(image)
643
634
  data = {
644
635
  "image": image_b64,
645
- "tool": "object_detection",
636
+ "task": "<CAPTION_TO_PHRASE_GROUNDING>",
637
+ "prompt": prompt,
646
638
  "function_name": "florencev2_object_detection",
647
639
  }
648
640
 
649
- answer = send_inference_request(data, "tools")
641
+ detections = send_inference_request(data, "florence2", v2=True)
642
+ detections = detections["<CAPTION_TO_PHRASE_GROUNDING>"]
650
643
  return_data = []
651
- for i in range(len(answer["bboxes"])):
644
+ for i in range(len(detections["bboxes"])):
652
645
  return_data.append(
653
646
  {
654
- "score": round(answer["scores"][i], 2),
655
- "label": answer["labels"][i],
656
- "bbox": normalize_bbox(answer["bboxes"][i], image_size),
647
+ "score": 1.0,
648
+ "label": detections["labels"][i],
649
+ "bbox": normalize_bbox(detections["bboxes"][i], image_size),
657
650
  }
658
651
  )
659
652
  return return_data
@@ -742,13 +735,16 @@ def depth_anything_v2(image: np.ndarray) -> np.ndarray:
742
735
  image_b64 = convert_to_b64(image)
743
736
  data = {
744
737
  "image": image_b64,
745
- "tool": "generate_depth",
746
738
  "function_name": "depth_anything_v2",
747
739
  }
748
740
 
749
- answer = send_inference_request(data, "tools")
750
- return_data = np.array(b64_to_pil(answer["masks"][0]).convert("L"))
751
- return return_data
741
+ depth_map = send_inference_request(data, "depth-anything-v2", v2=True)
742
+ depth_map_np = np.array(depth_map["map"])
743
+ depth_map_np = (depth_map_np - depth_map_np.min()) / (
744
+ depth_map_np.max() - depth_map_np.min()
745
+ )
746
+ depth_map_np = (255 * depth_map_np).astype(np.uint8)
747
+ return depth_map_np
752
748
 
753
749
 
754
750
  def generate_soft_edge_image(image: np.ndarray) -> np.ndarray:
@@ -839,12 +835,11 @@ def generate_pose_image(image: np.ndarray) -> np.ndarray:
839
835
  image_b64 = convert_to_b64(image)
840
836
  data = {
841
837
  "image": image_b64,
842
- "tool": "generate_pose",
843
838
  "function_name": "generate_pose_image",
844
839
  }
845
840
 
846
- answer = send_inference_request(data, "tools")
847
- return_data = np.array(b64_to_pil(answer["masks"][0]).convert("RGB"))
841
+ pos_img = send_inference_request(data, "pose-detector", v2=True)
842
+ return_data = np.array(b64_to_pil(pos_img["data"]).convert("RGB"))
848
843
  return return_data
849
844
 
850
845
 
@@ -1253,7 +1248,6 @@ TOOLS = [
1253
1248
  loca_visual_prompt_counting,
1254
1249
  florencev2_roberta_vqa,
1255
1250
  florencev2_image_caption,
1256
- florencev2_object_detection,
1257
1251
  detr_segmentation,
1258
1252
  depth_anything_v2,
1259
1253
  generate_soft_edge_image,
@@ -14,7 +14,7 @@ class LandingaiAPIKey(BaseSettings):
14
14
  """
15
15
 
16
16
  api_key: str = Field(
17
- default="land_sk_fnmSzD0ksknSfvhyD8UGu9R4ss3bKfLL1Im5gb6tDQTy2z1Oy5",
17
+ default="land_sk_zKvyPcPV2bVoq7q87KwduoerAxuQpx33DnqP8M1BliOCiZOSoI",
18
18
  alias="LANDINGAI_API_KEY",
19
19
  description="The API key of LandingAI.",
20
20
  )
File without changes
File without changes