vision-agent 0.2.99__tar.gz → 0.2.100__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {vision_agent-0.2.99 → vision_agent-0.2.100}/PKG-INFO +1 -1
- {vision_agent-0.2.99 → vision_agent-0.2.100}/pyproject.toml +1 -1
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/tools/tool_utils.py +4 -3
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/tools/tools.py +51 -57
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/type_defs.py +1 -1
- {vision_agent-0.2.99 → vision_agent-0.2.100}/LICENSE +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/README.md +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/agent.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/agent_utils.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/vision_agent.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/vision_agent_coder.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/vision_agent_coder_prompts.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/vision_agent_prompts.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/clients/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/clients/http.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/clients/landing_public_api.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/fonts/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/lmm/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/lmm/lmm.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/lmm/types.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/tools/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/tools/meta_tools.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/tools/meta_tools_types.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/tools/prompts.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/__init__.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/exceptions.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/execute.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/image_utils.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/sim.py +0 -0
- {vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/utils/video.py +0 -0
@@ -16,7 +16,8 @@ from vision_agent.utils.type_defs import LandingaiAPIKey
|
|
16
16
|
|
17
17
|
_LOGGER = logging.getLogger(__name__)
|
18
18
|
_LND_API_KEY = LandingaiAPIKey().api_key
|
19
|
-
_LND_API_URL = "https://api.landing.ai/v1/agent"
|
19
|
+
_LND_API_URL = "https://api.landing.ai/v1/agent/model"
|
20
|
+
_LND_API_URL_v2 = "https://api.landing.ai/v1/tools"
|
20
21
|
|
21
22
|
|
22
23
|
class ToolCallTrace(BaseModel):
|
@@ -27,13 +28,13 @@ class ToolCallTrace(BaseModel):
|
|
27
28
|
|
28
29
|
|
29
30
|
def send_inference_request(
|
30
|
-
payload: Dict[str, Any], endpoint_name: str
|
31
|
+
payload: Dict[str, Any], endpoint_name: str, v2: bool = False
|
31
32
|
) -> Dict[str, Any]:
|
32
33
|
try:
|
33
34
|
if runtime_tag := os.environ.get("RUNTIME_TAG", ""):
|
34
35
|
payload["runtime_tag"] = runtime_tag
|
35
36
|
|
36
|
-
url = f"{_LND_API_URL}/
|
37
|
+
url = f"{_LND_API_URL_v2 if v2 else _LND_API_URL}/{endpoint_name}"
|
37
38
|
if "TOOL_ENDPOINT_URL" in os.environ:
|
38
39
|
url = os.environ["TOOL_ENDPOINT_URL"]
|
39
40
|
|
@@ -126,7 +126,6 @@ def owl_v2(
|
|
126
126
|
prompt: str,
|
127
127
|
image: np.ndarray,
|
128
128
|
box_threshold: float = 0.10,
|
129
|
-
iou_threshold: float = 0.10,
|
130
129
|
) -> List[Dict[str, Any]]:
|
131
130
|
"""'owl_v2' is a tool that can detect and count multiple objects given a text
|
132
131
|
prompt such as category names or referring expressions. The categories in text prompt
|
@@ -138,8 +137,6 @@ def owl_v2(
|
|
138
137
|
image (np.ndarray): The image to ground the prompt to.
|
139
138
|
box_threshold (float, optional): The threshold for the box detection. Defaults
|
140
139
|
to 0.10.
|
141
|
-
iou_threshold (float, optional): The threshold for the Intersection over Union
|
142
|
-
(IoU). Defaults to 0.10.
|
143
140
|
|
144
141
|
Returns:
|
145
142
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and
|
@@ -159,22 +156,22 @@ def owl_v2(
|
|
159
156
|
image_size = image.shape[:2]
|
160
157
|
image_b64 = convert_to_b64(image)
|
161
158
|
request_data = {
|
162
|
-
"
|
159
|
+
"prompts": prompt.split("."),
|
163
160
|
"image": image_b64,
|
164
|
-
"
|
165
|
-
"kwargs": {"box_threshold": box_threshold, "iou_threshold": iou_threshold},
|
161
|
+
"confidence": box_threshold,
|
166
162
|
"function_name": "owl_v2",
|
167
163
|
}
|
168
|
-
data: Dict[str, Any] = send_inference_request(request_data, "
|
164
|
+
data: Dict[str, Any] = send_inference_request(request_data, "owlv2", v2=True)
|
169
165
|
return_data = []
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
166
|
+
if data is not None:
|
167
|
+
for elt in data:
|
168
|
+
return_data.append(
|
169
|
+
{
|
170
|
+
"bbox": normalize_bbox(elt["bbox"], image_size), # type: ignore
|
171
|
+
"label": elt["label"], # type: ignore
|
172
|
+
"score": round(elt["score"], 2), # type: ignore
|
173
|
+
}
|
174
|
+
)
|
178
175
|
return return_data
|
179
176
|
|
180
177
|
|
@@ -367,11 +364,10 @@ def loca_zero_shot_counting(image: np.ndarray) -> Dict[str, Any]:
|
|
367
364
|
image_b64 = convert_to_b64(image)
|
368
365
|
data = {
|
369
366
|
"image": image_b64,
|
370
|
-
"tool": "zero_shot_counting",
|
371
367
|
"function_name": "loca_zero_shot_counting",
|
372
368
|
}
|
373
|
-
resp_data = send_inference_request(data, "
|
374
|
-
resp_data["heat_map"] = np.array(
|
369
|
+
resp_data = send_inference_request(data, "loca", v2=True)
|
370
|
+
resp_data["heat_map"] = np.array(resp_data["heat_map"][0]).astype(np.uint8)
|
375
371
|
return resp_data
|
376
372
|
|
377
373
|
|
@@ -397,17 +393,15 @@ def loca_visual_prompt_counting(
|
|
397
393
|
|
398
394
|
image_size = get_image_size(image)
|
399
395
|
bbox = visual_prompt["bbox"]
|
400
|
-
bbox_str = ", ".join(map(str, denormalize_bbox(bbox, image_size)))
|
401
396
|
image_b64 = convert_to_b64(image)
|
402
397
|
|
403
398
|
data = {
|
404
399
|
"image": image_b64,
|
405
|
-
"
|
406
|
-
"tool": "few_shot_counting",
|
400
|
+
"bbox": list(map(int, denormalize_bbox(bbox, image_size))),
|
407
401
|
"function_name": "loca_visual_prompt_counting",
|
408
402
|
}
|
409
|
-
resp_data = send_inference_request(data, "
|
410
|
-
resp_data["heat_map"] = np.array(
|
403
|
+
resp_data = send_inference_request(data, "loca", v2=True)
|
404
|
+
resp_data["heat_map"] = np.array(resp_data["heat_map"][0]).astype(np.uint8)
|
411
405
|
return resp_data
|
412
406
|
|
413
407
|
|
@@ -432,13 +426,12 @@ def florencev2_roberta_vqa(prompt: str, image: np.ndarray) -> str:
|
|
432
426
|
image_b64 = convert_to_b64(image)
|
433
427
|
data = {
|
434
428
|
"image": image_b64,
|
435
|
-
"
|
436
|
-
"tool": "image_question_answering_with_context",
|
429
|
+
"question": prompt,
|
437
430
|
"function_name": "florencev2_roberta_vqa",
|
438
431
|
}
|
439
432
|
|
440
|
-
answer = send_inference_request(data, "
|
441
|
-
return answer
|
433
|
+
answer = send_inference_request(data, "florence2-qa", v2=True)
|
434
|
+
return answer # type: ignore
|
442
435
|
|
443
436
|
|
444
437
|
def git_vqa_v2(prompt: str, image: np.ndarray) -> str:
|
@@ -544,17 +537,16 @@ def vit_nsfw_classification(image: np.ndarray) -> Dict[str, Any]:
|
|
544
537
|
Example
|
545
538
|
-------
|
546
539
|
>>> vit_nsfw_classification(image)
|
547
|
-
{"
|
540
|
+
{"label": "normal", "scores": 0.68},
|
548
541
|
"""
|
549
542
|
|
550
543
|
image_b64 = convert_to_b64(image)
|
551
544
|
data = {
|
552
545
|
"image": image_b64,
|
553
|
-
"tool": "nsfw_image_classification",
|
554
546
|
"function_name": "vit_nsfw_classification",
|
555
547
|
}
|
556
|
-
resp_data = send_inference_request(data, "
|
557
|
-
resp_data["
|
548
|
+
resp_data = send_inference_request(data, "nsfw-classification", v2=True)
|
549
|
+
resp_data["score"] = round(resp_data["score"], 4)
|
558
550
|
return resp_data
|
559
551
|
|
560
552
|
|
@@ -603,21 +595,21 @@ def florencev2_image_caption(image: np.ndarray, detail_caption: bool = True) ->
|
|
603
595
|
'This image contains a cat sitting on a table with a bowl of milk.'
|
604
596
|
"""
|
605
597
|
image_b64 = convert_to_b64(image)
|
598
|
+
task = "<MORE_DETAILED_CAPTION>" if detail_caption else "<DETAILED_CAPTION>"
|
606
599
|
data = {
|
607
600
|
"image": image_b64,
|
608
|
-
"
|
609
|
-
"detail_caption": detail_caption,
|
601
|
+
"task": task,
|
610
602
|
"function_name": "florencev2_image_caption",
|
611
603
|
}
|
612
604
|
|
613
|
-
answer = send_inference_request(data, "
|
614
|
-
return answer[
|
605
|
+
answer = send_inference_request(data, "florence2", v2=True)
|
606
|
+
return answer[task] # type: ignore
|
615
607
|
|
616
608
|
|
617
|
-
def florencev2_object_detection(image: np.ndarray) -> List[Dict[str, Any]]:
|
618
|
-
"""'florencev2_object_detection' is a tool that can detect
|
619
|
-
|
620
|
-
as labels and their location as bounding boxes.
|
609
|
+
def florencev2_object_detection(image: np.ndarray, prompt: str) -> List[Dict[str, Any]]:
|
610
|
+
"""'florencev2_object_detection' is a tool that can detect objects given a text
|
611
|
+
prompt such as a phrase or class names separated by commas. It returns a list of
|
612
|
+
detected objects as labels and their location as bounding boxes with score of 1.0.
|
621
613
|
|
622
614
|
Parameters:
|
623
615
|
image (np.ndarray): The image to used to detect objects
|
@@ -631,29 +623,30 @@ def florencev2_object_detection(image: np.ndarray) -> List[Dict[str, Any]]:
|
|
631
623
|
|
632
624
|
Example
|
633
625
|
-------
|
634
|
-
>>> florencev2_object_detection(image)
|
626
|
+
>>> florencev2_object_detection(image, 'person looking at a coyote')
|
635
627
|
[
|
636
|
-
{'score': 1.0, 'label': '
|
637
|
-
{'score': 1.0, 'label': '
|
638
|
-
{'score': 1.0, 'label': 'person', 'bbox': [0.34, 0.21, 0.85, 0.5},
|
628
|
+
{'score': 1.0, 'label': 'person', 'bbox': [0.1, 0.11, 0.35, 0.4]},
|
629
|
+
{'score': 1.0, 'label': 'coyote', 'bbox': [0.34, 0.21, 0.85, 0.5},
|
639
630
|
]
|
640
631
|
"""
|
641
632
|
image_size = image.shape[:2]
|
642
633
|
image_b64 = convert_to_b64(image)
|
643
634
|
data = {
|
644
635
|
"image": image_b64,
|
645
|
-
"
|
636
|
+
"task": "<CAPTION_TO_PHRASE_GROUNDING>",
|
637
|
+
"prompt": prompt,
|
646
638
|
"function_name": "florencev2_object_detection",
|
647
639
|
}
|
648
640
|
|
649
|
-
|
641
|
+
detections = send_inference_request(data, "florence2", v2=True)
|
642
|
+
detections = detections["<CAPTION_TO_PHRASE_GROUNDING>"]
|
650
643
|
return_data = []
|
651
|
-
for i in range(len(
|
644
|
+
for i in range(len(detections["bboxes"])):
|
652
645
|
return_data.append(
|
653
646
|
{
|
654
|
-
"score":
|
655
|
-
"label":
|
656
|
-
"bbox": normalize_bbox(
|
647
|
+
"score": 1.0,
|
648
|
+
"label": detections["labels"][i],
|
649
|
+
"bbox": normalize_bbox(detections["bboxes"][i], image_size),
|
657
650
|
}
|
658
651
|
)
|
659
652
|
return return_data
|
@@ -742,13 +735,16 @@ def depth_anything_v2(image: np.ndarray) -> np.ndarray:
|
|
742
735
|
image_b64 = convert_to_b64(image)
|
743
736
|
data = {
|
744
737
|
"image": image_b64,
|
745
|
-
"tool": "generate_depth",
|
746
738
|
"function_name": "depth_anything_v2",
|
747
739
|
}
|
748
740
|
|
749
|
-
|
750
|
-
|
751
|
-
|
741
|
+
depth_map = send_inference_request(data, "depth-anything-v2", v2=True)
|
742
|
+
depth_map_np = np.array(depth_map["map"])
|
743
|
+
depth_map_np = (depth_map_np - depth_map_np.min()) / (
|
744
|
+
depth_map_np.max() - depth_map_np.min()
|
745
|
+
)
|
746
|
+
depth_map_np = (255 * depth_map_np).astype(np.uint8)
|
747
|
+
return depth_map_np
|
752
748
|
|
753
749
|
|
754
750
|
def generate_soft_edge_image(image: np.ndarray) -> np.ndarray:
|
@@ -839,12 +835,11 @@ def generate_pose_image(image: np.ndarray) -> np.ndarray:
|
|
839
835
|
image_b64 = convert_to_b64(image)
|
840
836
|
data = {
|
841
837
|
"image": image_b64,
|
842
|
-
"tool": "generate_pose",
|
843
838
|
"function_name": "generate_pose_image",
|
844
839
|
}
|
845
840
|
|
846
|
-
|
847
|
-
return_data = np.array(b64_to_pil(
|
841
|
+
pos_img = send_inference_request(data, "pose-detector", v2=True)
|
842
|
+
return_data = np.array(b64_to_pil(pos_img["data"]).convert("RGB"))
|
848
843
|
return return_data
|
849
844
|
|
850
845
|
|
@@ -1253,7 +1248,6 @@ TOOLS = [
|
|
1253
1248
|
loca_visual_prompt_counting,
|
1254
1249
|
florencev2_roberta_vqa,
|
1255
1250
|
florencev2_image_caption,
|
1256
|
-
florencev2_object_detection,
|
1257
1251
|
detr_segmentation,
|
1258
1252
|
depth_anything_v2,
|
1259
1253
|
generate_soft_edge_image,
|
@@ -14,7 +14,7 @@ class LandingaiAPIKey(BaseSettings):
|
|
14
14
|
"""
|
15
15
|
|
16
16
|
api_key: str = Field(
|
17
|
-
default="
|
17
|
+
default="land_sk_zKvyPcPV2bVoq7q87KwduoerAxuQpx33DnqP8M1BliOCiZOSoI",
|
18
18
|
alias="LANDINGAI_API_KEY",
|
19
19
|
description="The API key of LandingAI.",
|
20
20
|
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{vision_agent-0.2.99 → vision_agent-0.2.100}/vision_agent/agent/vision_agent_coder_prompts.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|