vision-agent 0.2.24__tar.gz → 0.2.26__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {vision_agent-0.2.24 → vision_agent-0.2.26}/PKG-INFO +1 -1
- {vision_agent-0.2.24 → vision_agent-0.2.26}/pyproject.toml +1 -1
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/__init__.py +1 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/vision_agent_v2.py +1 -1
- vision_agent-0.2.26/vision_agent/agent/vision_agent_v3.py +305 -0
- vision_agent-0.2.26/vision_agent/agent/vision_agent_v3_prompts.py +221 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/tools/tool_utils.py +1 -1
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/tools/tools.py +1 -1
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/tools/tools_v2.py +171 -9
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/utils/execute.py +3 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/utils/image_utils.py +7 -2
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/utils/type_defs.py +1 -1
- {vision_agent-0.2.24 → vision_agent-0.2.26}/LICENSE +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/README.md +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/__init__.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/agent.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/agent_coder.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/agent_coder_prompts.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/easytool.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/easytool_prompts.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/reflexion.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/reflexion_prompts.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/vision_agent.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/agent/vision_agent_prompts.py +0 -0
- /vision_agent-0.2.24/vision_agent/agent/vision_agent_v2_prompt.py → /vision_agent-0.2.26/vision_agent/agent/vision_agent_v2_prompts.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/fonts/__init__.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/llm/__init__.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/llm/llm.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/lmm/__init__.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/lmm/lmm.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/tools/__init__.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/tools/prompts.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/utils/__init__.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/utils/sim.py +0 -0
- {vision_agent-0.2.24 → vision_agent-0.2.26}/vision_agent/utils/video.py +0 -0
@@ -10,7 +10,7 @@ from rich.syntax import Syntax
|
|
10
10
|
from tabulate import tabulate
|
11
11
|
|
12
12
|
from vision_agent.agent import Agent
|
13
|
-
from vision_agent.agent.
|
13
|
+
from vision_agent.agent.vision_agent_v2_prompts import (
|
14
14
|
CODE,
|
15
15
|
CODE_SYS_MSG,
|
16
16
|
DEBUG,
|
@@ -0,0 +1,305 @@
|
|
1
|
+
import copy
|
2
|
+
import json
|
3
|
+
import logging
|
4
|
+
import sys
|
5
|
+
from pathlib import Path
|
6
|
+
from typing import Any, Dict, List, Optional, Union, cast
|
7
|
+
|
8
|
+
from rich.console import Console
|
9
|
+
from rich.syntax import Syntax
|
10
|
+
from tabulate import tabulate
|
11
|
+
|
12
|
+
from vision_agent.agent import Agent
|
13
|
+
from vision_agent.agent.vision_agent_v3_prompts import (
|
14
|
+
CODE,
|
15
|
+
FEEDBACK,
|
16
|
+
FIX_BUG,
|
17
|
+
PLAN,
|
18
|
+
REFLECT,
|
19
|
+
SIMPLE_TEST,
|
20
|
+
USER_REQ,
|
21
|
+
)
|
22
|
+
from vision_agent.llm import LLM, OpenAILLM
|
23
|
+
from vision_agent.tools.tools_v2 import TOOL_DESCRIPTIONS, TOOLS_DF, UTILITIES_DOCSTRING
|
24
|
+
from vision_agent.utils import Execute
|
25
|
+
from vision_agent.utils.sim import Sim
|
26
|
+
|
27
|
+
logging.basicConfig(stream=sys.stdout)
|
28
|
+
_LOGGER = logging.getLogger(__name__)
|
29
|
+
_MAX_TABULATE_COL_WIDTH = 80
|
30
|
+
_EXECUTE = Execute(600)
|
31
|
+
_CONSOLE = Console()
|
32
|
+
|
33
|
+
|
34
|
+
def format_memory(memory: List[Dict[str, str]]) -> str:
|
35
|
+
return FEEDBACK.format(
|
36
|
+
feedback="\n".join(
|
37
|
+
[
|
38
|
+
f"### Feedback {i}:\nCode: ```python\n{m['code']}\n```\nFeedback: {m['feedback']}\n"
|
39
|
+
for i, m in enumerate(memory)
|
40
|
+
]
|
41
|
+
)
|
42
|
+
)
|
43
|
+
|
44
|
+
|
45
|
+
def extract_code(code: str) -> str:
|
46
|
+
if "\n```python" in code:
|
47
|
+
start = "\n```python"
|
48
|
+
elif "```python" in code:
|
49
|
+
start = "```python"
|
50
|
+
else:
|
51
|
+
return code
|
52
|
+
|
53
|
+
code = code[code.find(start) + len(start) :]
|
54
|
+
code = code[: code.find("```")]
|
55
|
+
if code.startswith("python\n"):
|
56
|
+
code = code[len("python\n") :]
|
57
|
+
return code
|
58
|
+
|
59
|
+
|
60
|
+
def extract_json(json_str: str) -> Dict[str, Any]:
|
61
|
+
try:
|
62
|
+
json_dict = json.loads(json_str)
|
63
|
+
except json.JSONDecodeError:
|
64
|
+
if "```json" in json_str:
|
65
|
+
json_str = json_str[json_str.find("```json") + len("```json") :]
|
66
|
+
json_str = json_str[: json_str.find("```")]
|
67
|
+
elif "```" in json_str:
|
68
|
+
json_str = json_str[json_str.find("```") + len("```") :]
|
69
|
+
# get the last ``` not one from an intermediate string
|
70
|
+
json_str = json_str[: json_str.find("}```")]
|
71
|
+
json_dict = json.loads(json_str)
|
72
|
+
return json_dict # type: ignore
|
73
|
+
|
74
|
+
|
75
|
+
def write_plan(
|
76
|
+
chat: List[Dict[str, str]],
|
77
|
+
tool_desc: str,
|
78
|
+
working_memory: str,
|
79
|
+
model: LLM,
|
80
|
+
) -> List[Dict[str, str]]:
|
81
|
+
chat = copy.deepcopy(chat)
|
82
|
+
if chat[-1]["role"] != "user":
|
83
|
+
raise ValueError("Last chat message must be from the user.")
|
84
|
+
|
85
|
+
user_request = chat[-1]["content"]
|
86
|
+
context = USER_REQ.format(user_request=user_request)
|
87
|
+
prompt = PLAN.format(context=context, tool_desc=tool_desc, feedback=working_memory)
|
88
|
+
chat[-1]["content"] = prompt
|
89
|
+
return extract_json(model.chat(chat))["plan"] # type: ignore
|
90
|
+
|
91
|
+
|
92
|
+
def reflect(
|
93
|
+
chat: List[Dict[str, str]],
|
94
|
+
plan: str,
|
95
|
+
code: str,
|
96
|
+
model: LLM,
|
97
|
+
) -> Dict[str, Union[str, bool]]:
|
98
|
+
chat = copy.deepcopy(chat)
|
99
|
+
if chat[-1]["role"] != "user":
|
100
|
+
raise ValueError("Last chat message must be from the user.")
|
101
|
+
|
102
|
+
user_request = chat[-1]["content"]
|
103
|
+
context = USER_REQ.format(user_request=user_request)
|
104
|
+
prompt = REFLECT.format(context=context, plan=plan, code=code)
|
105
|
+
chat[-1]["content"] = prompt
|
106
|
+
return extract_json(model.chat(chat))
|
107
|
+
|
108
|
+
|
109
|
+
def write_and_test_code(
|
110
|
+
task: str,
|
111
|
+
tool_info: str,
|
112
|
+
tool_utils: str,
|
113
|
+
working_memory: str,
|
114
|
+
coder: LLM,
|
115
|
+
tester: LLM,
|
116
|
+
debugger: LLM,
|
117
|
+
verbosity: int = 0,
|
118
|
+
max_retries: int = 3,
|
119
|
+
) -> Dict[str, Any]:
|
120
|
+
code = extract_code(
|
121
|
+
coder(CODE.format(docstring=tool_info, question=task, feedback=working_memory))
|
122
|
+
)
|
123
|
+
test = extract_code(
|
124
|
+
tester(
|
125
|
+
SIMPLE_TEST.format(
|
126
|
+
docstring=tool_utils, question=task, code=code, feedback=working_memory
|
127
|
+
)
|
128
|
+
)
|
129
|
+
)
|
130
|
+
|
131
|
+
success, result = _EXECUTE.run_isolation(f"{code}\n{test}")
|
132
|
+
if verbosity == 2:
|
133
|
+
_LOGGER.info("First code and tests:")
|
134
|
+
_CONSOLE.print(
|
135
|
+
Syntax(f"{code}\n{test}", "python", theme="gruvbox-dark", line_numbers=True)
|
136
|
+
)
|
137
|
+
_LOGGER.info(f"First result: {result}")
|
138
|
+
|
139
|
+
count = 0
|
140
|
+
new_working_memory = []
|
141
|
+
while not success and count < max_retries:
|
142
|
+
fixed_code_and_test = extract_json(
|
143
|
+
debugger(
|
144
|
+
FIX_BUG.format(
|
145
|
+
code=code, tests=test, result=result, feedback=working_memory
|
146
|
+
)
|
147
|
+
)
|
148
|
+
)
|
149
|
+
if fixed_code_and_test["code"].strip() != "":
|
150
|
+
code = extract_code(fixed_code_and_test["code"])
|
151
|
+
if fixed_code_and_test["test"].strip() != "":
|
152
|
+
test = extract_code(fixed_code_and_test["test"])
|
153
|
+
new_working_memory.append(
|
154
|
+
{"code": f"{code}\n{test}", "feedback": fixed_code_and_test["reflections"]}
|
155
|
+
)
|
156
|
+
|
157
|
+
success, result = _EXECUTE.run_isolation(f"{code}\n{test}")
|
158
|
+
if verbosity == 2:
|
159
|
+
_LOGGER.info(
|
160
|
+
f"Debug attempt {count + 1}, reflection: {fixed_code_and_test['reflections']}"
|
161
|
+
)
|
162
|
+
_CONSOLE.print(
|
163
|
+
Syntax(
|
164
|
+
f"{code}\n{test}", "python", theme="gruvbox-dark", line_numbers=True
|
165
|
+
)
|
166
|
+
)
|
167
|
+
_LOGGER.info(f"Debug result: {result}")
|
168
|
+
count += 1
|
169
|
+
|
170
|
+
if verbosity == 1:
|
171
|
+
_CONSOLE.print(
|
172
|
+
Syntax(f"{code}\n{test}", "python", theme="gruvbox-dark", line_numbers=True)
|
173
|
+
)
|
174
|
+
_LOGGER.info(f"Result: {result}")
|
175
|
+
|
176
|
+
return {
|
177
|
+
"code": code,
|
178
|
+
"test": test,
|
179
|
+
"success": success,
|
180
|
+
"working_memory": new_working_memory,
|
181
|
+
}
|
182
|
+
|
183
|
+
|
184
|
+
def retrieve_tools(
|
185
|
+
plan: List[Dict[str, str]], tool_recommender: Sim, verbosity: int = 0
|
186
|
+
) -> str:
|
187
|
+
tool_info = []
|
188
|
+
tool_desc = []
|
189
|
+
for task in plan:
|
190
|
+
tools = tool_recommender.top_k(task["instructions"], k=2, thresh=0.3)
|
191
|
+
tool_info.extend([e["doc"] for e in tools])
|
192
|
+
tool_desc.extend([e["desc"] for e in tools])
|
193
|
+
if verbosity == 2:
|
194
|
+
_LOGGER.info(f"Tools: {tool_desc}")
|
195
|
+
tool_info_set = set(tool_info)
|
196
|
+
return "\n\n".join(tool_info_set)
|
197
|
+
|
198
|
+
|
199
|
+
class VisionAgentV3(Agent):
|
200
|
+
def __init__(
|
201
|
+
self,
|
202
|
+
timeout: int = 600,
|
203
|
+
planner: Optional[LLM] = None,
|
204
|
+
coder: Optional[LLM] = None,
|
205
|
+
tester: Optional[LLM] = None,
|
206
|
+
debugger: Optional[LLM] = None,
|
207
|
+
tool_recommender: Optional[Sim] = None,
|
208
|
+
verbosity: int = 0,
|
209
|
+
) -> None:
|
210
|
+
self.planner = (
|
211
|
+
OpenAILLM(temperature=0.0, json_mode=True) if planner is None else planner
|
212
|
+
)
|
213
|
+
self.coder = OpenAILLM(temperature=0.0) if coder is None else coder
|
214
|
+
self.tester = OpenAILLM(temperature=0.0) if tester is None else tester
|
215
|
+
self.debugger = (
|
216
|
+
OpenAILLM(temperature=0.0, json_mode=True) if debugger is None else debugger
|
217
|
+
)
|
218
|
+
|
219
|
+
self.tool_recommender = (
|
220
|
+
Sim(TOOLS_DF, sim_key="desc")
|
221
|
+
if tool_recommender is None
|
222
|
+
else tool_recommender
|
223
|
+
)
|
224
|
+
self.verbosity = verbosity
|
225
|
+
self.max_retries = 3
|
226
|
+
|
227
|
+
def __call__(
|
228
|
+
self,
|
229
|
+
input: Union[List[Dict[str, str]], str],
|
230
|
+
image: Optional[Union[str, Path]] = None,
|
231
|
+
) -> str:
|
232
|
+
if isinstance(input, str):
|
233
|
+
input = [{"role": "user", "content": input}]
|
234
|
+
results = self.chat_with_workflow(input, image)
|
235
|
+
return results["code"] # type: ignore
|
236
|
+
|
237
|
+
def chat_with_workflow(
|
238
|
+
self,
|
239
|
+
chat: List[Dict[str, str]],
|
240
|
+
image: Optional[Union[str, Path]] = None,
|
241
|
+
) -> Dict[str, Any]:
|
242
|
+
if len(chat) == 0:
|
243
|
+
raise ValueError("Chat cannot be empty.")
|
244
|
+
|
245
|
+
if image is not None:
|
246
|
+
for chat_i in chat:
|
247
|
+
if chat_i["role"] == "user":
|
248
|
+
chat_i["content"] += f" Image name {image}"
|
249
|
+
|
250
|
+
code = ""
|
251
|
+
test = ""
|
252
|
+
working_memory: List[Dict[str, str]] = []
|
253
|
+
results = {"code": "", "test": "", "plan": []}
|
254
|
+
plan = []
|
255
|
+
success = False
|
256
|
+
retries = 0
|
257
|
+
|
258
|
+
while not success and retries < self.max_retries:
|
259
|
+
plan_i = write_plan(
|
260
|
+
chat, TOOL_DESCRIPTIONS, format_memory(working_memory), self.planner
|
261
|
+
)
|
262
|
+
plan_i_str = "\n-".join([e["instructions"] for e in plan_i])
|
263
|
+
if self.verbosity == 1 or self.verbosity == 2:
|
264
|
+
_LOGGER.info(
|
265
|
+
f"""
|
266
|
+
{tabulate(tabular_data=plan_i, headers="keys", tablefmt="mixed_grid", maxcolwidths=_MAX_TABULATE_COL_WIDTH)}"""
|
267
|
+
)
|
268
|
+
|
269
|
+
tool_info = retrieve_tools(
|
270
|
+
plan_i,
|
271
|
+
self.tool_recommender,
|
272
|
+
self.verbosity,
|
273
|
+
)
|
274
|
+
results = write_and_test_code(
|
275
|
+
plan_i_str,
|
276
|
+
tool_info,
|
277
|
+
UTILITIES_DOCSTRING,
|
278
|
+
format_memory(working_memory),
|
279
|
+
self.coder,
|
280
|
+
self.tester,
|
281
|
+
self.debugger,
|
282
|
+
verbosity=self.verbosity,
|
283
|
+
)
|
284
|
+
success = cast(bool, results["success"])
|
285
|
+
code = cast(str, results["code"])
|
286
|
+
test = cast(str, results["test"])
|
287
|
+
working_memory.extend(results["working_memory"]) # type: ignore
|
288
|
+
plan.append({"code": code, "test": test, "plan": plan_i})
|
289
|
+
|
290
|
+
reflection = reflect(chat, plan_i_str, code, self.planner)
|
291
|
+
if self.verbosity > 0:
|
292
|
+
_LOGGER.info(f"Reflection: {reflection}")
|
293
|
+
feedback = cast(str, reflection["feedback"])
|
294
|
+
success = cast(bool, reflection["success"])
|
295
|
+
working_memory.append({"code": f"{code}\n{test}", "feedback": feedback})
|
296
|
+
|
297
|
+
return {
|
298
|
+
"code": code,
|
299
|
+
"test": test,
|
300
|
+
"plan": plan,
|
301
|
+
"working_memory": working_memory,
|
302
|
+
}
|
303
|
+
|
304
|
+
def log_progress(self, description: str) -> None:
|
305
|
+
pass
|
@@ -0,0 +1,221 @@
|
|
1
|
+
USER_REQ = """
|
2
|
+
## User Request
|
3
|
+
{user_request}
|
4
|
+
"""
|
5
|
+
|
6
|
+
FEEDBACK = """
|
7
|
+
## This contains code and feedback from previous runs and is used for providing context so you do not make the same mistake again.
|
8
|
+
|
9
|
+
{feedback}
|
10
|
+
"""
|
11
|
+
|
12
|
+
|
13
|
+
PLAN = """
|
14
|
+
**Context**
|
15
|
+
{context}
|
16
|
+
|
17
|
+
**Tools Available**:
|
18
|
+
{tool_desc}
|
19
|
+
|
20
|
+
**Previous Feedback**:
|
21
|
+
{feedback}
|
22
|
+
|
23
|
+
**Instructions**:
|
24
|
+
Based on the context and tools you have available, write a plan of subtasks to achieve the user request utilizing given tools when necessary. Output a list of jsons in the following format:
|
25
|
+
|
26
|
+
```json
|
27
|
+
{{
|
28
|
+
"plan":
|
29
|
+
[
|
30
|
+
{{
|
31
|
+
"instructions": str # what you should do in this task, one short phrase or sentence
|
32
|
+
}}
|
33
|
+
]
|
34
|
+
}}
|
35
|
+
```
|
36
|
+
"""
|
37
|
+
|
38
|
+
CODE = """
|
39
|
+
**Role**: You are a software programmer.
|
40
|
+
|
41
|
+
**Task**: As a programmer, you are required to complete the function. Use a Chain-of-Thought approach to break down the problem, create pseudocode, and then write the code in Python language. Ensure that your code is efficient, readable, and well-commented. Return the requested information from the function you create. Do not call your code, a test will be run after the code is submitted.
|
42
|
+
|
43
|
+
**Documentation**:
|
44
|
+
This is the documentation for the functions you have access to. You may call any of these functions to help you complete the task. They are available through importing `from vision_agent.tools.tools_v2 import *`.
|
45
|
+
|
46
|
+
{docstring}
|
47
|
+
|
48
|
+
**Input Code Snippet**:
|
49
|
+
```python
|
50
|
+
# Your code here
|
51
|
+
```
|
52
|
+
|
53
|
+
**User Instructions**:
|
54
|
+
{question}
|
55
|
+
|
56
|
+
**Previous Feedback**:
|
57
|
+
{feedback}
|
58
|
+
|
59
|
+
**Instructions**:
|
60
|
+
1. **Understand and Clarify**: Make sure you understand the task.
|
61
|
+
2. **Algorithm/Method Selection**: Decide on the most efficient way.
|
62
|
+
3. **Pseudocode Creation**: Write down the steps you will follow in pseudocode.
|
63
|
+
4. **Code Generation**: Translate your pseudocode into executable Python code.
|
64
|
+
"""
|
65
|
+
|
66
|
+
TEST = """
|
67
|
+
**Role**: As a tester, your task is to create comprehensive test cases for the provided code. These test cases should encompass Basic and Edge case scenarios to ensure the code's robustness and reliability if possible.
|
68
|
+
|
69
|
+
**Documentation**:
|
70
|
+
This is the documentation for the functions you have access to. You may call any of these functions to help you complete the task. They are available through importing `from vision_agent.tools.tools_v2 import *`. You do not need to test these functions. Test only the code provided by the user.
|
71
|
+
|
72
|
+
{docstring}
|
73
|
+
|
74
|
+
**User Instructions**:
|
75
|
+
{question}
|
76
|
+
|
77
|
+
**Input Code Snippet**:
|
78
|
+
```python
|
79
|
+
### Please decided how would you want to generate test cases. Based on incomplete code or completed version.
|
80
|
+
{code}
|
81
|
+
```
|
82
|
+
|
83
|
+
**Instructions**:
|
84
|
+
1. Verify the fundamental functionality under normal conditions.
|
85
|
+
2. Ensure each test case is well-documented with comments explaining the scenario it covers.
|
86
|
+
3. DO NOT use any files that are not provided by the user's instructions, your test must be run and will crash if it tries to load a non-existent file.
|
87
|
+
4. DO NOT mock any functions, you must test their functionality as is.
|
88
|
+
|
89
|
+
You should format your test cases at the end of your response wrapped in ```python ``` tags like in the following example:
|
90
|
+
```python
|
91
|
+
# You can run assertions to ensure the function is working as expected
|
92
|
+
assert function(input) == expected_output, "Test case description"
|
93
|
+
|
94
|
+
# You can simply call the function to ensure it runs
|
95
|
+
function(input)
|
96
|
+
|
97
|
+
# Or you can visualize the output
|
98
|
+
output = function(input)
|
99
|
+
visualize(output)
|
100
|
+
```
|
101
|
+
|
102
|
+
**Examples**:
|
103
|
+
## Prompt 1:
|
104
|
+
```python
|
105
|
+
def detect_cats_and_dogs(image_path: str) -> Dict[str, List[List[float]]]:
|
106
|
+
\""" Detects cats and dogs in an image. Returns a dictionary with
|
107
|
+
{{
|
108
|
+
"cats": [[x1, y1, x2, y2], ...], "dogs": [[x1, y1, x2, y2], ...]
|
109
|
+
}}
|
110
|
+
\"""
|
111
|
+
```
|
112
|
+
|
113
|
+
## Completion 1:
|
114
|
+
```python
|
115
|
+
# We can test to ensure the output has the correct structure but we cannot test the
|
116
|
+
# content of the output without knowing the image. We can test on "image.jpg" because
|
117
|
+
# it is provided by the user so we know it exists.
|
118
|
+
output = detect_cats_and_dogs("image.jpg")
|
119
|
+
assert "cats" in output, "The output should contain 'cats'
|
120
|
+
assert "dogs" in output, "The output should contain 'dogs'
|
121
|
+
```
|
122
|
+
|
123
|
+
## Prompt 2:
|
124
|
+
```python
|
125
|
+
def find_text(image_path: str, text: str) -> str:
|
126
|
+
\""" Finds the text in the image and returns the text. \"""
|
127
|
+
|
128
|
+
## Completion 2:
|
129
|
+
```python
|
130
|
+
# Because we do not know ahead of time what text is in the image, we can only run the
|
131
|
+
# code and print the results. We can test on "image.jpg" because it is provided by the
|
132
|
+
# user so we know it exists.
|
133
|
+
found_text = find_text("image.jpg", "Hello World")
|
134
|
+
print(found_text)
|
135
|
+
```
|
136
|
+
"""
|
137
|
+
|
138
|
+
|
139
|
+
SIMPLE_TEST = """
|
140
|
+
**Role**: As a tester, your task is to create a simple test case for the provided code. This test case should verify the fundamental functionality under normal conditions.
|
141
|
+
|
142
|
+
**Documentation**:
|
143
|
+
This is the documentation for the functions you have access to. You may call any of these functions to help you complete the task. They are available through importing `from vision_agent.tools.tools_v2 import *`. You do not need to test these functions, only the code provided by the user.
|
144
|
+
|
145
|
+
{docstring}
|
146
|
+
|
147
|
+
**User Instructions**:
|
148
|
+
{question}
|
149
|
+
|
150
|
+
**Input Code Snippet**:
|
151
|
+
```python
|
152
|
+
### Please decided how would you want to generate test cases. Based on incomplete code or completed version.
|
153
|
+
{code}
|
154
|
+
```
|
155
|
+
|
156
|
+
**Previous Feedback**:
|
157
|
+
{feedback}
|
158
|
+
|
159
|
+
**Instructions**:
|
160
|
+
1. Verify the fundamental functionality under normal conditions.
|
161
|
+
2. Ensure each test case is well-documented with comments explaining the scenario it covers.
|
162
|
+
3. DO NOT use any files that are not provided by the user's instructions, your test must be run and will crash if it tries to load a non-existent file.
|
163
|
+
4. DO NOT mock any functions, you must test their functionality as is.
|
164
|
+
"""
|
165
|
+
|
166
|
+
|
167
|
+
FIX_BUG = """
|
168
|
+
**Role** As a coder, your job is to find the error in the code and fix it. You are running in a notebook setting so feel free to run !pip install to install missing packages.
|
169
|
+
|
170
|
+
**Instructions**:
|
171
|
+
Please re-complete the code to fix the error message. Here is the previous version:
|
172
|
+
```python
|
173
|
+
{code}
|
174
|
+
```
|
175
|
+
|
176
|
+
When we run this test code:
|
177
|
+
```python
|
178
|
+
{tests}
|
179
|
+
```
|
180
|
+
|
181
|
+
It raises this error:
|
182
|
+
```python
|
183
|
+
{result}
|
184
|
+
```
|
185
|
+
|
186
|
+
This is previous feedback provided on the code:
|
187
|
+
{feedback}
|
188
|
+
|
189
|
+
Please fix the bug by follow the error information and return a JSON object with the following format:
|
190
|
+
{{
|
191
|
+
"reflections": str # any thoughts you have about the bug and how you fixed it
|
192
|
+
"code": str # the fixed code if any, else an empty string
|
193
|
+
"test": str # the fixed test code if any, else an empty string
|
194
|
+
}}
|
195
|
+
"""
|
196
|
+
|
197
|
+
|
198
|
+
REFLECT = """
|
199
|
+
**Role**: You are a reflection agent. Your job is to look at the original user request and the code produced and determine if the code satisfies the user's request. If it does not, you must provide feedback on how to improve the code. You are concerned only if the code meets the user request, not if the code is good or bad.
|
200
|
+
|
201
|
+
**Context**:
|
202
|
+
{context}
|
203
|
+
|
204
|
+
**Plan**:
|
205
|
+
{plan}
|
206
|
+
|
207
|
+
**Code**:
|
208
|
+
{code}
|
209
|
+
|
210
|
+
**Instructions**:
|
211
|
+
1. **Understand the User Request**: Read the user request and understand what the user is asking for.
|
212
|
+
2. **Review the Plan**: Check the plan to see if it is a viable approach to solving the user request.
|
213
|
+
3. **Review the Code**: Check the code to see if it solves the user request.
|
214
|
+
4. DO NOT add any reflections for test cases, these are taken care of.
|
215
|
+
|
216
|
+
Respond in JSON format with the following structure:
|
217
|
+
{{
|
218
|
+
"feedback": str # the feedback you would give to the coder and tester
|
219
|
+
"success": bool # whether the code and tests meet the user request
|
220
|
+
}}
|
221
|
+
"""
|
@@ -8,7 +8,7 @@ from vision_agent.utils.type_defs import LandingaiAPIKey
|
|
8
8
|
|
9
9
|
_LOGGER = logging.getLogger(__name__)
|
10
10
|
_LND_API_KEY = LandingaiAPIKey().api_key
|
11
|
-
_LND_API_URL = "https://api.
|
11
|
+
_LND_API_URL = "https://api.staging.landing.ai/v1/agent"
|
12
12
|
|
13
13
|
|
14
14
|
def _send_inference_request(
|
@@ -15,7 +15,14 @@ from scipy.spatial import distance # type: ignore
|
|
15
15
|
|
16
16
|
from vision_agent.tools.tool_utils import _send_inference_request
|
17
17
|
from vision_agent.utils import extract_frames_from_video
|
18
|
-
from vision_agent.utils.image_utils import
|
18
|
+
from vision_agent.utils.image_utils import (
|
19
|
+
b64_to_pil,
|
20
|
+
convert_to_b64,
|
21
|
+
denormalize_bbox,
|
22
|
+
get_image_size,
|
23
|
+
normalize_bbox,
|
24
|
+
rle_decode,
|
25
|
+
)
|
19
26
|
|
20
27
|
COLORS = [
|
21
28
|
(158, 218, 229),
|
@@ -49,7 +56,7 @@ def grounding_dino(
|
|
49
56
|
prompt: str,
|
50
57
|
image: np.ndarray,
|
51
58
|
box_threshold: float = 0.20,
|
52
|
-
iou_threshold: float = 0.
|
59
|
+
iou_threshold: float = 0.20,
|
53
60
|
) -> List[Dict[str, Any]]:
|
54
61
|
"""'grounding_dino' is a tool that can detect and count objects given a text prompt
|
55
62
|
such as category names or referring expressions. It returns a list and count of
|
@@ -61,12 +68,13 @@ def grounding_dino(
|
|
61
68
|
box_threshold (float, optional): The threshold for the box detection. Defaults
|
62
69
|
to 0.20.
|
63
70
|
iou_threshold (float, optional): The threshold for the Intersection over Union
|
64
|
-
(IoU). Defaults to 0.
|
71
|
+
(IoU). Defaults to 0.20.
|
65
72
|
|
66
73
|
Returns:
|
67
74
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and
|
68
75
|
bounding box of the detected objects with normalized coordinates
|
69
|
-
(
|
76
|
+
(xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and
|
77
|
+
xmax and ymax are the coordinates of the bottom-right of the bounding box.
|
70
78
|
|
71
79
|
Example
|
72
80
|
-------
|
@@ -77,7 +85,7 @@ def grounding_dino(
|
|
77
85
|
]
|
78
86
|
"""
|
79
87
|
image_size = image.shape[:2]
|
80
|
-
image_b64 = convert_to_b64(
|
88
|
+
image_b64 = convert_to_b64(image)
|
81
89
|
request_data = {
|
82
90
|
"prompt": prompt,
|
83
91
|
"image": image_b64,
|
@@ -101,7 +109,7 @@ def grounding_sam(
|
|
101
109
|
prompt: str,
|
102
110
|
image: np.ndarray,
|
103
111
|
box_threshold: float = 0.20,
|
104
|
-
iou_threshold: float = 0.
|
112
|
+
iou_threshold: float = 0.20,
|
105
113
|
) -> List[Dict[str, Any]]:
|
106
114
|
"""'grounding_sam' is a tool that can detect and segment objects given a text
|
107
115
|
prompt such as category names or referring expressions. It returns a list of
|
@@ -113,12 +121,15 @@ def grounding_sam(
|
|
113
121
|
box_threshold (float, optional): The threshold for the box detection. Defaults
|
114
122
|
to 0.20.
|
115
123
|
iou_threshold (float, optional): The threshold for the Intersection over Union
|
116
|
-
(IoU). Defaults to 0.
|
124
|
+
(IoU). Defaults to 0.20.
|
117
125
|
|
118
126
|
Returns:
|
119
127
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label,
|
120
128
|
bounding box, and mask of the detected objects with normalized coordinates
|
121
|
-
(
|
129
|
+
(xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and
|
130
|
+
xmax and ymax are the coordinates of the bottom-right of the bounding box.
|
131
|
+
The mask is binary 2D numpy array where 1 indicates the object and 0 indicates
|
132
|
+
the background.
|
122
133
|
|
123
134
|
Example
|
124
135
|
-------
|
@@ -137,7 +148,7 @@ def grounding_sam(
|
|
137
148
|
]
|
138
149
|
"""
|
139
150
|
image_size = image.shape[:2]
|
140
|
-
image_b64 = convert_to_b64(
|
151
|
+
image_b64 = convert_to_b64(image)
|
141
152
|
request_data = {
|
142
153
|
"prompt": prompt,
|
143
154
|
"image": image_b64,
|
@@ -235,6 +246,152 @@ def ocr(image: np.ndarray) -> List[Dict[str, Any]]:
|
|
235
246
|
return output
|
236
247
|
|
237
248
|
|
249
|
+
def zero_shot_counting(image: np.ndarray) -> Dict[str, Any]:
|
250
|
+
"""'zero_shot_counting' is a tool that counts the dominant foreground object given an image and no other information about the content.
|
251
|
+
It returns only the count of the objects in the image.
|
252
|
+
|
253
|
+
Parameters:
|
254
|
+
image (np.ndarray): The image that contains lot of instances of a single object
|
255
|
+
|
256
|
+
Returns:
|
257
|
+
Dict[str, Any]: A dictionary containing the key 'count' and the count as a value. E.g. {count: 12}.
|
258
|
+
|
259
|
+
Example
|
260
|
+
-------
|
261
|
+
>>> zero_shot_counting(image)
|
262
|
+
{'count': 45},
|
263
|
+
|
264
|
+
"""
|
265
|
+
|
266
|
+
image_b64 = convert_to_b64(image)
|
267
|
+
data = {
|
268
|
+
"image": image_b64,
|
269
|
+
"tool": "zero_shot_counting",
|
270
|
+
}
|
271
|
+
resp_data = _send_inference_request(data, "tools")
|
272
|
+
resp_data["heat_map"] = np.array(b64_to_pil(resp_data["heat_map"][0]))
|
273
|
+
return resp_data
|
274
|
+
|
275
|
+
|
276
|
+
def visual_prompt_counting(
|
277
|
+
image: np.ndarray, visual_prompt: Dict[str, List[float]]
|
278
|
+
) -> Dict[str, Any]:
|
279
|
+
"""'visual_prompt_counting' is a tool that counts the dominant foreground object given an image and a visual prompt which is a bounding box describing the object.
|
280
|
+
It returns only the count of the objects in the image.
|
281
|
+
|
282
|
+
Parameters:
|
283
|
+
image (np.ndarray): The image that contains lot of instances of a single object
|
284
|
+
|
285
|
+
Returns:
|
286
|
+
Dict[str, Any]: A dictionary containing the key 'count' and the count as a value. E.g. {count: 12}.
|
287
|
+
|
288
|
+
Example
|
289
|
+
-------
|
290
|
+
>>> visual_prompt_counting(image, {"bbox": [0.1, 0.1, 0.4, 0.42]})
|
291
|
+
{'count': 45},
|
292
|
+
|
293
|
+
"""
|
294
|
+
|
295
|
+
image_size = get_image_size(image)
|
296
|
+
bbox = visual_prompt["bbox"]
|
297
|
+
bbox_str = ", ".join(map(str, denormalize_bbox(bbox, image_size)))
|
298
|
+
image_b64 = convert_to_b64(image)
|
299
|
+
|
300
|
+
data = {
|
301
|
+
"image": image_b64,
|
302
|
+
"prompt": bbox_str,
|
303
|
+
"tool": "few_shot_counting",
|
304
|
+
}
|
305
|
+
resp_data = _send_inference_request(data, "tools")
|
306
|
+
resp_data["heat_map"] = np.array(b64_to_pil(resp_data["heat_map"][0]))
|
307
|
+
return resp_data
|
308
|
+
|
309
|
+
|
310
|
+
def image_question_answering(image: np.ndarray, prompt: str) -> str:
|
311
|
+
"""'image_question_answering_' is a tool that can answer questions about the visual contents of an image given a question and an image.
|
312
|
+
It returns an answer to the question
|
313
|
+
|
314
|
+
Parameters:
|
315
|
+
image (np.ndarray): The reference image used for the question
|
316
|
+
prompt (str): The question about the image
|
317
|
+
|
318
|
+
Returns:
|
319
|
+
str: A string which is the answer to the given prompt. E.g. {'text': 'This image contains a cat sitting on a table with a bowl of milk.'}.
|
320
|
+
|
321
|
+
Example
|
322
|
+
-------
|
323
|
+
>>> image_question_answering(image, 'What is the cat doing ?')
|
324
|
+
'drinking milk'
|
325
|
+
|
326
|
+
"""
|
327
|
+
|
328
|
+
image_b64 = convert_to_b64(image)
|
329
|
+
data = {
|
330
|
+
"image": image_b64,
|
331
|
+
"prompt": prompt,
|
332
|
+
"tool": "image_question_answering",
|
333
|
+
}
|
334
|
+
|
335
|
+
answer = _send_inference_request(data, "tools")
|
336
|
+
return answer["text"][0] # type: ignore
|
337
|
+
|
338
|
+
|
339
|
+
def clip(image: np.ndarray, classes: List[str]) -> Dict[str, Any]:
|
340
|
+
"""'clip' is a tool that can classify an image given a list of input classes or tags.
|
341
|
+
It returns the same list of the input classes along with their probability scores based on image content.
|
342
|
+
|
343
|
+
Parameters:
|
344
|
+
image (np.ndarray): The image to classify or tag
|
345
|
+
classes (List[str]): The list of classes or tags that is associated with the image
|
346
|
+
|
347
|
+
Returns:
|
348
|
+
Dict[str, Any]: A dictionary containing the labels and scores. One dictionary contains a list of given labels and other a list of scores.
|
349
|
+
|
350
|
+
Example
|
351
|
+
-------
|
352
|
+
>>> clip(image, ['dog', 'cat', 'bird'])
|
353
|
+
{"labels": ["dog", "cat", "bird"], "scores": [0.68, 0.30, 0.02]},
|
354
|
+
|
355
|
+
"""
|
356
|
+
|
357
|
+
image_b64 = convert_to_b64(image)
|
358
|
+
data = {
|
359
|
+
"prompt": ",".join(classes),
|
360
|
+
"image": image_b64,
|
361
|
+
"tool": "closed_set_image_classification",
|
362
|
+
}
|
363
|
+
resp_data = _send_inference_request(data, "tools")
|
364
|
+
resp_data["scores"] = [round(prob, 4) for prob in resp_data["scores"]]
|
365
|
+
return resp_data
|
366
|
+
|
367
|
+
|
368
|
+
def image_caption(image: np.ndarray) -> str:
|
369
|
+
"""'image_caption' is a tool that can caption an image based on its contents.
|
370
|
+
It returns a text describing the image.
|
371
|
+
|
372
|
+
Parameters:
|
373
|
+
image (np.ndarray): The image to caption
|
374
|
+
|
375
|
+
Returns:
|
376
|
+
str: A string which is the caption for the given image.
|
377
|
+
|
378
|
+
Example
|
379
|
+
-------
|
380
|
+
>>> image_caption(image)
|
381
|
+
'This image contains a cat sitting on a table with a bowl of milk.'
|
382
|
+
|
383
|
+
"""
|
384
|
+
|
385
|
+
image_b64 = convert_to_b64(image)
|
386
|
+
data = {
|
387
|
+
"image": image_b64,
|
388
|
+
"tool": "image_captioning",
|
389
|
+
}
|
390
|
+
|
391
|
+
answer = _send_inference_request(data, "tools")
|
392
|
+
return answer["text"][0] # type: ignore
|
393
|
+
|
394
|
+
|
238
395
|
def closest_mask_distance(mask1: np.ndarray, mask2: np.ndarray) -> float:
|
239
396
|
"""'closest_mask_distance' calculates the closest distance between two masks.
|
240
397
|
|
@@ -504,6 +661,11 @@ TOOLS = [
|
|
504
661
|
grounding_sam,
|
505
662
|
extract_frames,
|
506
663
|
ocr,
|
664
|
+
clip,
|
665
|
+
zero_shot_counting,
|
666
|
+
visual_prompt_counting,
|
667
|
+
image_question_answering,
|
668
|
+
image_caption,
|
507
669
|
closest_mask_distance,
|
508
670
|
closest_box_distance,
|
509
671
|
save_json,
|
@@ -4,6 +4,7 @@
|
|
4
4
|
import base64 as b64
|
5
5
|
import io
|
6
6
|
import re
|
7
|
+
from time import sleep
|
7
8
|
from typing import Dict, List, Tuple
|
8
9
|
|
9
10
|
import nbformat
|
@@ -75,6 +76,7 @@ class Execute:
|
|
75
76
|
self.terminate()
|
76
77
|
self.nb = nbformat.v4.new_notebook()
|
77
78
|
self.nb_client = NotebookClient(self.nb, timeout=self.timeout)
|
79
|
+
sleep(1)
|
78
80
|
self.build()
|
79
81
|
|
80
82
|
def run_cell(self, cell: NotebookNode, cell_index: int) -> Tuple[bool, str]:
|
@@ -83,6 +85,7 @@ class Execute:
|
|
83
85
|
return parse_outputs(self.nb.cells[-1].outputs)
|
84
86
|
except CellTimeoutError:
|
85
87
|
run_sync(self.nb_client.km.interrupt_kernel)() # type: ignore
|
88
|
+
sleep(1)
|
86
89
|
return False, "Cell execution timed out."
|
87
90
|
except DeadKernelError:
|
88
91
|
self.reset()
|
@@ -104,15 +104,20 @@ def convert_to_b64(data: Union[str, Path, np.ndarray, ImageType]) -> str:
|
|
104
104
|
"""
|
105
105
|
if data is None:
|
106
106
|
raise ValueError(f"Invalid input image: {data}. Input image can't be None.")
|
107
|
+
|
107
108
|
if isinstance(data, (str, Path)):
|
108
109
|
data = Image.open(data)
|
110
|
+
elif isinstance(data, np.ndarray):
|
111
|
+
data = Image.fromarray(data)
|
112
|
+
|
109
113
|
if isinstance(data, Image.Image):
|
110
114
|
buffer = BytesIO()
|
111
115
|
data.convert("RGB").save(buffer, format="PNG")
|
112
116
|
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
113
117
|
else:
|
114
|
-
|
115
|
-
|
118
|
+
raise ValueError(
|
119
|
+
f"Invalid input image: {data}. Input image must be a PIL Image or a numpy array."
|
120
|
+
)
|
116
121
|
|
117
122
|
|
118
123
|
def denormalize_bbox(
|
@@ -12,7 +12,7 @@ class LandingaiAPIKey(BaseSettings):
|
|
12
12
|
"""
|
13
13
|
|
14
14
|
api_key: str = Field(
|
15
|
-
default="
|
15
|
+
default="land_sk_IJrojHarPXRjqDj1Fng76mX7yCbzVm1s5rZYxaNXu5v0cNLn0w",
|
16
16
|
alias="LANDINGAI_API_KEY",
|
17
17
|
description="The API key of LandingAI.",
|
18
18
|
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|