vision-agent 0.2.183__tar.gz → 0.2.185__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {vision_agent-0.2.183 → vision_agent-0.2.185}/PKG-INFO +1 -1
- {vision_agent-0.2.183 → vision_agent-0.2.185}/pyproject.toml +1 -1
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/tools/__init__.py +1 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/tools/tools.py +133 -58
- {vision_agent-0.2.183 → vision_agent-0.2.185}/LICENSE +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/README.md +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/__init__.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/__init__.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/agent.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/agent_utils.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_coder.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_coder_prompts.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_planner.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_planner_prompts.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_prompts.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/clients/__init__.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/clients/http.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/clients/landing_public_api.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/fonts/__init__.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/lmm/__init__.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/lmm/lmm.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/lmm/types.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/tools/meta_tools.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/tools/prompts.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/tools/tool_utils.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/tools/tools_types.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/__init__.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/exceptions.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/execute.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/image_utils.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/sim.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/type_defs.py +0 -0
- {vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/utils/video.py +0 -0
@@ -28,10 +28,8 @@ from vision_agent.tools.tool_utils import (
|
|
28
28
|
send_task_inference_request,
|
29
29
|
)
|
30
30
|
from vision_agent.tools.tools_types import (
|
31
|
-
Florence2FtRequest,
|
32
31
|
JobStatus,
|
33
32
|
ODResponseData,
|
34
|
-
PromptTask,
|
35
33
|
)
|
36
34
|
from vision_agent.utils.exceptions import FineTuneModelIsNotReady
|
37
35
|
from vision_agent.utils.execute import FileSerializer, MimeType
|
@@ -421,8 +419,15 @@ def florence2_sam2_image(
|
|
421
419
|
if image.shape[0] < 1 or image.shape[1] < 1:
|
422
420
|
return []
|
423
421
|
|
422
|
+
buffer_bytes = numpy_to_bytes(image)
|
423
|
+
files = [("image", buffer_bytes)]
|
424
|
+
payload = {
|
425
|
+
"prompt": prompt,
|
426
|
+
"model": "florence2sam2",
|
427
|
+
}
|
428
|
+
metadata = {"function_name": "florence2_sam2_image"}
|
429
|
+
|
424
430
|
if fine_tune_id is not None:
|
425
|
-
image_b64 = convert_to_b64(image)
|
426
431
|
landing_api = LandingPublicAPI()
|
427
432
|
status = landing_api.check_fine_tuning_job(UUID(fine_tune_id))
|
428
433
|
if status is not JobStatus.SUCCEEDED:
|
@@ -430,58 +435,31 @@ def florence2_sam2_image(
|
|
430
435
|
f"Fine-tuned model {fine_tune_id} is not ready yet"
|
431
436
|
)
|
432
437
|
|
433
|
-
|
434
|
-
image=image_b64,
|
435
|
-
task=PromptTask.PHRASE_GROUNDING,
|
436
|
-
prompt=prompt,
|
437
|
-
postprocessing="sam2",
|
438
|
-
job_id=UUID(fine_tune_id),
|
439
|
-
)
|
440
|
-
req_data = req_data_obj.model_dump(by_alias=True, exclude_none=True)
|
441
|
-
detections_ft = send_inference_request(
|
442
|
-
req_data,
|
443
|
-
"florence2-ft",
|
444
|
-
v2=True,
|
445
|
-
is_form=True,
|
446
|
-
metadata_payload={"function_name": "florence2_sam2_image"},
|
447
|
-
)
|
448
|
-
# get the first frame
|
449
|
-
detection = detections_ft[0]
|
450
|
-
return_data = []
|
451
|
-
for i in range(len(detection["bboxes"])):
|
452
|
-
return_data.append(
|
453
|
-
{
|
454
|
-
"score": 1.0,
|
455
|
-
"label": detection["labels"][i],
|
456
|
-
"bbox": normalize_bbox(
|
457
|
-
detection["bboxes"][i], detection["masks"][i]["size"]
|
458
|
-
),
|
459
|
-
"mask": rle_decode_array(detection["masks"][i]),
|
460
|
-
}
|
461
|
-
)
|
462
|
-
return return_data
|
438
|
+
payload["jobId"] = fine_tune_id
|
463
439
|
|
464
|
-
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
}
|
470
|
-
detections: Dict[str, Any] = send_inference_request(
|
471
|
-
payload, "florence2-sam2", files=files, v2=True
|
440
|
+
detections = send_task_inference_request(
|
441
|
+
payload,
|
442
|
+
"text-to-instance-segmentation",
|
443
|
+
files=files,
|
444
|
+
metadata=metadata,
|
472
445
|
)
|
473
446
|
|
447
|
+
# get the first frame
|
448
|
+
frame = detections[0]
|
474
449
|
return_data = []
|
475
|
-
for
|
476
|
-
mask = rle_decode_array(
|
477
|
-
label =
|
478
|
-
bbox = normalize_bbox(
|
450
|
+
for detection in frame:
|
451
|
+
mask = rle_decode_array(detection["mask"])
|
452
|
+
label = detection["label"]
|
453
|
+
bbox = normalize_bbox(detection["bounding_box"], detection["mask"]["size"])
|
479
454
|
return_data.append({"label": label, "bbox": bbox, "mask": mask, "score": 1.0})
|
480
455
|
return return_data
|
481
456
|
|
482
457
|
|
483
458
|
def florence2_sam2_video_tracking(
|
484
|
-
prompt: str,
|
459
|
+
prompt: str,
|
460
|
+
frames: List[np.ndarray],
|
461
|
+
chunk_length: Optional[int] = 3,
|
462
|
+
fine_tune_id: Optional[str] = None,
|
485
463
|
) -> List[List[Dict[str, Any]]]:
|
486
464
|
"""'florence2_sam2_video_tracking' is a tool that can segment and track multiple
|
487
465
|
entities in a video given a text prompt such as category names or referring
|
@@ -494,6 +472,8 @@ def florence2_sam2_video_tracking(
|
|
494
472
|
frames (List[np.ndarray]): The list of frames to ground the prompt to.
|
495
473
|
chunk_length (Optional[int]): The number of frames to re-run florence2 to find
|
496
474
|
new objects.
|
475
|
+
fine_tune_id (Optional[str]): If you have a fine-tuned model, you can pass the
|
476
|
+
fine-tuned model ID here to use it.
|
497
477
|
|
498
478
|
Returns:
|
499
479
|
List[List[Dict[str, Any]]]: A list of list of dictionaries containing the label
|
@@ -519,24 +499,43 @@ def florence2_sam2_video_tracking(
|
|
519
499
|
...
|
520
500
|
]
|
521
501
|
"""
|
502
|
+
if len(frames) == 0:
|
503
|
+
raise ValueError("No frames provided")
|
522
504
|
|
523
505
|
buffer_bytes = frames_to_bytes(frames)
|
524
506
|
files = [("video", buffer_bytes)]
|
525
507
|
payload = {
|
526
|
-
"
|
527
|
-
"
|
508
|
+
"prompt": prompt,
|
509
|
+
"model": "florence2sam2",
|
528
510
|
}
|
511
|
+
metadata = {"function_name": "florence2_sam2_video_tracking"}
|
512
|
+
|
529
513
|
if chunk_length is not None:
|
530
|
-
payload["
|
531
|
-
|
532
|
-
|
514
|
+
payload["chunk_length_frames"] = chunk_length # type: ignore
|
515
|
+
|
516
|
+
if fine_tune_id is not None:
|
517
|
+
landing_api = LandingPublicAPI()
|
518
|
+
status = landing_api.check_fine_tuning_job(UUID(fine_tune_id))
|
519
|
+
if status is not JobStatus.SUCCEEDED:
|
520
|
+
raise FineTuneModelIsNotReady(
|
521
|
+
f"Fine-tuned model {fine_tune_id} is not ready yet"
|
522
|
+
)
|
523
|
+
|
524
|
+
payload["jobId"] = fine_tune_id
|
525
|
+
|
526
|
+
detections = send_task_inference_request(
|
527
|
+
payload,
|
528
|
+
"text-to-instance-segmentation",
|
529
|
+
files=files,
|
530
|
+
metadata=metadata,
|
533
531
|
)
|
532
|
+
|
534
533
|
return_data = []
|
535
|
-
for
|
534
|
+
for frame in detections:
|
536
535
|
return_frame_data = []
|
537
|
-
for
|
538
|
-
mask = rle_decode_array(
|
539
|
-
label =
|
536
|
+
for detection in frame:
|
537
|
+
mask = rle_decode_array(detection["mask"])
|
538
|
+
label = str(detection["id"]) + ": " + detection["label"]
|
540
539
|
return_frame_data.append({"label": label, "mask": mask, "score": 1.0})
|
541
540
|
return_data.append(return_frame_data)
|
542
541
|
return return_data
|
@@ -552,7 +551,7 @@ def ocr(image: np.ndarray) -> List[Dict[str, Any]]:
|
|
552
551
|
|
553
552
|
Returns:
|
554
553
|
List[Dict[str, Any]]: A list of dictionaries containing the detected text, bbox
|
555
|
-
with
|
554
|
+
with normalized coordinates, and confidence score.
|
556
555
|
|
557
556
|
Example
|
558
557
|
-------
|
@@ -608,7 +607,7 @@ def loca_zero_shot_counting(image: np.ndarray) -> Dict[str, Any]:
|
|
608
607
|
|
609
608
|
Returns:
|
610
609
|
Dict[str, Any]: A dictionary containing the key 'count' and the count as a
|
611
|
-
value, e.g. {count: 12} and a heat map for
|
610
|
+
value, e.g. {count: 12} and a heat map for visualization purposes.
|
612
611
|
|
613
612
|
Example
|
614
613
|
-------
|
@@ -647,7 +646,7 @@ def loca_visual_prompt_counting(
|
|
647
646
|
|
648
647
|
Returns:
|
649
648
|
Dict[str, Any]: A dictionary containing the key 'count' and the count as a
|
650
|
-
value, e.g. {count: 12} and a heat map for
|
649
|
+
value, e.g. {count: 12} and a heat map for visualization purposes.
|
651
650
|
|
652
651
|
Example
|
653
652
|
-------
|
@@ -1773,6 +1772,82 @@ def closest_box_distance(
|
|
1773
1772
|
return cast(float, np.sqrt(horizontal_distance**2 + vertical_distance**2))
|
1774
1773
|
|
1775
1774
|
|
1775
|
+
def flux_image_inpainting(
|
1776
|
+
prompt: str,
|
1777
|
+
image: np.ndarray,
|
1778
|
+
mask: np.ndarray,
|
1779
|
+
) -> np.ndarray:
|
1780
|
+
"""'flux_image_inpainting' performs image inpainting to fill the masked regions,
|
1781
|
+
given by mask, in the image, given image based on the text prompt and surrounding image context.
|
1782
|
+
It can be used to edit regions of an image according to the prompt given.
|
1783
|
+
|
1784
|
+
Parameters:
|
1785
|
+
prompt (str): A detailed text description guiding what should be generated
|
1786
|
+
in the masked area. More detailed and specific prompts typically yield better results.
|
1787
|
+
image (np.ndarray): The source image to be inpainted.
|
1788
|
+
The image will serve as the base context for the inpainting process.
|
1789
|
+
mask (np.ndarray): A binary mask image with 0's and 1's,
|
1790
|
+
where 1 indicates areas to be inpainted and 0 indicates areas to be preserved.
|
1791
|
+
|
1792
|
+
Returns:
|
1793
|
+
np.ndarray:
|
1794
|
+
The generated image(s) as a numpy array in RGB format
|
1795
|
+
with values ranging from 0 to 255.
|
1796
|
+
|
1797
|
+
-------
|
1798
|
+
Example:
|
1799
|
+
>>> # Generate inpainting
|
1800
|
+
>>> result = flux_image_inpainting(
|
1801
|
+
... prompt="a modern black leather sofa with white pillows",
|
1802
|
+
... image=image,
|
1803
|
+
... mask=mask,
|
1804
|
+
... )
|
1805
|
+
>>> save_image(result, "inpainted_room.png")
|
1806
|
+
"""
|
1807
|
+
if (
|
1808
|
+
image.shape[0] < 8
|
1809
|
+
or image.shape[1] < 8
|
1810
|
+
or mask.shape[0] < 8
|
1811
|
+
or mask.shape[1] < 8
|
1812
|
+
):
|
1813
|
+
raise ValueError("The image or mask does not have enough size for inpainting")
|
1814
|
+
|
1815
|
+
if np.array_equal(mask, mask.astype(bool).astype(int)):
|
1816
|
+
mask = np.where(mask > 0, 255, 0).astype(np.uint8)
|
1817
|
+
else:
|
1818
|
+
raise ValueError("The mask should be a binary mask with 0's and 1's")
|
1819
|
+
|
1820
|
+
image_file = numpy_to_bytes(image)
|
1821
|
+
mask_file = numpy_to_bytes(mask)
|
1822
|
+
|
1823
|
+
files = [
|
1824
|
+
("image", image_file),
|
1825
|
+
("mask_image", mask_file),
|
1826
|
+
]
|
1827
|
+
|
1828
|
+
payload = {
|
1829
|
+
"prompt": prompt,
|
1830
|
+
"task": "inpainting",
|
1831
|
+
"height": image.shape[0],
|
1832
|
+
"width": image.shape[1],
|
1833
|
+
"strength": 0.99,
|
1834
|
+
"guidance_scale": 18,
|
1835
|
+
"num_inference_steps": 20,
|
1836
|
+
"seed": None,
|
1837
|
+
}
|
1838
|
+
|
1839
|
+
response = send_inference_request(
|
1840
|
+
payload=payload,
|
1841
|
+
endpoint_name="flux1",
|
1842
|
+
files=files,
|
1843
|
+
v2=True,
|
1844
|
+
metadata_payload={"function_name": "flux_image_inpainting"},
|
1845
|
+
)
|
1846
|
+
|
1847
|
+
output_image = np.array(b64_to_pil(response[0]).convert("RGB"))
|
1848
|
+
return output_image
|
1849
|
+
|
1850
|
+
|
1776
1851
|
# Utility and visualization functions
|
1777
1852
|
|
1778
1853
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_coder_prompts.py
RENAMED
File without changes
|
File without changes
|
{vision_agent-0.2.183 → vision_agent-0.2.185}/vision_agent/agent/vision_agent_planner_prompts.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|