vision-agent 0.2.177__tar.gz → 0.2.179__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (35) hide show
  1. {vision_agent-0.2.177 → vision_agent-0.2.179}/PKG-INFO +1 -1
  2. {vision_agent-0.2.177 → vision_agent-0.2.179}/pyproject.toml +1 -1
  3. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/tools/__init__.py +2 -0
  4. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/tools/tools.py +81 -0
  5. {vision_agent-0.2.177 → vision_agent-0.2.179}/LICENSE +0 -0
  6. {vision_agent-0.2.177 → vision_agent-0.2.179}/README.md +0 -0
  7. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/__init__.py +0 -0
  8. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/__init__.py +0 -0
  9. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/agent.py +0 -0
  10. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/agent_utils.py +0 -0
  11. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/vision_agent.py +0 -0
  12. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/vision_agent_coder.py +0 -0
  13. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/vision_agent_coder_prompts.py +0 -0
  14. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/vision_agent_planner.py +0 -0
  15. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/vision_agent_planner_prompts.py +0 -0
  16. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/agent/vision_agent_prompts.py +0 -0
  17. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/clients/__init__.py +0 -0
  18. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/clients/http.py +0 -0
  19. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/clients/landing_public_api.py +0 -0
  20. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/fonts/__init__.py +0 -0
  21. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
  22. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/lmm/__init__.py +0 -0
  23. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/lmm/lmm.py +0 -0
  24. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/lmm/types.py +0 -0
  25. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/tools/meta_tools.py +0 -0
  26. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/tools/prompts.py +0 -0
  27. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/tools/tool_utils.py +0 -0
  28. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/tools/tools_types.py +0 -0
  29. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/__init__.py +0 -0
  30. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/exceptions.py +0 -0
  31. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/execute.py +0 -0
  32. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/image_utils.py +0 -0
  33. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/sim.py +0 -0
  34. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/type_defs.py +0 -0
  35. {vision_agent-0.2.177 → vision_agent-0.2.179}/vision_agent/utils/video.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vision-agent
3
- Version: 0.2.177
3
+ Version: 0.2.179
4
4
  Summary: Toolset for Vision Agent
5
5
  Author: Landing AI
6
6
  Author-email: dev@landing.ai
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
4
4
 
5
5
  [tool.poetry]
6
6
  name = "vision-agent"
7
- version = "0.2.177"
7
+ version = "0.2.179"
8
8
  description = "Toolset for Vision Agent"
9
9
  authors = ["Landing AI <dev@landing.ai>"]
10
10
  readme = "README.md"
@@ -65,6 +65,8 @@ from .tools import (
65
65
  template_match,
66
66
  vit_image_classification,
67
67
  vit_nsfw_classification,
68
+ qwen2_vl_images_vqa,
69
+ video_temporal_localization,
68
70
  )
69
71
 
70
72
  __new_tools__ = [
@@ -852,6 +852,39 @@ def ixc25_image_vqa(prompt: str, image: np.ndarray) -> str:
852
852
  return cast(str, data["answer"])
853
853
 
854
854
 
855
+ def qwen2_vl_images_vqa(prompt: str, images: List[np.ndarray]) -> str:
856
+ """'qwen2_vl_images_vqa' is a tool that can answer any questions about arbitrary images
857
+ including regular images or images of documents or presentations. It returns text
858
+ as an answer to the question.
859
+
860
+ Parameters:
861
+ prompt (str): The question about the document image
862
+ images (List[np.ndarray]): The reference images used for the question
863
+
864
+ Returns:
865
+ str: A string which is the answer to the given prompt.
866
+
867
+ Example
868
+ -------
869
+ >>> qwen2_vl_images_vqa('Give a summary of the document', images)
870
+ 'The document talks about the history of the United States of America and its...'
871
+ """
872
+ for image in images:
873
+ if image.shape[0] < 1 or image.shape[1] < 1:
874
+ raise ValueError(f"Image is empty, image shape: {image.shape}")
875
+
876
+ files = [("images", numpy_to_bytes(image)) for image in images]
877
+ payload = {
878
+ "prompt": prompt,
879
+ "model": "qwen2vl",
880
+ "function_name": "qwen2_vl_images_vqa",
881
+ }
882
+ data: Dict[str, Any] = send_inference_request(
883
+ payload, "image-to-text", files=files, v2=True
884
+ )
885
+ return cast(str, data)
886
+
887
+
855
888
  def ixc25_video_vqa(prompt: str, frames: List[np.ndarray]) -> str:
856
889
  """'ixc25_video_vqa' is a tool that can answer any questions about arbitrary videos
857
890
  including regular videos or videos of documents or presentations. It returns text
@@ -975,6 +1008,54 @@ def git_vqa_v2(prompt: str, image: np.ndarray) -> str:
975
1008
  return answer["text"][0] # type: ignore
976
1009
 
977
1010
 
1011
+ def video_temporal_localization(
1012
+ prompt: str,
1013
+ frames: List[np.ndarray],
1014
+ model: str = "qwen2vl",
1015
+ chunk_length: Optional[float] = None,
1016
+ chunk_length_seconds: Optional[float] = None,
1017
+ chunk_length_frames: Optional[int] = 2,
1018
+ ) -> List[float]:
1019
+ """'video_temporal_localization' is a tool that can find objects in a video given a question about it.
1020
+ It returns a list of floats with a value of 1.0 if the object to be found is present in the chunk of video being analyzed.
1021
+
1022
+ Parameters:
1023
+ prompt (str): The question about the video
1024
+ frames (List[np.ndarray]): The reference frames used for the question
1025
+ model (str): The model to use for the inference. Valid values are 'qwen2vl', 'gpt4o', 'internlm-xcomposer'
1026
+ chunk_length (Optional[float]): length of each chunk in seconds
1027
+ chunk_length_seconds (Optional[float]): alternative length for chunk in seconds
1028
+ chunk_length_frames (Optional[int]): length of each chunk in frames
1029
+
1030
+ Returns:
1031
+ List[float]: A list of floats with a value of 1.0 if the object to be found is present in the chunk of video
1032
+
1033
+ Example
1034
+ -------
1035
+ >>> video_temporal_localization('Did a goal happened?', frames)
1036
+ [0.0, 0.0, 0.0, 1.0, 1.0, 0.0]
1037
+ """
1038
+
1039
+ buffer_bytes = frames_to_bytes(frames)
1040
+ files = [("video", buffer_bytes)]
1041
+ payload: Dict[str, Any] = {
1042
+ "prompt": prompt,
1043
+ "model": model,
1044
+ "function_name": "video_temporal_localization",
1045
+ }
1046
+ if chunk_length is not None:
1047
+ payload["chunk_length"] = chunk_length
1048
+ if chunk_length_seconds is not None:
1049
+ payload["chunk_length_seconds"] = chunk_length_seconds
1050
+ if chunk_length_frames is not None:
1051
+ payload["chunk_length_frames"] = chunk_length_frames
1052
+
1053
+ data = send_inference_request(
1054
+ payload, "video-temporal-localization", files=files, v2=True
1055
+ )
1056
+ return [cast(float, value) for value in data]
1057
+
1058
+
978
1059
  def clip(image: np.ndarray, classes: List[str]) -> Dict[str, Any]:
979
1060
  """'clip' is a tool that can classify an image or a cropped detection given a list
980
1061
  of input classes or tags. It returns the same list of the input classes along with
File without changes
File without changes