vision-agent 0.2.163__tar.gz → 0.2.165__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {vision_agent-0.2.163 → vision_agent-0.2.165}/PKG-INFO +7 -2
- {vision_agent-0.2.163 → vision_agent-0.2.165}/README.md +6 -1
- {vision_agent-0.2.163 → vision_agent-0.2.165}/pyproject.toml +1 -1
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent.py +94 -64
- vision_agent-0.2.165/vision_agent/agent/vision_agent_prompts.py +251 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/tools/__init__.py +0 -1
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/tools/meta_tools.py +67 -61
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/tools/tools.py +26 -42
- vision_agent-0.2.163/vision_agent/agent/vision_agent_prompts.py +0 -194
- {vision_agent-0.2.163 → vision_agent-0.2.165}/LICENSE +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/__init__.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/__init__.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/agent.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/agent_utils.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent_coder.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent_coder_prompts.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent_planner.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent_planner_prompts.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/clients/__init__.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/clients/http.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/clients/landing_public_api.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/fonts/__init__.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/lmm/__init__.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/lmm/lmm.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/lmm/types.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/tools/prompts.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/tools/tool_utils.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/tools/tools_types.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/__init__.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/exceptions.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/execute.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/image_utils.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/sim.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/type_defs.py +0 -0
- {vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/utils/video.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vision-agent
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.165
|
4
4
|
Summary: Toolset for Vision Agent
|
5
5
|
Author: Landing AI
|
6
6
|
Author-email: dev@landing.ai
|
@@ -41,7 +41,7 @@ Project-URL: repository, https://github.com/landing-ai/vision-agent
|
|
41
41
|
Description-Content-Type: text/markdown
|
42
42
|
|
43
43
|
<div align="center">
|
44
|
-
<img alt="vision_agent" height="200px" src="https://github.com/landing-ai/vision-agent/blob/main/assets/logo.
|
44
|
+
<img alt="vision_agent" height="200px" src="https://github.com/landing-ai/vision-agent/blob/main/assets/logo.png?raw=true">
|
45
45
|
|
46
46
|
# 🔍🤖 Vision Agent
|
47
47
|
[![](https://dcbadge.vercel.app/api/server/wPdN8RCYew?compact=true&style=flat)](https://discord.gg/wPdN8RCYew)
|
@@ -387,6 +387,11 @@ result = agent.generate_code(conv)
|
|
387
387
|
|
388
388
|
|
389
389
|
## Additional Backends
|
390
|
+
### E2B Code Execution
|
391
|
+
If you wish to run your code on the E2B backend, make sure you have your `E2B_API_KEY`
|
392
|
+
set and then set `CODE_SANDBOX_RUNTIME=e2b` in your environment variables. This will
|
393
|
+
run all the agent generated code on the E2B backend.
|
394
|
+
|
390
395
|
### Anthropic
|
391
396
|
`AnthropicVisionAgentCoder` uses Anthropic. To get started you just need to get an
|
392
397
|
Anthropic API key and set it in your environment variables:
|
@@ -1,5 +1,5 @@
|
|
1
1
|
<div align="center">
|
2
|
-
<img alt="vision_agent" height="200px" src="https://github.com/landing-ai/vision-agent/blob/main/assets/logo.
|
2
|
+
<img alt="vision_agent" height="200px" src="https://github.com/landing-ai/vision-agent/blob/main/assets/logo.png?raw=true">
|
3
3
|
|
4
4
|
# 🔍🤖 Vision Agent
|
5
5
|
[![](https://dcbadge.vercel.app/api/server/wPdN8RCYew?compact=true&style=flat)](https://discord.gg/wPdN8RCYew)
|
@@ -345,6 +345,11 @@ result = agent.generate_code(conv)
|
|
345
345
|
|
346
346
|
|
347
347
|
## Additional Backends
|
348
|
+
### E2B Code Execution
|
349
|
+
If you wish to run your code on the E2B backend, make sure you have your `E2B_API_KEY`
|
350
|
+
set and then set `CODE_SANDBOX_RUNTIME=e2b` in your environment variables. This will
|
351
|
+
run all the agent generated code on the E2B backend.
|
352
|
+
|
348
353
|
### Anthropic
|
349
354
|
`AnthropicVisionAgentCoder` uses Anthropic. To get started you just need to get an
|
350
355
|
Anthropic API key and set it in your environment variables:
|
@@ -1,4 +1,5 @@
|
|
1
1
|
import copy
|
2
|
+
import json
|
2
3
|
import logging
|
3
4
|
import os
|
4
5
|
import tempfile
|
@@ -6,7 +7,7 @@ from pathlib import Path
|
|
6
7
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
|
7
8
|
|
8
9
|
from vision_agent.agent import Agent
|
9
|
-
from vision_agent.agent.agent_utils import extract_json
|
10
|
+
from vision_agent.agent.agent_utils import extract_json, extract_tag
|
10
11
|
from vision_agent.agent.vision_agent_prompts import (
|
11
12
|
EXAMPLES_CODE1,
|
12
13
|
EXAMPLES_CODE2,
|
@@ -18,6 +19,7 @@ from vision_agent.tools.meta_tools import (
|
|
18
19
|
META_TOOL_DOCSTRING,
|
19
20
|
Artifacts,
|
20
21
|
check_and_load_image,
|
22
|
+
extract_and_save_files_to_artifacts,
|
21
23
|
use_extra_vision_agent_args,
|
22
24
|
)
|
23
25
|
from vision_agent.utils import CodeInterpreterFactory
|
@@ -35,7 +37,7 @@ class BoilerplateCode:
|
|
35
37
|
pre_code = [
|
36
38
|
"from typing import *",
|
37
39
|
"from vision_agent.utils.execute import CodeInterpreter",
|
38
|
-
"from vision_agent.tools.meta_tools import Artifacts, open_code_artifact, create_code_artifact, edit_code_artifact, get_tool_descriptions, generate_vision_code, edit_vision_code,
|
40
|
+
"from vision_agent.tools.meta_tools import Artifacts, open_code_artifact, create_code_artifact, edit_code_artifact, get_tool_descriptions, generate_vision_code, edit_vision_code, view_media_artifact, object_detection_fine_tuning, use_object_detection_fine_tuning",
|
39
41
|
"artifacts = Artifacts('{remote_path}')",
|
40
42
|
"artifacts.load('{remote_path}')",
|
41
43
|
]
|
@@ -57,6 +59,32 @@ class BoilerplateCode:
|
|
57
59
|
)
|
58
60
|
|
59
61
|
|
62
|
+
def format_agent_message(agent_message: str) -> str:
|
63
|
+
agent_message_json = extract_json(agent_message)
|
64
|
+
output = ""
|
65
|
+
if "thinking" in agent_message_json and agent_message_json["thinking"]:
|
66
|
+
output += "<thinking>" + agent_message_json["thinking"] + "</thinking>"
|
67
|
+
if "response" in agent_message_json and agent_message_json["response"]:
|
68
|
+
output += "<response>" + agent_message_json["response"] + "</response>"
|
69
|
+
if "execute_python" in agent_message_json and agent_message_json["execute_python"]:
|
70
|
+
output += (
|
71
|
+
"\n<execute_python>\n"
|
72
|
+
+ agent_message_json["execute_python"]
|
73
|
+
+ "\n</execute_python>\n"
|
74
|
+
)
|
75
|
+
if (
|
76
|
+
"let_user_respond" in agent_message_json
|
77
|
+
and agent_message_json["let_user_respond"]
|
78
|
+
):
|
79
|
+
output += (
|
80
|
+
"<let_user_respond>"
|
81
|
+
+ str(agent_message_json["let_user_respond"])
|
82
|
+
+ "</let_user_respond>"
|
83
|
+
)
|
84
|
+
|
85
|
+
return output
|
86
|
+
|
87
|
+
|
60
88
|
def run_conversation(orch: LMM, chat: List[Message]) -> Dict[str, Any]:
|
61
89
|
chat = copy.deepcopy(chat)
|
62
90
|
|
@@ -67,7 +95,7 @@ def run_conversation(orch: LMM, chat: List[Message]) -> Dict[str, Any]:
|
|
67
95
|
elif chat_i["role"] == "observation":
|
68
96
|
conversation += f"OBSERVATION:\n{chat_i['content']}\n\n"
|
69
97
|
elif chat_i["role"] == "assistant":
|
70
|
-
conversation += f"AGENT: {chat_i['content']}\n\n"
|
98
|
+
conversation += f"AGENT: {format_agent_message(chat_i['content'])}\n\n" # type: ignore
|
71
99
|
else:
|
72
100
|
raise ValueError(f"role {chat_i['role']} is not supported")
|
73
101
|
|
@@ -84,15 +112,31 @@ def run_conversation(orch: LMM, chat: List[Message]) -> Dict[str, Any]:
|
|
84
112
|
and len(chat[-1]["media"]) > 0 # type: ignore
|
85
113
|
):
|
86
114
|
message["media"] = chat[-1]["media"]
|
87
|
-
|
115
|
+
conv_resp = cast(str, orch([message], stream=False))
|
116
|
+
|
117
|
+
let_user_respond_str = extract_tag(conv_resp, "let_user_respond")
|
118
|
+
let_user_respond = (
|
119
|
+
"true" in let_user_respond_str.lower() if let_user_respond_str else False
|
120
|
+
)
|
121
|
+
|
122
|
+
return {
|
123
|
+
"thinking": extract_tag(conv_resp, "thinking"),
|
124
|
+
"response": extract_tag(conv_resp, "response"),
|
125
|
+
"execute_python": extract_tag(conv_resp, "execute_python"),
|
126
|
+
"let_user_respond": let_user_respond,
|
127
|
+
}
|
88
128
|
|
89
129
|
|
90
130
|
def execute_code_action(
|
91
|
-
|
131
|
+
artifacts: Artifacts,
|
132
|
+
code: str,
|
133
|
+
code_interpreter: CodeInterpreter,
|
134
|
+
artifact_remote_path: str,
|
92
135
|
) -> Tuple[Execution, str]:
|
93
136
|
result = code_interpreter.exec_isolation(
|
94
137
|
BoilerplateCode.add_boilerplate(code, remote_path=artifact_remote_path)
|
95
138
|
)
|
139
|
+
extract_and_save_files_to_artifacts(artifacts, code)
|
96
140
|
|
97
141
|
obs = str(result.logs)
|
98
142
|
if result.error:
|
@@ -100,33 +144,8 @@ def execute_code_action(
|
|
100
144
|
return result, obs
|
101
145
|
|
102
146
|
|
103
|
-
def parse_execution(
|
104
|
-
response: str,
|
105
|
-
test_multi_plan: bool = True,
|
106
|
-
custom_tool_names: Optional[List[str]] = None,
|
107
|
-
) -> Optional[str]:
|
108
|
-
code = None
|
109
|
-
remaining = response
|
110
|
-
all_code = []
|
111
|
-
while "<execute_python>" in remaining:
|
112
|
-
code_i = remaining[
|
113
|
-
remaining.find("<execute_python>") + len("<execute_python>") :
|
114
|
-
]
|
115
|
-
code_i = code_i[: code_i.find("</execute_python>")]
|
116
|
-
remaining = remaining[
|
117
|
-
remaining.find("</execute_python>") + len("</execute_python>") :
|
118
|
-
]
|
119
|
-
all_code.append(code_i)
|
120
|
-
|
121
|
-
if len(all_code) > 0:
|
122
|
-
code = "\n".join(all_code)
|
123
|
-
|
124
|
-
if code is not None:
|
125
|
-
code = use_extra_vision_agent_args(code, test_multi_plan, custom_tool_names)
|
126
|
-
return code
|
127
|
-
|
128
|
-
|
129
147
|
def execute_user_code_action(
|
148
|
+
artifacts: Artifacts,
|
130
149
|
last_user_message: Message,
|
131
150
|
code_interpreter: CodeInterpreter,
|
132
151
|
artifact_remote_path: str,
|
@@ -138,40 +157,43 @@ def execute_user_code_action(
|
|
138
157
|
return user_result, user_obs
|
139
158
|
|
140
159
|
last_user_content = cast(str, last_user_message.get("content", ""))
|
160
|
+
try:
|
161
|
+
user_code_action = json.loads(last_user_content).get("execute_python", None)
|
162
|
+
except json.JSONDecodeError:
|
163
|
+
return user_result, user_obs
|
141
164
|
|
142
|
-
user_code_action = parse_execution(last_user_content, False)
|
143
165
|
if user_code_action is not None:
|
166
|
+
user_code_action = use_extra_vision_agent_args(user_code_action, False)
|
144
167
|
user_result, user_obs = execute_code_action(
|
145
|
-
user_code_action, code_interpreter, artifact_remote_path
|
168
|
+
artifacts, user_code_action, code_interpreter, artifact_remote_path
|
146
169
|
)
|
147
170
|
if user_result.error:
|
148
171
|
user_obs += f"\n{user_result.error}"
|
149
172
|
return user_result, user_obs
|
150
173
|
|
151
174
|
|
152
|
-
def add_step_descriptions(response: Dict[str,
|
175
|
+
def add_step_descriptions(response: Dict[str, Any]) -> Dict[str, Any]:
|
153
176
|
response = copy.deepcopy(response)
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
response["response"] = resp_str
|
177
|
+
|
178
|
+
if "execute_python" in response and response["execute_python"]:
|
179
|
+
# only include descriptions for these, the rest will just have executing
|
180
|
+
# code
|
181
|
+
description_map = {
|
182
|
+
"open_code_artifact": "Reading file.",
|
183
|
+
"create_code_artifact": "Creating file.",
|
184
|
+
"edit_code_artifact": "Editing file.",
|
185
|
+
"generate_vision_code": "Generating vision code.",
|
186
|
+
"edit_vision_code": "Editing vision code.",
|
187
|
+
}
|
188
|
+
description = ""
|
189
|
+
for k, v in description_map.items():
|
190
|
+
if k in response["execute_python"]:
|
191
|
+
description += v + " "
|
192
|
+
if description == "":
|
193
|
+
description = "Executing code."
|
194
|
+
|
195
|
+
response["response"] = description
|
196
|
+
|
175
197
|
return response
|
176
198
|
|
177
199
|
|
@@ -369,7 +391,10 @@ class VisionAgent(Agent):
|
|
369
391
|
self.streaming_message({"role": "observation", "content": artifacts_loaded})
|
370
392
|
|
371
393
|
user_result, user_obs = execute_user_code_action(
|
372
|
-
|
394
|
+
artifacts,
|
395
|
+
last_user_message,
|
396
|
+
code_interpreter,
|
397
|
+
str(remote_artifacts_path),
|
373
398
|
)
|
374
399
|
finished = user_result is not None and user_obs is not None
|
375
400
|
if user_result is not None and user_obs is not None:
|
@@ -394,13 +419,13 @@ class VisionAgent(Agent):
|
|
394
419
|
int_chat.append(
|
395
420
|
{
|
396
421
|
"role": "assistant",
|
397
|
-
"content":
|
422
|
+
"content": json.dumps(add_step_descriptions(response)),
|
398
423
|
}
|
399
424
|
)
|
400
425
|
orig_chat.append(
|
401
426
|
{
|
402
427
|
"role": "assistant",
|
403
|
-
"content":
|
428
|
+
"content": json.dumps(add_step_descriptions(response)),
|
404
429
|
}
|
405
430
|
)
|
406
431
|
|
@@ -408,11 +433,13 @@ class VisionAgent(Agent):
|
|
408
433
|
if last_response == response:
|
409
434
|
response["let_user_respond"] = True
|
410
435
|
|
411
|
-
finished = response
|
436
|
+
finished = response.get("let_user_respond", False)
|
412
437
|
|
413
|
-
code_action =
|
414
|
-
|
415
|
-
|
438
|
+
code_action = response.get("execute_python", None)
|
439
|
+
if code_action is not None:
|
440
|
+
code_action = use_extra_vision_agent_args(
|
441
|
+
code_action, test_multi_plan, custom_tool_names
|
442
|
+
)
|
416
443
|
|
417
444
|
if last_response == response:
|
418
445
|
self.streaming_message(
|
@@ -431,14 +458,17 @@ class VisionAgent(Agent):
|
|
431
458
|
self.streaming_message(
|
432
459
|
{
|
433
460
|
"role": "assistant",
|
434
|
-
"content": response,
|
461
|
+
"content": json.dumps(response),
|
435
462
|
"finished": finished and code_action is None,
|
436
463
|
}
|
437
464
|
)
|
438
465
|
|
439
466
|
if code_action is not None:
|
440
467
|
result, obs = execute_code_action(
|
441
|
-
|
468
|
+
artifacts,
|
469
|
+
code_action,
|
470
|
+
code_interpreter,
|
471
|
+
str(remote_artifacts_path),
|
442
472
|
)
|
443
473
|
|
444
474
|
media_obs = check_and_load_image(code_action)
|
@@ -0,0 +1,251 @@
|
|
1
|
+
VA_CODE = """
|
2
|
+
**Role**: You are a helpful agent that assists users with writing code.
|
3
|
+
|
4
|
+
**Taks**: As a conversational agent, you are required to understand the user's request and provide a helpful response. Use a Chain-of-Thought approach to break down the problem, create a plan, and then provide a response. Ensure that your response is clear, concise, and helpful. You can use an interactive Python (Jupyter Notebook) environment, executing code with <execution_python>. You are given access to an `artifacts` object which contains files shared between you and the user. `artifacts` will be automatically saved everytime you execute python code.
|
5
|
+
|
6
|
+
<execute_python>
|
7
|
+
print("Hello World!")
|
8
|
+
</execute_python>
|
9
|
+
|
10
|
+
**Documentation**:
|
11
|
+
This is the documentation for the different actions you can take:
|
12
|
+
|
13
|
+
{documentation}
|
14
|
+
|
15
|
+
**Examples**:
|
16
|
+
Here is an example of how you can interact with a user and Actions to complete a task:
|
17
|
+
--- START EXAMPLES ---
|
18
|
+
{examples}
|
19
|
+
--- END EXAMPLES ---
|
20
|
+
|
21
|
+
**Conversation**:
|
22
|
+
Here is the current conversation so far:
|
23
|
+
--- START CONVERSATION ---
|
24
|
+
{conversation}
|
25
|
+
--- END CONVERSATION ---
|
26
|
+
|
27
|
+
**Instructions**:
|
28
|
+
1. **Understand and Clarify**: Make sure you understand the task, ask clarifying questions if the task is not clear.
|
29
|
+
2. **Code Generation**: Only use code provided in the Documentation in your <execute_python> tags. Only use `edit_vision_code` to modify code written by `generate_vision_code`.
|
30
|
+
3. **Execute**: Do only what the user asked you to do and no more. If you need to ask the user a question or show your results to the user, set <let_user_respond> to `true`.
|
31
|
+
4. **Response**: Keep your responses short and concise. Provide the user only with the information they need to continue the conversation.
|
32
|
+
5. **Output**: You can only respond with <thinking>, <response>, <execute_python>, and <let_user_respond> tags.
|
33
|
+
|
34
|
+
<thinking>Your thoughts here...</thinking>
|
35
|
+
<response>Your response to the user here...</response>
|
36
|
+
<execute_python>Your code here...</execute_python>
|
37
|
+
<let_user_respond>true/false for whether or not to you want to let the user respond.</let_user_respond>
|
38
|
+
"""
|
39
|
+
|
40
|
+
|
41
|
+
EXAMPLES_CODE1 = """
|
42
|
+
USER: Can you write code to detect the dogs in this image? Media name dog.jpg
|
43
|
+
|
44
|
+
OBSERVATION:
|
45
|
+
[Artifacts loaded]
|
46
|
+
Artifact dog.jpg loaded to /path/to/images/dog.jpg
|
47
|
+
[End of artifacts]
|
48
|
+
|
49
|
+
AGENT: <thinking>I will use the generate_vision_code to detect the dogs in the image.</thinking>
|
50
|
+
<execute_python>
|
51
|
+
generate_vision_code(artifacts, 'dog_detector.py', 'Can you write code to detect dogs in this image?', media=['/path/to/images/dog.jpg'])
|
52
|
+
</execute_python>
|
53
|
+
<let_user_respond>false</let_user_respond>
|
54
|
+
|
55
|
+
OBSERVATION:
|
56
|
+
[Artifact dog_detector.py]
|
57
|
+
0|from vision_agent.tools import load_image, owl_v2
|
58
|
+
1|def detect_dogs(image_path: str):
|
59
|
+
2| image = load_image(image_path)
|
60
|
+
3| dogs = owl_v2("dog", image)
|
61
|
+
4| return dogs
|
62
|
+
[End of artifact]
|
63
|
+
|
64
|
+
AGENT: <thinking>I have generated the code to detect the dogs in the image, I must now run the code and print the results to get the output.</thinking>
|
65
|
+
<execute_python>
|
66
|
+
from dog_detector import detect_dogs
|
67
|
+
print(detect_dogs('/example/workspace/dog.jpg'))
|
68
|
+
</execute_python>
|
69
|
+
<let_user_respond>false</let_user_respond>
|
70
|
+
|
71
|
+
OBSERVATION:
|
72
|
+
----- stdout -----
|
73
|
+
[{'score': 0.99, 'label': 'dog', 'box': [0.1, 0.2, 0.3, 0.4]}, {'score': 0.23, 'label': 'dog', 'box': [0.2, 0.3, 0.4, 0.5]}]
|
74
|
+
|
75
|
+
|
76
|
+
AGENT: <thinking>Two dogs are detected, I will show this to the user and ask them if the result looks good.</thinking>
|
77
|
+
<response>The code detectd two dogs, do the results look good to you?</response>
|
78
|
+
<let_user_respond>true</let_user_respond>
|
79
|
+
"""
|
80
|
+
|
81
|
+
EXAMPLES_CODE1_EXTRA = """
|
82
|
+
USER: The the image only has one dog, can you fix this?
|
83
|
+
|
84
|
+
OBSERVATION:
|
85
|
+
[Artifacts loaded]
|
86
|
+
Artifact dog.jpg loaded to /path/to/images/dog.jpg
|
87
|
+
Artifact dog_detector.py loaded to /path/to/code/dog_detector.py
|
88
|
+
[End of artifacts]
|
89
|
+
|
90
|
+
AGENT: <thinking>I will use edit_vision_code to fix the code to detect only one dog. The lower score is 0.23 so I will set the threshold above that</thinking>
|
91
|
+
<execute_python>
|
92
|
+
edit_vision_code(artifacts, 'dog_detector.py', ['Can you write code to detect dogs in this image?', 'Can you increase the threshold to 0.24?'], media=['/path/to/images/dog.jpg'])
|
93
|
+
</execute_python>
|
94
|
+
<let_user_respond>false</let_user_respond>
|
95
|
+
|
96
|
+
OBSERVATION:
|
97
|
+
[Artifact dog_detector.py]
|
98
|
+
0|from vision_agent.tools import load_image, owl_v2
|
99
|
+
1|def detect_dogs(image_path: str):
|
100
|
+
2| image = load_image(image_path)
|
101
|
+
3| dogs = owl_v2("dog", image, threshold=0.24)
|
102
|
+
4| return dogs
|
103
|
+
[End of artifact]
|
104
|
+
|
105
|
+
AGENT: <thinking>I have edited the code to detect only one dog, I must now run the code and print the results to get the output.</thinking>
|
106
|
+
<execute_python>
|
107
|
+
from dog_detector import detect_dogs
|
108
|
+
print(detect_dogs('/path/to/images/dog.jpg'))
|
109
|
+
</execute_python>
|
110
|
+
<let_user_respond>false</let_user_respond>
|
111
|
+
|
112
|
+
OBSERVATION:
|
113
|
+
----- stdout -----
|
114
|
+
[{'score': 0.99, 'label': 'dog', 'box': [0.1, 0.2, 0.3, 0.4]}]
|
115
|
+
|
116
|
+
AGENT: <thinking>One dog is detected, I will show this to the user and ask them if the result looks good.</thinking>
|
117
|
+
<response>The code detected one dog, do these results look good to you?</response>
|
118
|
+
<let_user_respond>true</let_user_respond>
|
119
|
+
"""
|
120
|
+
|
121
|
+
EXAMPLES_CODE2 = """
|
122
|
+
USER: Can you describe this image?
|
123
|
+
|
124
|
+
OBSERVATION:
|
125
|
+
[Artifacts loaded]
|
126
|
+
Artifact image.jpg loaded to /path/to/images/image.jpg
|
127
|
+
[End of artifacts]
|
128
|
+
|
129
|
+
AGENT: <thinking>The user hasn't asked me to write any code and the task is very simple so I will view the image and answer myself to respond to the user quickly.</thinking>
|
130
|
+
<execute_python>
|
131
|
+
view_media_artifacts('image.jpg')
|
132
|
+
</execute_python>
|
133
|
+
<let_user_respond>false</let_user_respond>
|
134
|
+
|
135
|
+
OBSERVATION:
|
136
|
+
[Image image.jpg displayed]
|
137
|
+
|
138
|
+
AGENT: <thinking>The image shows a cat and a dog sitting on the couch, I will tell the user and ask them if they need any other assistance.</thinking>
|
139
|
+
<response>The image contains a dog and a cat sitting on a couch. Can I help you with any other tasks?</response>
|
140
|
+
<let_user_respond>true</let_user_respond>
|
141
|
+
"""
|
142
|
+
|
143
|
+
|
144
|
+
EXAMPLES_CODE3 = """
|
145
|
+
USER: Can you create a function to count workers with helmets, return the count and save a visaulization of the bounding boxes?
|
146
|
+
|
147
|
+
OBSERVATION:
|
148
|
+
[Artifacts loaded]
|
149
|
+
[End of artifacts]
|
150
|
+
|
151
|
+
AGENT: <thinking>The user has asked to count workers with helmets but has not provided an image. I will ask the user for an image and then generate the code to count workers with helmets.</thinking>
|
152
|
+
<response>Can you provide an image of workers with helmets?</response>
|
153
|
+
<let_user_respond>true</let_user_respond>
|
154
|
+
|
155
|
+
USER: Yes you can use workers.png
|
156
|
+
|
157
|
+
OBSERVATION:
|
158
|
+
[Artifacts loaded]
|
159
|
+
Artifact workers.png loaded to /path/to/images/workers.png
|
160
|
+
[End of artifacts]
|
161
|
+
|
162
|
+
AGENT: <thinking>I will use the generate_vision_code to count the workers with helmets in the image.</thinking>
|
163
|
+
<execute_python>
|
164
|
+
generate_vision_code(artifacts, 'code.py', 'Can you create a function to count workers with helmets, return the count and save a visaulization of the bounding boxes?', media=['/paths/to/images/workers.png'])
|
165
|
+
</execute_python>
|
166
|
+
<let_user_respond>false</let_user_respond>
|
167
|
+
|
168
|
+
OBSERVATION:
|
169
|
+
[Artifact code.py]
|
170
|
+
0|from vision_agent.tools import load_image, florence2_phrase_grounding, closest_box_distance, overlay_bounding_boxes, save_image
|
171
|
+
1|def count_workers_with_helmets(image_path: str, output_path: str):
|
172
|
+
2| image = load_image(image_path)
|
173
|
+
3| detections = florence2_phrase_grounding("worker, helmet", image)
|
174
|
+
4| workers = [d for d in detections if d['label'] == 'worker']
|
175
|
+
5| helmets = [d for d in detections if d['label'] == 'helmet']
|
176
|
+
6| count = 0
|
177
|
+
6| for worker in workers:
|
178
|
+
7| person_has_helmet = False
|
179
|
+
8| for helmet in helmets:
|
180
|
+
9| if closest_box_distance(worker['box'], helmet['box']) < 0.01:
|
181
|
+
10| person_has_helmet = True
|
182
|
+
11| break
|
183
|
+
11| if person_has_helmet:
|
184
|
+
13| count += 1
|
185
|
+
14| overlay_bounding_boxes(image, detections)
|
186
|
+
15| save_image(output_path, image)
|
187
|
+
16| return count
|
188
|
+
[End of artifact]
|
189
|
+
|
190
|
+
AGENT: <thinking>I have generated the code to count the workers with helmets in the image, I must now run the code and print the output.</thinking>
|
191
|
+
<execute_python>
|
192
|
+
from code import count_workers_with_helmets
|
193
|
+
print(count_workers_with_helmets('/path/to/images/workers.png', 'workers_viz.png'))
|
194
|
+
</execute_python>
|
195
|
+
<let_user_respond>false</let_user_respond>
|
196
|
+
|
197
|
+
OBSERVATION:
|
198
|
+
----- stdout -----
|
199
|
+
2
|
200
|
+
|
201
|
+
AGENT: <thinking>Two workers with helmets are detected, I will show this to the user and ask them if the result looks good.</thinking>
|
202
|
+
<response>The code to detect workers with helmets is saved in code.py and the visualization under 'workers_viz.png'.</response>
|
203
|
+
<let_user_respond>true</let_user_respond>
|
204
|
+
|
205
|
+
USER: The detections are slightly off. Can you fine tune florence2 using these labels? "[{'image_path': 'image1.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}, {'image_path': 'image2.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}]"
|
206
|
+
|
207
|
+
AGENT: <thinking>Because the user has supplied me with labels I can call object_detection_fine_tuning on their behalf to fine tune the model</thinking>
|
208
|
+
<execute_python>
|
209
|
+
object_detection_fine_tuning([{'image_path': 'image1.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}, {'image_path': 'image2.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}])
|
210
|
+
</execute_python>
|
211
|
+
<let_user_respond>false</let_user_respond>
|
212
|
+
|
213
|
+
OBSERVATION:
|
214
|
+
[Fine tuning id: 23b3b022-5ebf-4798-9373-20ef36429abf]
|
215
|
+
|
216
|
+
AGENT: <thinking>The model has finished fine tuning, I will now replace the original florence2_phrase_grounding call with the fine tuning id.</thinking>
|
217
|
+
<execute_python>
|
218
|
+
use_object_detection_fine_tuning(artifacts, "code.py", "23b3b022-5ebf-4798-9373-20ef36429abf")
|
219
|
+
</execute_python>
|
220
|
+
<let_user_respond>false</let_user_respond>
|
221
|
+
|
222
|
+
OBSERVATION:
|
223
|
+
[Artifact code.py edits]
|
224
|
+
---
|
225
|
+
+++
|
226
|
+
@@ -1,7 +1,7 @@
|
227
|
+
from vision_agent.tools import load_image, florence2_phrase_grounding, closest_box_distance, overlay_bounding_boxes, save_image
|
228
|
+
def count_workers_with_helmets(image_path: str, output_path: str):
|
229
|
+
image = load_image(image_path)
|
230
|
+
- detections = florence2_phrase_grounding("worker, helmet", image)
|
231
|
+
+ detections = florence2_phrase_grounding("worker, helmet", image, "23b3b022-5ebf-4798-9373-20ef36429abf")
|
232
|
+
workers = [d for d in detections if d['label'] == 'worker']
|
233
|
+
helmets = [d for d in detections if d['label'] == 'helmet']
|
234
|
+
count = 0
|
235
|
+
[End of edits]
|
236
|
+
|
237
|
+
AGENT: <thinking>I have updated the code to use the fine tuned model, I must now run the code and print the output.</thinking>
|
238
|
+
<execute_python>
|
239
|
+
from code import count_workers_with_helmets
|
240
|
+
print(count_workers_with_helmets('/path/to/images/workers.png', 'workers_viz.png'))
|
241
|
+
</execute_python>
|
242
|
+
<let_user_respond>false</let_user_respond>
|
243
|
+
|
244
|
+
OBSERVATION:
|
245
|
+
----- stdout -----
|
246
|
+
3
|
247
|
+
|
248
|
+
AGENT: <thinking>Three workers with helmets are detected, I will show this to the user and ask them if the result looks good.</thinking>
|
249
|
+
<response>I have updated the code using the fine tuned florence2_phrase_grounding model to count the workers wearing helmets in code.py and saved the visualization under 'workers_viz.png'.</response>
|
250
|
+
<let_user_respond>true</let_user_respond>
|
251
|
+
"""
|
@@ -1,4 +1,3 @@
|
|
1
|
-
import base64
|
2
1
|
import difflib
|
3
2
|
import json
|
4
3
|
import os
|
@@ -9,7 +8,6 @@ import tempfile
|
|
9
8
|
from pathlib import Path
|
10
9
|
from typing import Any, Dict, List, Optional, Union
|
11
10
|
|
12
|
-
import numpy as np
|
13
11
|
from IPython.display import display
|
14
12
|
from redbaron import RedBaron # type: ignore
|
15
13
|
|
@@ -22,8 +20,7 @@ from vision_agent.tools.tool_utils import get_tool_documentation
|
|
22
20
|
from vision_agent.tools.tools import TOOL_DESCRIPTIONS
|
23
21
|
from vision_agent.tools.tools_types import BboxInput, BboxInputBase64, PromptTask
|
24
22
|
from vision_agent.utils.execute import Execution, MimeType
|
25
|
-
from vision_agent.utils.image_utils import convert_to_b64
|
26
|
-
from vision_agent.utils.video import frames_to_bytes
|
23
|
+
from vision_agent.utils.image_utils import convert_to_b64
|
27
24
|
|
28
25
|
CURRENT_FILE = None
|
29
26
|
CURRENT_LINE = 0
|
@@ -393,19 +390,6 @@ def generate_vision_plan(
|
|
393
390
|
redisplay_results(response.test_results)
|
394
391
|
response.test_results = None
|
395
392
|
artifacts[name] = response.model_dump_json()
|
396
|
-
media_names = extract_json(
|
397
|
-
AnthropicLMM()( # type: ignore
|
398
|
-
f"""Extract any media file names from this output in the following JSON format:
|
399
|
-
{{"media": ["image1.jpg", "image2.jpg"]}}
|
400
|
-
|
401
|
-
{artifacts[name]}"""
|
402
|
-
)
|
403
|
-
)
|
404
|
-
if "media" in media_names and isinstance(media_names, dict):
|
405
|
-
for media in media_names["media"]:
|
406
|
-
if isinstance(media, str):
|
407
|
-
with open(media, "rb") as f:
|
408
|
-
artifacts[media] = f.read()
|
409
393
|
|
410
394
|
output_str = f"[Start Plan Context, saved at {name}]"
|
411
395
|
for plan in response.plans.keys():
|
@@ -466,6 +450,12 @@ def generate_vision_code(
|
|
466
450
|
test_multi_plan=test_multi_plan,
|
467
451
|
custom_tool_names=custom_tool_names,
|
468
452
|
)
|
453
|
+
|
454
|
+
# capture and save any files that were saved in the code to the artifacts
|
455
|
+
extract_and_save_files_to_artifacts(
|
456
|
+
artifacts, response["code"] + "\n" + response["test"]
|
457
|
+
)
|
458
|
+
|
469
459
|
redisplay_results(response["test_result"])
|
470
460
|
code = response["code"]
|
471
461
|
artifacts[name] = code
|
@@ -546,6 +536,11 @@ def edit_vision_code(
|
|
546
536
|
test_multi_plan=False,
|
547
537
|
custom_tool_names=custom_tool_names,
|
548
538
|
)
|
539
|
+
# capture and save any files that were saved in the code to the artifacts
|
540
|
+
extract_and_save_files_to_artifacts(
|
541
|
+
artifacts, response["code"] + "\n" + response["test"]
|
542
|
+
)
|
543
|
+
|
549
544
|
redisplay_results(response["test_result"])
|
550
545
|
code = response["code"]
|
551
546
|
artifacts[name] = code
|
@@ -567,49 +562,6 @@ def edit_vision_code(
|
|
567
562
|
return view_lines(code_lines, 0, total_lines, name, total_lines)
|
568
563
|
|
569
564
|
|
570
|
-
def write_media_artifact(
|
571
|
-
artifacts: Artifacts,
|
572
|
-
name: str,
|
573
|
-
media: Union[str, np.ndarray, List[np.ndarray]],
|
574
|
-
fps: Optional[float] = None,
|
575
|
-
) -> str:
|
576
|
-
"""Writes a media file to the artifacts object.
|
577
|
-
|
578
|
-
Parameters:
|
579
|
-
artifacts (Artifacts): The artifacts object to save the media to.
|
580
|
-
name (str): The name of the media artifact to save.
|
581
|
-
media (Union[str, np.ndarray, List[np.ndarray]]): The media to save, can either
|
582
|
-
be a file path, single image or list of frames for a video.
|
583
|
-
fps (Optional[float]): The frames per second if you are writing a video.
|
584
|
-
"""
|
585
|
-
if isinstance(media, str):
|
586
|
-
with open(media, "rb") as f:
|
587
|
-
media_bytes = f.read()
|
588
|
-
elif isinstance(media, list):
|
589
|
-
media_bytes = frames_to_bytes(media, fps=fps if fps is not None else 1.0)
|
590
|
-
elif isinstance(media, np.ndarray):
|
591
|
-
media_bytes = numpy_to_bytes(media)
|
592
|
-
else:
|
593
|
-
print(f"[Invalid media type {type(media)}]")
|
594
|
-
return f"[Invalid media type {type(media)}]"
|
595
|
-
artifacts[name] = media_bytes
|
596
|
-
print(f"[Media {name} saved]")
|
597
|
-
display(
|
598
|
-
{
|
599
|
-
MimeType.APPLICATION_ARTIFACT: json.dumps(
|
600
|
-
{
|
601
|
-
"name": name,
|
602
|
-
"action": "create",
|
603
|
-
"content": base64.b64encode(media_bytes).decode("utf-8"),
|
604
|
-
"contentType": "media_output",
|
605
|
-
}
|
606
|
-
)
|
607
|
-
},
|
608
|
-
raw=True,
|
609
|
-
)
|
610
|
-
return f"[Media {name} saved]"
|
611
|
-
|
612
|
-
|
613
565
|
def list_artifacts(artifacts: Artifacts) -> str:
|
614
566
|
"""Lists all the artifacts that have been loaded into the artifacts object."""
|
615
567
|
output_str = artifacts.show()
|
@@ -813,6 +765,61 @@ def use_object_detection_fine_tuning(
|
|
813
765
|
return diff
|
814
766
|
|
815
767
|
|
768
|
+
def extract_and_save_files_to_artifacts(artifacts: Artifacts, code: str) -> None:
|
769
|
+
"""Extracts and saves files used in the code to the artifacts object.
|
770
|
+
|
771
|
+
Parameters:
|
772
|
+
artifacts (Artifacts): The artifacts object to save the files to.
|
773
|
+
code (str): The code to extract the files from.
|
774
|
+
"""
|
775
|
+
try:
|
776
|
+
response = extract_json(
|
777
|
+
AnthropicLMM()( # type: ignore
|
778
|
+
f"""You are a helpful AI assistant. Your job is to look at a snippet of code and return the file paths that are being saved in the file. Below is the code snippet:
|
779
|
+
|
780
|
+
```python
|
781
|
+
{code}
|
782
|
+
```
|
783
|
+
|
784
|
+
Return the file paths in the following JSON format:
|
785
|
+
{{"file_paths": ["/path/to/image1.jpg", "/other/path/to/data.json"]}}"""
|
786
|
+
)
|
787
|
+
)
|
788
|
+
except json.JSONDecodeError:
|
789
|
+
return
|
790
|
+
|
791
|
+
text_file_ext = [
|
792
|
+
".txt",
|
793
|
+
".md",
|
794
|
+
"rtf",
|
795
|
+
".html",
|
796
|
+
".htm",
|
797
|
+
"xml",
|
798
|
+
".json",
|
799
|
+
".csv",
|
800
|
+
".tsv",
|
801
|
+
".yaml",
|
802
|
+
".yml",
|
803
|
+
".toml",
|
804
|
+
".conf",
|
805
|
+
".env" ".ini",
|
806
|
+
".log",
|
807
|
+
".py",
|
808
|
+
".java",
|
809
|
+
".js",
|
810
|
+
".cpp",
|
811
|
+
".c" ".sql",
|
812
|
+
".sh",
|
813
|
+
]
|
814
|
+
|
815
|
+
if "file_paths" in response and isinstance(response["file_paths"], list):
|
816
|
+
for file_path in response["file_paths"]:
|
817
|
+
read_mode = "r" if Path(file_path).suffix in text_file_ext else "rb"
|
818
|
+
if Path(file_path).is_file():
|
819
|
+
with open(file_path, read_mode) as f:
|
820
|
+
artifacts[Path(file_path).name] = f.read()
|
821
|
+
|
822
|
+
|
816
823
|
META_TOOL_DOCSTRING = get_tool_documentation(
|
817
824
|
[
|
818
825
|
get_tool_descriptions,
|
@@ -822,7 +829,6 @@ META_TOOL_DOCSTRING = get_tool_documentation(
|
|
822
829
|
generate_vision_plan,
|
823
830
|
generate_vision_code,
|
824
831
|
edit_vision_code,
|
825
|
-
write_media_artifact,
|
826
832
|
view_media_artifact,
|
827
833
|
object_detection_fine_tuning,
|
828
834
|
use_object_detection_fine_tuning,
|
@@ -181,6 +181,8 @@ def owl_v2_image(
|
|
181
181
|
"""
|
182
182
|
|
183
183
|
image_size = image.shape[:2]
|
184
|
+
if image_size[0] < 1 or image_size[1] < 1:
|
185
|
+
return []
|
184
186
|
|
185
187
|
if fine_tune_id is not None:
|
186
188
|
image_b64 = convert_to_b64(image)
|
@@ -413,6 +415,9 @@ def florence2_sam2_image(
|
|
413
415
|
},
|
414
416
|
]
|
415
417
|
"""
|
418
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
419
|
+
return []
|
420
|
+
|
416
421
|
if fine_tune_id is not None:
|
417
422
|
image_b64 = convert_to_b64(image)
|
418
423
|
landing_api = LandingPublicAPI()
|
@@ -473,7 +478,7 @@ def florence2_sam2_image(
|
|
473
478
|
|
474
479
|
|
475
480
|
def florence2_sam2_video_tracking(
|
476
|
-
prompt: str, frames: List[np.ndarray], chunk_length: Optional[int] =
|
481
|
+
prompt: str, frames: List[np.ndarray], chunk_length: Optional[int] = 3
|
477
482
|
) -> List[List[Dict[str, Any]]]:
|
478
483
|
"""'florence2_sam2_video_tracking' is a tool that can segment and track multiple
|
479
484
|
entities in a video given a text prompt such as category names or referring
|
@@ -701,6 +706,8 @@ def countgd_counting(
|
|
701
706
|
]
|
702
707
|
"""
|
703
708
|
image_size = image.shape[:2]
|
709
|
+
if image_size[0] < 1 or image_size[1] < 1:
|
710
|
+
return []
|
704
711
|
buffer_bytes = numpy_to_bytes(image)
|
705
712
|
files = [("image", buffer_bytes)]
|
706
713
|
prompt = prompt.replace(", ", " .")
|
@@ -759,6 +766,8 @@ def countgd_example_based_counting(
|
|
759
766
|
]
|
760
767
|
"""
|
761
768
|
image_size = image.shape[:2]
|
769
|
+
if image_size[0] < 1 or image_size[1] < 1:
|
770
|
+
return []
|
762
771
|
buffer_bytes = numpy_to_bytes(image)
|
763
772
|
files = [("image", buffer_bytes)]
|
764
773
|
visual_prompts = [
|
@@ -828,6 +837,8 @@ def ixc25_image_vqa(prompt: str, image: np.ndarray) -> str:
|
|
828
837
|
>>> ixc25_image_vqa('What is the cat doing?', image)
|
829
838
|
'drinking milk'
|
830
839
|
"""
|
840
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
841
|
+
raise ValueError(f"Image is empty, image shape: {image.shape}")
|
831
842
|
|
832
843
|
buffer_bytes = numpy_to_bytes(image)
|
833
844
|
files = [("image", buffer_bytes)]
|
@@ -871,47 +882,6 @@ def ixc25_video_vqa(prompt: str, frames: List[np.ndarray]) -> str:
|
|
871
882
|
return cast(str, data["answer"])
|
872
883
|
|
873
884
|
|
874
|
-
def ixc25_temporal_localization(prompt: str, frames: List[np.ndarray]) -> List[bool]:
|
875
|
-
"""'ixc25_temporal_localization' uses ixc25_video_vqa to temporally segment a video
|
876
|
-
given a prompt that can be other an object or a phrase. It returns a list of
|
877
|
-
boolean values indicating whether the object or phrase is present in the
|
878
|
-
corresponding frame.
|
879
|
-
|
880
|
-
Parameters:
|
881
|
-
prompt (str): The question about the video
|
882
|
-
frames (List[np.ndarray]): The reference frames used for the question
|
883
|
-
|
884
|
-
Returns:
|
885
|
-
List[bool]: A list of boolean values indicating whether the object or phrase is
|
886
|
-
present in the corresponding frame.
|
887
|
-
|
888
|
-
Example
|
889
|
-
-------
|
890
|
-
>>> output = ixc25_temporal_localization('soccer goal', frames)
|
891
|
-
>>> print(output)
|
892
|
-
[False, False, False, True, True, True, False, False, False, False]
|
893
|
-
>>> save_video([f for i, f in enumerate(frames) if output[i]], 'output.mp4')
|
894
|
-
"""
|
895
|
-
|
896
|
-
buffer_bytes = frames_to_bytes(frames)
|
897
|
-
files = [("video", buffer_bytes)]
|
898
|
-
payload = {
|
899
|
-
"prompt": prompt,
|
900
|
-
"chunk_length": 2,
|
901
|
-
"function_name": "ixc25_temporal_localization",
|
902
|
-
}
|
903
|
-
data: List[int] = send_inference_request(
|
904
|
-
payload,
|
905
|
-
"video-temporal-localization?model=internlm-xcomposer",
|
906
|
-
files=files,
|
907
|
-
v2=True,
|
908
|
-
)
|
909
|
-
chunk_size = round(len(frames) / len(data))
|
910
|
-
data_explode = [[elt] * chunk_size for elt in data]
|
911
|
-
data_bool = [bool(elt) for sublist in data_explode for elt in sublist]
|
912
|
-
return data_bool[: len(frames)]
|
913
|
-
|
914
|
-
|
915
885
|
def gpt4o_image_vqa(prompt: str, image: np.ndarray) -> str:
|
916
886
|
"""'gpt4o_image_vqa' is a tool that can answer any questions about arbitrary images
|
917
887
|
including regular images or images of documents or presentations. It returns text
|
@@ -1024,6 +994,9 @@ def clip(image: np.ndarray, classes: List[str]) -> Dict[str, Any]:
|
|
1024
994
|
{"labels": ["dog", "cat", "bird"], "scores": [0.68, 0.30, 0.02]},
|
1025
995
|
"""
|
1026
996
|
|
997
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
998
|
+
return {"labels": [], "scores": []}
|
999
|
+
|
1027
1000
|
image_b64 = convert_to_b64(image)
|
1028
1001
|
data = {
|
1029
1002
|
"prompt": ",".join(classes),
|
@@ -1052,6 +1025,8 @@ def vit_image_classification(image: np.ndarray) -> Dict[str, Any]:
|
|
1052
1025
|
>>> vit_image_classification(image)
|
1053
1026
|
{"labels": ["leopard", "lemur, otter", "bird"], "scores": [0.68, 0.30, 0.02]},
|
1054
1027
|
"""
|
1028
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
1029
|
+
return {"labels": [], "scores": []}
|
1055
1030
|
|
1056
1031
|
image_b64 = convert_to_b64(image)
|
1057
1032
|
data = {
|
@@ -1080,6 +1055,8 @@ def vit_nsfw_classification(image: np.ndarray) -> Dict[str, Any]:
|
|
1080
1055
|
>>> vit_nsfw_classification(image)
|
1081
1056
|
{"label": "normal", "scores": 0.68},
|
1082
1057
|
"""
|
1058
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
1059
|
+
raise ValueError(f"Image is empty, image shape: {image.shape}")
|
1083
1060
|
|
1084
1061
|
image_b64 = convert_to_b64(image)
|
1085
1062
|
data = {
|
@@ -1180,6 +1157,8 @@ def florence2_phrase_grounding(
|
|
1180
1157
|
]
|
1181
1158
|
"""
|
1182
1159
|
image_size = image.shape[:2]
|
1160
|
+
if image_size[0] < 1 or image_size[1] < 1:
|
1161
|
+
return []
|
1183
1162
|
image_b64 = convert_to_b64(image)
|
1184
1163
|
|
1185
1164
|
if fine_tune_id is not None:
|
@@ -1399,6 +1378,8 @@ def detr_segmentation(image: np.ndarray) -> List[Dict[str, Any]]:
|
|
1399
1378
|
},
|
1400
1379
|
]
|
1401
1380
|
"""
|
1381
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
1382
|
+
return []
|
1402
1383
|
image_b64 = convert_to_b64(image)
|
1403
1384
|
data = {
|
1404
1385
|
"image": image_b64,
|
@@ -1442,6 +1423,9 @@ def depth_anything_v2(image: np.ndarray) -> np.ndarray:
|
|
1442
1423
|
[10, 11, 15, ..., 202, 202, 205],
|
1443
1424
|
[10, 10, 10, ..., 200, 200, 200]], dtype=uint8),
|
1444
1425
|
"""
|
1426
|
+
if image.shape[0] < 1 or image.shape[1] < 1:
|
1427
|
+
raise ValueError(f"Image is empty, image shape: {image.shape}")
|
1428
|
+
|
1445
1429
|
image_b64 = convert_to_b64(image)
|
1446
1430
|
data = {
|
1447
1431
|
"image": image_b64,
|
@@ -1,194 +0,0 @@
|
|
1
|
-
VA_CODE = """
|
2
|
-
**Role**: You are a helpful agent that assists users with writing code.
|
3
|
-
|
4
|
-
**Taks**: As a conversational agent, you are required to understand the user's request and provide a helpful response. Use a Chain-of-Thought approach to break down the problem, create a plan, and then provide a response. Ensure that your response is clear, concise, and helpful. You can use an interactive Python (Jupyter Notebook) environment, executing code with <execution_python>. You are given access to an `artifacts` object which contains files shared between you and the user. `artifacts` will be automatically saved everytime you execute python code.
|
5
|
-
|
6
|
-
<execute_python>
|
7
|
-
print("Hello World!")
|
8
|
-
</execute_python>
|
9
|
-
|
10
|
-
**Documentation**:
|
11
|
-
This is the documentation for the different actions you can take:
|
12
|
-
|
13
|
-
{documentation}
|
14
|
-
|
15
|
-
**Examples**:
|
16
|
-
Here is an example of how you can interact with a user and Actions to complete a task:
|
17
|
-
--- START EXAMPLES ---
|
18
|
-
{examples}
|
19
|
-
--- END EXAMPLES ---
|
20
|
-
|
21
|
-
**Conversation**:
|
22
|
-
Here is the current conversation so far:
|
23
|
-
--- START CONVERSATION ---
|
24
|
-
{conversation}
|
25
|
-
--- END CONVERSATION ---
|
26
|
-
|
27
|
-
**Instructions**:
|
28
|
-
1. **Understand and Clarify**: Make sure you understand the task, ask clarifying questions if the task is not clear.
|
29
|
-
2. **Code Generation**: Only use code provided in the Documentation in your <execute_python> tags. Only use `edit_vision_code` to modify code written by `generate_vision_code`.
|
30
|
-
3. **Execute**: Do only what the user asked you to do and no more. If you need to ask the user a question, set `let_user_respond` to `true`.
|
31
|
-
4. **Response**: Keep your responses short and concise. Provide the user only with the information they need to continue the conversation.
|
32
|
-
5. **Output in JSON**: Respond in the following format in JSON:
|
33
|
-
|
34
|
-
```json
|
35
|
-
{{"thoughts": <your thoughts>, "response": <your response to the user>, "let_user_respond": <a boolean whether or not to let the user respond>}}.
|
36
|
-
```
|
37
|
-
"""
|
38
|
-
|
39
|
-
|
40
|
-
EXAMPLES_CODE1 = """
|
41
|
-
USER: Can you write code to detect the dogs in this image? Media name dog.jpg
|
42
|
-
|
43
|
-
OBSERVATION:
|
44
|
-
[Artifacts loaded]
|
45
|
-
Artifact dog.jpg loaded to /path/to/images/dog.jpg
|
46
|
-
[End of artifacts]
|
47
|
-
|
48
|
-
AGENT: {"thoughts": "I will use the generate_vision_code to detect the dogs in the image.", "response": "<execute_python>generate_vision_code(artifacts, 'dog_detector.py', 'Can you write code to detect dogs in this image?', media=['/path/to/images/dog.jpg'])</execute_python>", "let_user_respond": false}
|
49
|
-
|
50
|
-
OBSERVATION:
|
51
|
-
[Artifact dog_detector.py]
|
52
|
-
0|from vision_agent.tools import load_image, owl_v2
|
53
|
-
1|def detect_dogs(image_path: str):
|
54
|
-
2| image = load_image(image_path)
|
55
|
-
3| dogs = owl_v2("dog", image)
|
56
|
-
4| return dogs
|
57
|
-
[End of artifact]
|
58
|
-
|
59
|
-
AGENT: {"thoughts": "I have generated the code to detect the dogs in the image, I must now run the code and print the results to get the output.", "response": "<execute_python>from dog_detector import detect_dogs\n print(detect_dogs('/example/workspace/dog.jpg'))</execute_python>", "let_user_respond": false}
|
60
|
-
|
61
|
-
OBSERVATION:
|
62
|
-
----- stdout -----
|
63
|
-
[{'score': 0.99, 'label': 'dog', 'box': [0.1, 0.2, 0.3, 0.4]}, {'score': 0.23, 'label': 'dog', 'box': [0.2, 0.3, 0.4, 0.5]}]
|
64
|
-
|
65
|
-
|
66
|
-
AGENT: {"thoughts": "Two dogs are detected, I will show this to the user and ask them if the result looks good.", "response": "The code detectd two dogs, do the results look good to you?", "let_user_respond": true}
|
67
|
-
"""
|
68
|
-
|
69
|
-
EXAMPLES_CODE1_EXTRA = """
|
70
|
-
USER: The the image only has one dog, can you fix this?
|
71
|
-
|
72
|
-
OBSERVATION:
|
73
|
-
[Artifacts loaded]
|
74
|
-
Artifact dog.jpg loaded to /path/to/images/dog.jpg
|
75
|
-
Artifact dog_detector.py loaded to /path/to/code/dog_detector.py
|
76
|
-
[End of artifacts]
|
77
|
-
|
78
|
-
AGENT: {"thoughts": "I will use edit_vision_code to fix the code to detect only one dog. The lower score is 0.23 so I will set the threshold above that.", "response": "<execute_python>edit_vision_code(artifacts, 'dog_detector.py', ['Can you write code to detect dogs in this image?', 'Can you increase the threshold to 0.24?'], media=['/path/to/images/dog.jpg'])</execute_python>", "let_user_respond": false}
|
79
|
-
|
80
|
-
OBSERVATION:
|
81
|
-
[Artifact dog_detector.py]
|
82
|
-
0|from vision_agent.tools import load_image, owl_v2
|
83
|
-
1|def detect_dogs(image_path: str):
|
84
|
-
2| image = load_image(image_path)
|
85
|
-
3| dogs = owl_v2("dog", image, threshold=0.24)
|
86
|
-
4| return dogs
|
87
|
-
[End of artifact]
|
88
|
-
|
89
|
-
AGENT: {"thoughts": "I have edited the code to detect only one dog, I must now run the code and print the results to get the output.", "response": "<execute_python>from dog_detector import detect_dogs\n print(detect_dogs('/path/to/images/dog.jpg'))</execute_python>", "let_user_respond": false}
|
90
|
-
|
91
|
-
OBSERVATION:
|
92
|
-
----- stdout -----
|
93
|
-
[{'score': 0.99, 'label': 'dog', 'box': [0.1, 0.2, 0.3, 0.4]}]
|
94
|
-
|
95
|
-
AGENT: {"thoughts": "One dog is detected, I will show this to the user and ask them if the result looks good.", "response": "The code detected one dog, do these results look good to you?", "let_user_respond": true}
|
96
|
-
"""
|
97
|
-
|
98
|
-
EXAMPLES_CODE2 = """
|
99
|
-
USER: Can you describe this image?
|
100
|
-
|
101
|
-
OBSERVATION:
|
102
|
-
[Artifacts loaded]
|
103
|
-
Artifact image.jpg loaded to /path/to/images/image.jpg
|
104
|
-
[End of artifacts]
|
105
|
-
|
106
|
-
AGENT: {"thoughts": "The user hasn't asked me to write any code and the task is very simple so I will view the image and answer myself to respond to the user quickly.", "response": "<execute_python>view_media_artifacts('image.jpg')</execute_python>", "let_user_respond": false}
|
107
|
-
|
108
|
-
OBSERVATION:
|
109
|
-
[Image image.jpg displayed]
|
110
|
-
|
111
|
-
AGENT: {"thoughts": "The image shows a cat and a dog sitting on the couch, I will tell the user and ask them if they need any other assistance.", "response": "The image contains a dog and a cat sitting on a couch. Can I help you with any other tasks?", "let_user_respond": true}
|
112
|
-
"""
|
113
|
-
|
114
|
-
|
115
|
-
EXAMPLES_CODE3 = """
|
116
|
-
USER: Can you create a function to count workers with helmets, return the count and save a visaulization of the bounding boxes?
|
117
|
-
|
118
|
-
OBSERVATION:
|
119
|
-
[Artifacts loaded]
|
120
|
-
[End of artifacts]
|
121
|
-
|
122
|
-
AGENT: {"thoughts": "The user has asked to count workers with helmets but has not provided an image. I will ask the user for an image and then generate the code to count workers with helmets.", "response": "Can you provide an image of workers with helmets?", "let_user_respond": true}
|
123
|
-
|
124
|
-
USER: Yes you can use workers.png
|
125
|
-
|
126
|
-
OBSERVATION:
|
127
|
-
[Artifacts loaded]
|
128
|
-
Artifact workers.png loaded to /path/to/images/workers.png
|
129
|
-
[End of artifacts]
|
130
|
-
|
131
|
-
AGENT: {"thoughts": "I will use the generate_vision_code to count the workers with helmets in the image.", "response": "<execute_python>generate_vision_code(artifacts, 'code.py', 'Can you create a function to count workers with helmets, return the count and save a visaulization of the bounding boxes?', media=['/paths/to/images/workers.png'])</execute_python>", "let_user_respond": false}
|
132
|
-
|
133
|
-
OBSERVATION:
|
134
|
-
[Artifact code.py]
|
135
|
-
0|from vision_agent.tools import load_image, florence2_phrase_grounding, closest_box_distance, overlay_bounding_boxes, save_image
|
136
|
-
1|def count_workers_with_helmets(image_path: str, output_path: str):
|
137
|
-
2| image = load_image(image_path)
|
138
|
-
3| detections = florence2_phrase_grounding("worker, helmet", image)
|
139
|
-
4| workers = [d for d in detections if d['label'] == 'worker']
|
140
|
-
5| helmets = [d for d in detections if d['label'] == 'helmet']
|
141
|
-
6| count = 0
|
142
|
-
6| for worker in workers:
|
143
|
-
7| person_has_helmet = False
|
144
|
-
8| for helmet in helmets:
|
145
|
-
9| if closest_box_distance(worker['box'], helmet['box']) < 0.01:
|
146
|
-
10| person_has_helmet = True
|
147
|
-
11| break
|
148
|
-
11| if person_has_helmet:
|
149
|
-
13| count += 1
|
150
|
-
14| overlay_bounding_boxes(image, detections)
|
151
|
-
15| save_image(output_path, image)
|
152
|
-
16| return count
|
153
|
-
[End of artifact]
|
154
|
-
|
155
|
-
AGENT: {"thoughts": "I have generated the code to count the workers with helmets in the image, I must now run the code and print the output and write the visualization to the artifacts so I can see the result and the user can see the visaulization.", "response": "<execute_python>from code import count_workers_with_helmets\n print(count_workers_with_helmets('/path/to/images/workers.png', 'workers_viz.png'))\n write_media_artifact(artifacts, 'workers_viz.png', 'workers_viz.png')</execute_python>", "let_user_respond": false}
|
156
|
-
|
157
|
-
OBSERVATION:
|
158
|
-
----- stdout -----
|
159
|
-
2
|
160
|
-
|
161
|
-
AGENT: {"thoughts": "Two workers with helmets are detected, I will show this to the user and ask them if the result looks good.", "response": "The code to detect workers with helmets is saved in code.py and the visualization under 'workers_viz.png'.", "let_user_respond": true}
|
162
|
-
|
163
|
-
USER: The detections are slightly off. Can you fine tune florence2 using these labels? "[{'image_path': 'image1.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}, {'image_path': 'image2.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}]"
|
164
|
-
|
165
|
-
AGENT: {"thoughts": "Because the user has supplied me with labels I can call object_detection_fine_tuning on their behalf to fine tune the model", "response": "<execute_python>object_detection_fine_tuning([{'image_path': 'image1.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}, {'image_path': 'image2.png': 'labels': ['worker', 'helmet'], 'bboxes': [[235, 118, 294, 241], [232, 118, 294, 128]]}])</execute_python>", "let_user_respond": false}
|
166
|
-
|
167
|
-
OBSERVATION:
|
168
|
-
[Fine tuning id: 23b3b022-5ebf-4798-9373-20ef36429abf]
|
169
|
-
|
170
|
-
AGENT: {"thoughts": "The model has finished fine tuning, I will now replace the original florence2_phrase_grounding call with the fine tuning id.", "response": "<execute_python>use_object_detection_fine_tuning(artifacts, "code.py", "23b3b022-5ebf-4798-9373-20ef36429abf")</execute_python>", "let_user_respond": false}
|
171
|
-
|
172
|
-
OBSERVATION:
|
173
|
-
[Artifact code.py edits]
|
174
|
-
---
|
175
|
-
+++
|
176
|
-
@@ -1,7 +1,7 @@
|
177
|
-
from vision_agent.tools import load_image, florence2_phrase_grounding, closest_box_distance, overlay_bounding_boxes, save_image
|
178
|
-
def count_workers_with_helmets(image_path: str, output_path: str):
|
179
|
-
image = load_image(image_path)
|
180
|
-
- detections = florence2_phrase_grounding("worker, helmet", image)
|
181
|
-
+ detections = florence2_phrase_grounding("worker, helmet", image, "23b3b022-5ebf-4798-9373-20ef36429abf")
|
182
|
-
workers = [d for d in detections if d['label'] == 'worker']
|
183
|
-
helmets = [d for d in detections if d['label'] == 'helmet']
|
184
|
-
count = 0
|
185
|
-
[End of edits]
|
186
|
-
|
187
|
-
AGENT: {"thoughts": "I have updated the code to use the fine tuned model, I must now run the code and print the output and write the visualization to the artifacts so I can see the result and the user can see the visaulization.", "response": "<execute_python>from code import count_workers_with_helmets\n print(count_workers_with_helmets('/path/to/images/workers.png', 'workers_viz.png'))\n write_media_artifact(artifacts, 'workers_viz.png', 'workers_viz.png')</execute_python>", "let_user_respond": false}
|
188
|
-
|
189
|
-
OBSERVATION:
|
190
|
-
----- stdout -----
|
191
|
-
3
|
192
|
-
|
193
|
-
AGENT: {"thoughts": "Three workers with helmets are detected, I will show this to the user and ask them if the result looks good.", "response": "I have updated the code using the fine tuned florence2_phrase_grounding model to count the workers wearing helmets in code.py and saved the visualization under 'workers_viz.png'.", "let_user_respond": true}
|
194
|
-
"""
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent_coder_prompts.py
RENAMED
File without changes
|
File without changes
|
{vision_agent-0.2.163 → vision_agent-0.2.165}/vision_agent/agent/vision_agent_planner_prompts.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|