vision-agent 0.2.114__tar.gz → 0.2.115__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {vision_agent-0.2.114 → vision_agent-0.2.115}/PKG-INFO +49 -16
- {vision_agent-0.2.114 → vision_agent-0.2.115}/README.md +48 -15
- {vision_agent-0.2.114 → vision_agent-0.2.115}/pyproject.toml +1 -1
- vision_agent-0.2.115/vision_agent/agent/__init__.py +7 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/agent_utils.py +25 -2
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/vision_agent_coder.py +69 -7
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/lmm/lmm.py +40 -21
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/__init__.py +1 -1
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/sim.py +49 -9
- vision_agent-0.2.114/vision_agent/agent/__init__.py +0 -3
- {vision_agent-0.2.114 → vision_agent-0.2.115}/LICENSE +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/__init__.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/agent.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/vision_agent.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/vision_agent_coder_prompts.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/vision_agent_prompts.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/clients/__init__.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/clients/http.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/clients/landing_public_api.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/fonts/__init__.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/fonts/default_font_ch_en.ttf +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/lmm/__init__.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/lmm/types.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/tools/__init__.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/tools/meta_tools.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/tools/prompts.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/tools/tool_utils.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/tools/tools.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/tools/tools_types.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/exceptions.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/execute.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/image_utils.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/type_defs.py +0 -0
- {vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/utils/video.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vision-agent
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.115
|
4
4
|
Summary: Toolset for Vision Agent
|
5
5
|
Author: Landing AI
|
6
6
|
Author-email: dev@landing.ai
|
@@ -208,20 +208,18 @@ result = agent.chat_with_workflow(conv)
|
|
208
208
|
|
209
209
|
### Tools
|
210
210
|
There are a variety of tools for the model or the user to use. Some are executed locally
|
211
|
-
while others are hosted for you. You can
|
212
|
-
you
|
211
|
+
while others are hosted for you. You can easily access them yourself, for example if
|
212
|
+
you want to run `owl_v2` and visualize the output you can run:
|
213
213
|
|
214
214
|
```python
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
]
|
224
|
-
}]
|
215
|
+
import vision_agent.tools as T
|
216
|
+
import matplotlib.pyplot as plt
|
217
|
+
|
218
|
+
image = T.load_image("dogs.jpg")
|
219
|
+
dets = T.owl_v2("dogs", image)
|
220
|
+
viz = T.overlay_bounding_boxes(image, dets)
|
221
|
+
plt.imshow(viz)
|
222
|
+
plt.show()
|
225
223
|
```
|
226
224
|
|
227
225
|
You can also add custom tools to the agent:
|
@@ -254,6 +252,41 @@ function. Make sure the documentation is in the same format above with descripti
|
|
254
252
|
`Parameters:`, `Returns:`, and `Example\n-------`. You can find an example use case
|
255
253
|
[here](examples/custom_tools/) as this is what the agent uses to pick and use the tool.
|
256
254
|
|
255
|
+
## Additional LLMs
|
256
|
+
### Ollama
|
257
|
+
We also provide a `VisionAgentCoder` that uses Ollama. To get started you must download
|
258
|
+
a few models:
|
259
|
+
|
260
|
+
```bash
|
261
|
+
ollama pull llama3.1
|
262
|
+
ollama pull mxbai-embed-large
|
263
|
+
```
|
264
|
+
|
265
|
+
`llama3.1` is used for the `OllamaLMM` for `OllamaVisionAgentCoder`. Normally we would
|
266
|
+
use an actual LMM such as `llava` but `llava` cannot handle the long context lengths
|
267
|
+
required by the agent. Since `llama3.1` cannot handle images you may see some
|
268
|
+
performance degredation. `mxbai-embed-large` is the embedding model used to look up
|
269
|
+
tools. You can use it just like you would use `VisionAgentCoder`:
|
270
|
+
|
271
|
+
```python
|
272
|
+
>>> import vision_agent as va
|
273
|
+
>>> agent = va.agent.OllamaVisionAgentCoder()
|
274
|
+
>>> agent("Count the apples in the image", media="apples.jpg")
|
275
|
+
```
|
276
|
+
> WARNING: VisionAgent doesn't work well unless the underlying LMM is sufficiently powerful. Do not expect good results or even working code with smaller models like Llama 3.1 8B.
|
277
|
+
|
278
|
+
### Azure OpenAI
|
279
|
+
We also provide a `AzureVisionAgentCoder` that uses Azure OpenAI models. To get started
|
280
|
+
follow the Azure Setup section below. You can use it just like you would use=
|
281
|
+
`VisionAgentCoder`:
|
282
|
+
|
283
|
+
```python
|
284
|
+
>>> import vision_agent as va
|
285
|
+
>>> agent = va.agent.AzureVisionAgentCoder()
|
286
|
+
>>> agent("Count the apples in the image", media="apples.jpg")
|
287
|
+
```
|
288
|
+
|
289
|
+
|
257
290
|
### Azure Setup
|
258
291
|
If you want to use Azure OpenAI models, you need to have two OpenAI model deployments:
|
259
292
|
|
@@ -292,7 +325,7 @@ agent = va.agent.AzureVisionAgentCoder()
|
|
292
325
|
2. Follow the instructions to purchase and manage your API credits.
|
293
326
|
3. Ensure your API key is correctly configured in your project settings.
|
294
327
|
|
295
|
-
Failure to have sufficient API credits may result in limited or no functionality for
|
296
|
-
|
297
|
-
|
328
|
+
Failure to have sufficient API credits may result in limited or no functionality for
|
329
|
+
the features that rely on the OpenAI API. For more details on managing your API usage
|
330
|
+
and credits, please refer to the OpenAI API documentation.
|
298
331
|
|
@@ -168,20 +168,18 @@ result = agent.chat_with_workflow(conv)
|
|
168
168
|
|
169
169
|
### Tools
|
170
170
|
There are a variety of tools for the model or the user to use. Some are executed locally
|
171
|
-
while others are hosted for you. You can
|
172
|
-
you
|
171
|
+
while others are hosted for you. You can easily access them yourself, for example if
|
172
|
+
you want to run `owl_v2` and visualize the output you can run:
|
173
173
|
|
174
174
|
```python
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
]
|
184
|
-
}]
|
175
|
+
import vision_agent.tools as T
|
176
|
+
import matplotlib.pyplot as plt
|
177
|
+
|
178
|
+
image = T.load_image("dogs.jpg")
|
179
|
+
dets = T.owl_v2("dogs", image)
|
180
|
+
viz = T.overlay_bounding_boxes(image, dets)
|
181
|
+
plt.imshow(viz)
|
182
|
+
plt.show()
|
185
183
|
```
|
186
184
|
|
187
185
|
You can also add custom tools to the agent:
|
@@ -214,6 +212,41 @@ function. Make sure the documentation is in the same format above with descripti
|
|
214
212
|
`Parameters:`, `Returns:`, and `Example\n-------`. You can find an example use case
|
215
213
|
[here](examples/custom_tools/) as this is what the agent uses to pick and use the tool.
|
216
214
|
|
215
|
+
## Additional LLMs
|
216
|
+
### Ollama
|
217
|
+
We also provide a `VisionAgentCoder` that uses Ollama. To get started you must download
|
218
|
+
a few models:
|
219
|
+
|
220
|
+
```bash
|
221
|
+
ollama pull llama3.1
|
222
|
+
ollama pull mxbai-embed-large
|
223
|
+
```
|
224
|
+
|
225
|
+
`llama3.1` is used for the `OllamaLMM` for `OllamaVisionAgentCoder`. Normally we would
|
226
|
+
use an actual LMM such as `llava` but `llava` cannot handle the long context lengths
|
227
|
+
required by the agent. Since `llama3.1` cannot handle images you may see some
|
228
|
+
performance degredation. `mxbai-embed-large` is the embedding model used to look up
|
229
|
+
tools. You can use it just like you would use `VisionAgentCoder`:
|
230
|
+
|
231
|
+
```python
|
232
|
+
>>> import vision_agent as va
|
233
|
+
>>> agent = va.agent.OllamaVisionAgentCoder()
|
234
|
+
>>> agent("Count the apples in the image", media="apples.jpg")
|
235
|
+
```
|
236
|
+
> WARNING: VisionAgent doesn't work well unless the underlying LMM is sufficiently powerful. Do not expect good results or even working code with smaller models like Llama 3.1 8B.
|
237
|
+
|
238
|
+
### Azure OpenAI
|
239
|
+
We also provide a `AzureVisionAgentCoder` that uses Azure OpenAI models. To get started
|
240
|
+
follow the Azure Setup section below. You can use it just like you would use=
|
241
|
+
`VisionAgentCoder`:
|
242
|
+
|
243
|
+
```python
|
244
|
+
>>> import vision_agent as va
|
245
|
+
>>> agent = va.agent.AzureVisionAgentCoder()
|
246
|
+
>>> agent("Count the apples in the image", media="apples.jpg")
|
247
|
+
```
|
248
|
+
|
249
|
+
|
217
250
|
### Azure Setup
|
218
251
|
If you want to use Azure OpenAI models, you need to have two OpenAI model deployments:
|
219
252
|
|
@@ -252,6 +285,6 @@ agent = va.agent.AzureVisionAgentCoder()
|
|
252
285
|
2. Follow the instructions to purchase and manage your API credits.
|
253
286
|
3. Ensure your API key is correctly configured in your project settings.
|
254
287
|
|
255
|
-
Failure to have sufficient API credits may result in limited or no functionality for
|
256
|
-
|
257
|
-
|
288
|
+
Failure to have sufficient API credits may result in limited or no functionality for
|
289
|
+
the features that rely on the OpenAI API. For more details on managing your API usage
|
290
|
+
and credits, please refer to the OpenAI API documentation.
|
@@ -1,9 +1,24 @@
|
|
1
1
|
import json
|
2
2
|
import logging
|
3
|
+
import re
|
3
4
|
import sys
|
4
|
-
from typing import Any, Dict
|
5
|
+
from typing import Any, Dict, Optional
|
5
6
|
|
6
7
|
logging.basicConfig(stream=sys.stdout)
|
8
|
+
_LOGGER = logging.getLogger(__name__)
|
9
|
+
|
10
|
+
|
11
|
+
def _extract_sub_json(json_str: str) -> Optional[Dict[str, Any]]:
|
12
|
+
json_pattern = r"\{.*\}"
|
13
|
+
match = re.search(json_pattern, json_str, re.DOTALL)
|
14
|
+
if match:
|
15
|
+
json_str = match.group()
|
16
|
+
try:
|
17
|
+
json_dict = json.loads(json_str)
|
18
|
+
return json_dict # type: ignore
|
19
|
+
except json.JSONDecodeError:
|
20
|
+
return None
|
21
|
+
return None
|
7
22
|
|
8
23
|
|
9
24
|
def extract_json(json_str: str) -> Dict[str, Any]:
|
@@ -18,8 +33,16 @@ def extract_json(json_str: str) -> Dict[str, Any]:
|
|
18
33
|
json_str = json_str[json_str.find("```") + len("```") :]
|
19
34
|
# get the last ``` not one from an intermediate string
|
20
35
|
json_str = json_str[: json_str.find("}```")]
|
36
|
+
try:
|
37
|
+
json_dict = json.loads(json_str)
|
38
|
+
except json.JSONDecodeError as e:
|
39
|
+
json_dict = _extract_sub_json(json_str)
|
40
|
+
if json_dict is not None:
|
41
|
+
return json_dict # type: ignore
|
42
|
+
error_msg = f"Could not extract JSON from the given str: {json_str}"
|
43
|
+
_LOGGER.exception(error_msg)
|
44
|
+
raise ValueError(error_msg) from e
|
21
45
|
|
22
|
-
json_dict = json.loads(json_str)
|
23
46
|
return json_dict # type: ignore
|
24
47
|
|
25
48
|
|
@@ -28,11 +28,11 @@ from vision_agent.agent.vision_agent_coder_prompts import (
|
|
28
28
|
TEST_PLANS,
|
29
29
|
USER_REQ,
|
30
30
|
)
|
31
|
-
from vision_agent.lmm import LMM, AzureOpenAILMM, Message, OpenAILMM
|
31
|
+
from vision_agent.lmm import LMM, AzureOpenAILMM, Message, OllamaLMM, OpenAILMM
|
32
32
|
from vision_agent.utils import CodeInterpreterFactory, Execution
|
33
33
|
from vision_agent.utils.execute import CodeInterpreter
|
34
34
|
from vision_agent.utils.image_utils import b64_to_pil
|
35
|
-
from vision_agent.utils.sim import AzureSim, Sim
|
35
|
+
from vision_agent.utils.sim import AzureSim, OllamaSim, Sim
|
36
36
|
from vision_agent.utils.video import play_video
|
37
37
|
|
38
38
|
logging.basicConfig(stream=sys.stdout)
|
@@ -267,7 +267,11 @@ def pick_plan(
|
|
267
267
|
pass
|
268
268
|
count += 1
|
269
269
|
|
270
|
-
if
|
270
|
+
if (
|
271
|
+
best_plan is None
|
272
|
+
or "best_plan" not in best_plan
|
273
|
+
or ("best_plan" in best_plan and best_plan["best_plan"] not in plans)
|
274
|
+
):
|
271
275
|
best_plan = {"best_plan": list(plans.keys())[0]}
|
272
276
|
|
273
277
|
if verbosity >= 1:
|
@@ -589,8 +593,8 @@ class VisionAgentCoder(Agent):
|
|
589
593
|
|
590
594
|
Example
|
591
595
|
-------
|
592
|
-
>>>
|
593
|
-
>>> agent = VisionAgentCoder()
|
596
|
+
>>> import vision_agent as va
|
597
|
+
>>> agent = va.agent.VisionAgentCoder()
|
594
598
|
>>> code = agent("What percentage of the area of the jar is filled with coffee beans?", media="jar.jpg")
|
595
599
|
"""
|
596
600
|
|
@@ -857,6 +861,64 @@ class VisionAgentCoder(Agent):
|
|
857
861
|
self.report_progress_callback(data)
|
858
862
|
|
859
863
|
|
864
|
+
class OllamaVisionAgentCoder(VisionAgentCoder):
|
865
|
+
"""VisionAgentCoder that uses Ollama models for planning, coding, testing.
|
866
|
+
|
867
|
+
Pre-requisites:
|
868
|
+
1. Run ollama pull llama3.1 for the LLM
|
869
|
+
2. Run ollama pull mxbai-embed-large for the embedding similarity model
|
870
|
+
|
871
|
+
Technically you should use a VLM such as llava but llava is not able to handle the
|
872
|
+
context length and crashes.
|
873
|
+
|
874
|
+
Example
|
875
|
+
-------
|
876
|
+
>>> image vision_agent as va
|
877
|
+
>>> agent = va.agent.OllamaVisionAgentCoder()
|
878
|
+
>>> code = agent("What percentage of the area of the jar is filled with coffee beans?", media="jar.jpg")
|
879
|
+
"""
|
880
|
+
|
881
|
+
def __init__(
|
882
|
+
self,
|
883
|
+
planner: Optional[LMM] = None,
|
884
|
+
coder: Optional[LMM] = None,
|
885
|
+
tester: Optional[LMM] = None,
|
886
|
+
debugger: Optional[LMM] = None,
|
887
|
+
tool_recommender: Optional[Sim] = None,
|
888
|
+
verbosity: int = 0,
|
889
|
+
report_progress_callback: Optional[Callable[[Dict[str, Any]], None]] = None,
|
890
|
+
) -> None:
|
891
|
+
super().__init__(
|
892
|
+
planner=(
|
893
|
+
OllamaLMM(model_name="llama3.1", temperature=0.0, json_mode=True)
|
894
|
+
if planner is None
|
895
|
+
else planner
|
896
|
+
),
|
897
|
+
coder=(
|
898
|
+
OllamaLMM(model_name="llama3.1", temperature=0.0)
|
899
|
+
if coder is None
|
900
|
+
else coder
|
901
|
+
),
|
902
|
+
tester=(
|
903
|
+
OllamaLMM(model_name="llama3.1", temperature=0.0)
|
904
|
+
if tester is None
|
905
|
+
else tester
|
906
|
+
),
|
907
|
+
debugger=(
|
908
|
+
OllamaLMM(model_name="llama3.1", temperature=0.0, json_mode=True)
|
909
|
+
if debugger is None
|
910
|
+
else debugger
|
911
|
+
),
|
912
|
+
tool_recommender=(
|
913
|
+
OllamaSim(T.TOOLS_DF, sim_key="desc")
|
914
|
+
if tool_recommender is None
|
915
|
+
else tool_recommender
|
916
|
+
),
|
917
|
+
verbosity=verbosity,
|
918
|
+
report_progress_callback=report_progress_callback,
|
919
|
+
)
|
920
|
+
|
921
|
+
|
860
922
|
class AzureVisionAgentCoder(VisionAgentCoder):
|
861
923
|
"""VisionAgentCoder that uses Azure OpenAI APIs for planning, coding, testing.
|
862
924
|
|
@@ -866,8 +928,8 @@ class AzureVisionAgentCoder(VisionAgentCoder):
|
|
866
928
|
|
867
929
|
Example
|
868
930
|
-------
|
869
|
-
>>>
|
870
|
-
>>> agent = AzureVisionAgentCoder()
|
931
|
+
>>> import vision_agent as va
|
932
|
+
>>> agent = va.agent.AzureVisionAgentCoder()
|
871
933
|
>>> code = agent("What percentage of the area of the jar is filled with coffee beans?", media="jar.jpg")
|
872
934
|
"""
|
873
935
|
|
@@ -330,12 +330,28 @@ class OllamaLMM(LMM):
|
|
330
330
|
model_name: str = "llava",
|
331
331
|
base_url: Optional[str] = "http://localhost:11434/api",
|
332
332
|
json_mode: bool = False,
|
333
|
+
num_ctx: int = 128_000,
|
333
334
|
**kwargs: Any,
|
334
335
|
):
|
336
|
+
"""Initializes the Ollama LMM. kwargs are passed as 'options' to the model.
|
337
|
+
More information on options can be found here
|
338
|
+
https://github.com/ollama/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values
|
339
|
+
|
340
|
+
Parameters:
|
341
|
+
model_name (str): The ollama name of the model.
|
342
|
+
base_url (str): The base URL of the Ollama API.
|
343
|
+
json_mode (bool): Whether to use JSON mode.
|
344
|
+
num_ctx (int): The context length for the model.
|
345
|
+
kwargs (Any): Additional options to pass to the model.
|
346
|
+
"""
|
347
|
+
|
335
348
|
self.url = base_url
|
336
349
|
self.model_name = model_name
|
337
|
-
self.
|
338
|
-
|
350
|
+
self.kwargs = {"options": kwargs}
|
351
|
+
|
352
|
+
if json_mode:
|
353
|
+
self.kwargs["format"] = "json" # type: ignore
|
354
|
+
self.kwargs["options"]["num_cxt"] = num_ctx
|
339
355
|
|
340
356
|
def __call__(
|
341
357
|
self,
|
@@ -369,13 +385,14 @@ class OllamaLMM(LMM):
|
|
369
385
|
url = f"{self.url}/chat"
|
370
386
|
model = self.model_name
|
371
387
|
messages = fixed_chat
|
372
|
-
data = {"model": model, "messages": messages}
|
388
|
+
data: Dict[str, Any] = {"model": model, "messages": messages}
|
373
389
|
|
374
390
|
tmp_kwargs = self.kwargs | kwargs
|
375
391
|
data.update(tmp_kwargs)
|
376
|
-
json_data = json.dumps(data)
|
377
392
|
if "stream" in tmp_kwargs and tmp_kwargs["stream"]:
|
378
393
|
|
394
|
+
json_data = json.dumps(data)
|
395
|
+
|
379
396
|
def f() -> Iterator[Optional[str]]:
|
380
397
|
with requests.post(url, data=json_data, stream=True) as stream:
|
381
398
|
if stream.status_code != 200:
|
@@ -392,13 +409,14 @@ class OllamaLMM(LMM):
|
|
392
409
|
|
393
410
|
return f()
|
394
411
|
else:
|
395
|
-
stream =
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
412
|
+
data["stream"] = False
|
413
|
+
json_data = json.dumps(data)
|
414
|
+
resp = requests.post(url, data=json_data)
|
415
|
+
|
416
|
+
if resp.status_code != 200:
|
417
|
+
raise ValueError(f"Request failed with status code {resp.status_code}")
|
418
|
+
resp = resp.json()
|
419
|
+
return resp["message"]["content"] # type: ignore
|
402
420
|
|
403
421
|
def generate(
|
404
422
|
self,
|
@@ -408,7 +426,7 @@ class OllamaLMM(LMM):
|
|
408
426
|
) -> Union[str, Iterator[Optional[str]]]:
|
409
427
|
|
410
428
|
url = f"{self.url}/generate"
|
411
|
-
data = {
|
429
|
+
data: Dict[str, Any] = {
|
412
430
|
"model": self.model_name,
|
413
431
|
"prompt": prompt,
|
414
432
|
"images": [],
|
@@ -416,13 +434,14 @@ class OllamaLMM(LMM):
|
|
416
434
|
|
417
435
|
if media and len(media) > 0:
|
418
436
|
for m in media:
|
419
|
-
data["images"].append(encode_media(m))
|
437
|
+
data["images"].append(encode_media(m))
|
420
438
|
|
421
439
|
tmp_kwargs = self.kwargs | kwargs
|
422
440
|
data.update(tmp_kwargs)
|
423
|
-
json_data = json.dumps(data)
|
424
441
|
if "stream" in tmp_kwargs and tmp_kwargs["stream"]:
|
425
442
|
|
443
|
+
json_data = json.dumps(data)
|
444
|
+
|
426
445
|
def f() -> Iterator[Optional[str]]:
|
427
446
|
with requests.post(url, data=json_data, stream=True) as stream:
|
428
447
|
if stream.status_code != 200:
|
@@ -439,15 +458,15 @@ class OllamaLMM(LMM):
|
|
439
458
|
|
440
459
|
return f()
|
441
460
|
else:
|
442
|
-
stream =
|
461
|
+
data["stream"] = False
|
462
|
+
json_data = json.dumps(data)
|
463
|
+
resp = requests.post(url, data=json_data)
|
443
464
|
|
444
|
-
if
|
445
|
-
raise ValueError(
|
446
|
-
f"Request failed with status code {stream.status_code}"
|
447
|
-
)
|
465
|
+
if resp.status_code != 200:
|
466
|
+
raise ValueError(f"Request failed with status code {resp.status_code}")
|
448
467
|
|
449
|
-
|
450
|
-
return
|
468
|
+
resp = resp.json()
|
469
|
+
return resp["response"] # type: ignore
|
451
470
|
|
452
471
|
|
453
472
|
class ClaudeSonnetLMM(LMM):
|
@@ -1,20 +1,21 @@
|
|
1
1
|
import os
|
2
2
|
from functools import lru_cache
|
3
3
|
from pathlib import Path
|
4
|
-
from typing import Dict, List, Optional, Sequence, Union
|
4
|
+
from typing import Callable, Dict, List, Optional, Sequence, Union
|
5
5
|
|
6
6
|
import numpy as np
|
7
7
|
import pandas as pd
|
8
|
-
|
8
|
+
import requests
|
9
|
+
from openai import AzureOpenAI, OpenAI
|
9
10
|
from scipy.spatial.distance import cosine # type: ignore
|
10
11
|
|
11
12
|
|
12
13
|
@lru_cache(maxsize=512)
|
13
14
|
def get_embedding(
|
14
|
-
|
15
|
+
emb_call: Callable[[List[str]], List[float]], text: str
|
15
16
|
) -> List[float]:
|
16
17
|
text = text.replace("\n", " ")
|
17
|
-
return
|
18
|
+
return emb_call([text])
|
18
19
|
|
19
20
|
|
20
21
|
class Sim:
|
@@ -35,14 +36,19 @@ class Sim:
|
|
35
36
|
model: str: The model to use for embeddings.
|
36
37
|
"""
|
37
38
|
self.df = df
|
38
|
-
|
39
|
+
client = OpenAI(api_key=api_key)
|
40
|
+
self.emb_call = (
|
41
|
+
lambda text: client.embeddings.create(input=text, model=model)
|
42
|
+
.data[0]
|
43
|
+
.embedding
|
44
|
+
)
|
39
45
|
self.model = model
|
40
46
|
if "embs" not in df.columns and sim_key is None:
|
41
47
|
raise ValueError("key is required if no column 'embs' is present.")
|
42
48
|
|
43
49
|
if sim_key is not None:
|
44
50
|
self.df["embs"] = self.df[sim_key].apply(
|
45
|
-
lambda x: get_embedding(self.
|
51
|
+
lambda x: get_embedding(self.emb_call, x)
|
46
52
|
)
|
47
53
|
|
48
54
|
def save(self, sim_file: Union[str, Path]) -> None:
|
@@ -70,7 +76,7 @@ class Sim:
|
|
70
76
|
Sequence[Dict]: The top k most similar items.
|
71
77
|
"""
|
72
78
|
|
73
|
-
embedding = get_embedding(self.
|
79
|
+
embedding = get_embedding(self.emb_call, query)
|
74
80
|
self.df["sim"] = self.df.embs.apply(lambda x: 1 - cosine(x, embedding))
|
75
81
|
res = self.df.sort_values("sim", ascending=False).head(k)
|
76
82
|
if thresh is not None:
|
@@ -105,17 +111,51 @@ class AzureSim(Sim):
|
|
105
111
|
)
|
106
112
|
|
107
113
|
self.df = df
|
108
|
-
|
114
|
+
client = AzureOpenAI(
|
109
115
|
api_key=api_key, api_version=api_version, azure_endpoint=azure_endpoint
|
110
116
|
)
|
117
|
+
self.emb_call = (
|
118
|
+
lambda text: client.embeddings.create(input=text, model=model)
|
119
|
+
.data[0]
|
120
|
+
.embedding
|
121
|
+
)
|
111
122
|
|
112
123
|
self.model = model
|
124
|
+
if "embs" not in df.columns and sim_key is None:
|
125
|
+
raise ValueError("key is required if no column 'embs' is present.")
|
126
|
+
|
127
|
+
if sim_key is not None:
|
128
|
+
self.df["embs"] = self.df[sim_key].apply(lambda x: get_embedding(client, x))
|
129
|
+
|
130
|
+
|
131
|
+
class OllamaSim(Sim):
|
132
|
+
def __init__(
|
133
|
+
self,
|
134
|
+
df: pd.DataFrame,
|
135
|
+
sim_key: Optional[str] = None,
|
136
|
+
model_name: Optional[str] = None,
|
137
|
+
base_url: Optional[str] = None,
|
138
|
+
) -> None:
|
139
|
+
self.df = df
|
140
|
+
if base_url is None:
|
141
|
+
base_url = "http://localhost:11434/api/embeddings"
|
142
|
+
if model_name is None:
|
143
|
+
model_name = "mxbai-embed-large"
|
144
|
+
|
145
|
+
def emb_call(text: List[str]) -> List[float]:
|
146
|
+
resp = requests.post(
|
147
|
+
base_url, json={"prompt": text[0], "model": model_name}
|
148
|
+
)
|
149
|
+
return resp.json()["embedding"] # type: ignore
|
150
|
+
|
151
|
+
self.emb_call = emb_call
|
152
|
+
|
113
153
|
if "embs" not in df.columns and sim_key is None:
|
114
154
|
raise ValueError("key is required if no column 'embs' is present.")
|
115
155
|
|
116
156
|
if sim_key is not None:
|
117
157
|
self.df["embs"] = self.df[sim_key].apply(
|
118
|
-
lambda x: get_embedding(
|
158
|
+
lambda x: get_embedding(emb_call, x)
|
119
159
|
)
|
120
160
|
|
121
161
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{vision_agent-0.2.114 → vision_agent-0.2.115}/vision_agent/agent/vision_agent_coder_prompts.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|