virgo-modules 0.4.1__tar.gz → 0.4.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of virgo-modules might be problematic. Click here for more details.

Files changed (23) hide show
  1. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/PKG-INFO +1 -1
  2. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/setup.py +1 -1
  3. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/hmm_utils.py +9 -7
  4. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/re_utils.py +20 -7
  5. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules.egg-info/PKG-INFO +1 -1
  6. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/LICENSE +0 -0
  7. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/README.md +0 -0
  8. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/setup.cfg +0 -0
  9. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/__init__.py +0 -0
  10. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/__init__.py +0 -0
  11. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/aws_utils.py +0 -0
  12. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/backtester.py +0 -0
  13. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/edge_utils/__init__.py +0 -0
  14. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/edge_utils/conformal_utils.py +0 -0
  15. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/edge_utils/edge_utils.py +0 -0
  16. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/edge_utils/shap_utils.py +0 -0
  17. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/pull_artifacts.py +0 -0
  18. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/ticketer_source.py +0 -0
  19. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules/src/transformer_utils.py +0 -0
  20. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules.egg-info/SOURCES.txt +0 -0
  21. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules.egg-info/dependency_links.txt +0 -0
  22. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules.egg-info/requires.txt +0 -0
  23. {virgo_modules-0.4.1 → virgo_modules-0.4.3}/virgo_app/virgo_modules.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo_modules
3
- Version: 0.4.1
3
+ Version: 0.4.3
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
@@ -5,7 +5,7 @@ with open("virgo_app/README.md", "r") as f:
5
5
 
6
6
  setup(
7
7
  name="virgo_modules",
8
- version="0.4.1",
8
+ version="0.4.3",
9
9
  description="data processing and statistical modeling using stock market data",
10
10
  package_dir={"": "virgo_app"},
11
11
  packages=find_packages(where="virgo_app"),
@@ -153,19 +153,21 @@ class trainer_hmm():
153
153
  ('drop_correlated', DropCorrelatedFeatures(method='spearman',threshold=self.__corr_thrshold)),
154
154
  ])
155
155
 
156
- # features_hmm = list(transform_pipe.fit_transform(self.__data_train).columns)
157
- # n_features = len(features_hmm)
158
- # startprob_prior = np.array([1/self.__n_clusters]*self.__n_clusters)
159
- transmat_prior = np.diag([0.70]*self.__n_clusters)
160
- # means_prior = np.array([1/n_features]*n_features)
156
+ features_hmm_ = list(transform_pipe.fit_transform(self.__data_train).columns)
157
+ n_features = len(features_hmm_)
158
+ start_prob = 0.60
159
+ startprob_prior = np.array([1/self.__n_clusters]*self.__n_clusters)
160
+ transmat_prior = np.diag([start_prob]*self.__n_clusters)
161
+ transmat_prior[transmat_prior==0] = (1-start_prob)/(1-self.__n_clusters)
162
+ means_prior = np.array([1/n_features]*n_features)
161
163
  pipeline_hmm = Pipeline([
162
164
  ('transfrom_pipe', transform_pipe),
163
165
  ('scaler', RobustScaler()),
164
166
  ('hmm', GaussianHMM(
165
167
  n_components = self.__n_clusters, covariance_type = 'spherical',
166
- # startprob_prior = startprob_prior,
168
+ startprob_prior = startprob_prior,
167
169
  transmat_prior = transmat_prior,
168
- # means_prior = means_prior,
170
+ means_prior = means_prior,
169
171
  random_state = self.__seed,)
170
172
  )
171
173
  ])
@@ -792,7 +792,7 @@ def apply_KF(self, trends):
792
792
 
793
793
  stock_eda_panel.apply_KF = apply_KF
794
794
 
795
- def call_ml_objects(stock_code, client, call_models = False):
795
+ def call_ml_objects(stock_code, client, call_models = False, clean_name=False):
796
796
  '''
797
797
  call artifcats from mlflow
798
798
 
@@ -805,7 +805,11 @@ def call_ml_objects(stock_code, client, call_models = False):
805
805
  '''
806
806
  objects = dict()
807
807
 
808
- registered_model_name = f'{stock_code}_models'
808
+ if clean_name:
809
+ renamed_stock_code = stock_code.replace("^","__",).replace(".","__").replace("=","__").replace("-","__")
810
+ registered_model_name = f'{renamed_stock_code}_models'
811
+ else:
812
+ registered_model_name = f'{stock_code}_models'
809
813
  latest_version_info = client.get_latest_versions(registered_model_name, stages=["Production"])
810
814
  latest_production_version = latest_version_info[0].version
811
815
  run_id_prod_model = latest_version_info[0].run_id
@@ -816,18 +820,27 @@ def call_ml_objects(stock_code, client, call_models = False):
816
820
  )
817
821
 
818
822
  ## calling models
819
-
823
+ if clean_name:
824
+ path_hmm = f"runs:/{run_id_prod_model}/{renamed_stock_code}-hmm-model"
825
+ else:
826
+ path_hmm = f"runs:/{run_id_prod_model}/{stock_code}-hmm-model"
827
+
820
828
  hmm_model = mlflow.pyfunc.load_model(
821
- f"runs:/{run_id_prod_model}/{stock_code}-hmm-model",
822
- suppress_warnings = True
829
+ path_hmm,
830
+ suppress_warnings = True
823
831
  )
824
832
  objects['called_hmm_models'] = hmm_model
825
833
 
826
834
  if call_models:
827
835
 
836
+ if clean_name:
837
+ path_model = f"runs:/{run_id_prod_model}/{renamed_stock_code}-forecasting-model"
838
+ else:
839
+ path_model = f"runs:/{run_id_prod_model}/{stock_code}-forecasting-model"
840
+
828
841
  forecasting_model = mlflow.pyfunc.load_model(
829
- f"runs:/{run_id_prod_model}/{stock_code}-forecasting-model",
830
- suppress_warnings = True
842
+ path_model,
843
+ suppress_warnings = True
831
844
  )
832
845
  objects['called_forecasting_model'] = forecasting_model
833
846
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo-modules
3
- Version: 0.4.1
3
+ Version: 0.4.3
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
File without changes
File without changes
File without changes