virgo-modules 0.4.1__tar.gz → 0.4.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of virgo-modules might be problematic. Click here for more details.

Files changed (23) hide show
  1. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/PKG-INFO +1 -1
  2. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/setup.py +1 -1
  3. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/hmm_utils.py +9 -7
  4. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules.egg-info/PKG-INFO +1 -1
  5. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/LICENSE +0 -0
  6. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/README.md +0 -0
  7. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/setup.cfg +0 -0
  8. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/__init__.py +0 -0
  9. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/__init__.py +0 -0
  10. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/aws_utils.py +0 -0
  11. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/backtester.py +0 -0
  12. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/edge_utils/__init__.py +0 -0
  13. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/edge_utils/conformal_utils.py +0 -0
  14. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/edge_utils/edge_utils.py +0 -0
  15. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/edge_utils/shap_utils.py +0 -0
  16. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/pull_artifacts.py +0 -0
  17. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/re_utils.py +0 -0
  18. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/ticketer_source.py +0 -0
  19. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules/src/transformer_utils.py +0 -0
  20. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules.egg-info/SOURCES.txt +0 -0
  21. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules.egg-info/dependency_links.txt +0 -0
  22. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules.egg-info/requires.txt +0 -0
  23. {virgo_modules-0.4.1 → virgo_modules-0.4.2}/virgo_app/virgo_modules.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo_modules
3
- Version: 0.4.1
3
+ Version: 0.4.2
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
@@ -5,7 +5,7 @@ with open("virgo_app/README.md", "r") as f:
5
5
 
6
6
  setup(
7
7
  name="virgo_modules",
8
- version="0.4.1",
8
+ version="0.4.2",
9
9
  description="data processing and statistical modeling using stock market data",
10
10
  package_dir={"": "virgo_app"},
11
11
  packages=find_packages(where="virgo_app"),
@@ -153,19 +153,21 @@ class trainer_hmm():
153
153
  ('drop_correlated', DropCorrelatedFeatures(method='spearman',threshold=self.__corr_thrshold)),
154
154
  ])
155
155
 
156
- # features_hmm = list(transform_pipe.fit_transform(self.__data_train).columns)
157
- # n_features = len(features_hmm)
158
- # startprob_prior = np.array([1/self.__n_clusters]*self.__n_clusters)
159
- transmat_prior = np.diag([0.70]*self.__n_clusters)
160
- # means_prior = np.array([1/n_features]*n_features)
156
+ features_hmm_ = list(transform_pipe.fit_transform(self.__data_train).columns)
157
+ n_features = len(features_hmm_)
158
+ start_prob = 0.60
159
+ startprob_prior = np.array([1/self.__n_clusters]*self.__n_clusters)
160
+ transmat_prior = np.diag([start_prob]*self.__n_clusters)
161
+ transmat_prior[transmat_prior==0] = (1-start_prob)/(1-self.__n_clusters)
162
+ means_prior = np.array([1/n_features]*n_features)
161
163
  pipeline_hmm = Pipeline([
162
164
  ('transfrom_pipe', transform_pipe),
163
165
  ('scaler', RobustScaler()),
164
166
  ('hmm', GaussianHMM(
165
167
  n_components = self.__n_clusters, covariance_type = 'spherical',
166
- # startprob_prior = startprob_prior,
168
+ startprob_prior = startprob_prior,
167
169
  transmat_prior = transmat_prior,
168
- # means_prior = means_prior,
170
+ means_prior = means_prior,
169
171
  random_state = self.__seed,)
170
172
  )
171
173
  ])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo-modules
3
- Version: 0.4.1
3
+ Version: 0.4.2
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
File without changes
File without changes
File without changes