videopython 0.1.3__tar.gz → 0.1.41__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of videopython might be problematic. Click here for more details.
- {videopython-0.1.3 → videopython-0.1.41}/PKG-INFO +42 -34
- videopython-0.1.41/README.md +53 -0
- {videopython-0.1.3 → videopython-0.1.41}/pyproject.toml +8 -16
- videopython-0.1.41/requirements-dev.txt +7 -0
- videopython-0.1.41/requirements-generation.txt +4 -0
- videopython-0.1.41/requirements.txt +6 -0
- videopython-0.1.41/src/videopython/base/effects.py +183 -0
- videopython-0.1.41/src/videopython/base/exceptions.py +2 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/base/transforms.py +52 -4
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/base/transitions.py +36 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/base/video.py +7 -1
- videopython-0.1.41/src/videopython/generation/audio.py +22 -0
- videopython-0.1.41/src/videopython/generation/image.py +22 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/generation/video.py +5 -7
- videopython-0.1.41/src/videopython/utils/image.py +275 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython.egg-info/PKG-INFO +42 -34
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython.egg-info/SOURCES.txt +6 -0
- videopython-0.1.41/src/videopython.egg-info/requires.txt +21 -0
- videopython-0.1.41/tests/test_effects.py +71 -0
- {videopython-0.1.3 → videopython-0.1.41}/tests/test_transforms.py +1 -1
- {videopython-0.1.3 → videopython-0.1.41}/tests/test_transitions.py +11 -1
- videopython-0.1.41/tests/test_utils.py +11 -0
- videopython-0.1.3/README.md +0 -54
- videopython-0.1.3/src/videopython/base/effects.py +0 -57
- videopython-0.1.3/src/videopython/generation/audio.py +0 -30
- videopython-0.1.3/src/videopython/generation/image.py +0 -60
- videopython-0.1.3/src/videopython.egg-info/requires.txt +0 -10
- videopython-0.1.3/tests/test_effects.py +0 -24
- {videopython-0.1.3 → videopython-0.1.41}/LICENSE +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/setup.cfg +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/base/__init__.py +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/base/compose.py +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/generation/__init__.py +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/utils/__init__.py +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython/utils/common.py +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython.egg-info/dependency_links.txt +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/src/videopython.egg-info/top_level.txt +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/tests/test_compose.py +0 -0
- {videopython-0.1.3 → videopython-0.1.41}/tests/test_video.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: videopython
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.41
|
|
4
4
|
Summary: Minimal video generation and processing library.
|
|
5
5
|
Author-email: Bartosz Wójtowicz <bartoszwojtowicz@outlook.com>, Bartosz Rudnikowicz <bartoszrudnikowicz840@gmail.com>, Piotr Pukisz <piotr.pukisz@gmail.com>
|
|
6
6
|
License: Apache License
|
|
@@ -199,7 +199,7 @@ License: Apache License
|
|
|
199
199
|
Project-URL: Homepage, https://github.com/bartwojtowicz/videopython/
|
|
200
200
|
Project-URL: Bug Reports, https://github.com/bartwojtowicz/videopython/issues
|
|
201
201
|
Project-URL: Source, https://github.com/bartwojtowicz/videopython/
|
|
202
|
-
Keywords: videopython,video,movie,opencv,generation,editing
|
|
202
|
+
Keywords: python,videopython,video,movie,opencv,generation,editing
|
|
203
203
|
Classifier: License :: OSI Approved :: Apache Software License
|
|
204
204
|
Classifier: Programming Language :: Python :: 3
|
|
205
205
|
Classifier: Programming Language :: Python :: 3.10
|
|
@@ -211,13 +211,22 @@ License-File: LICENSE
|
|
|
211
211
|
Requires-Dist: click>=8.1.7
|
|
212
212
|
Requires-Dist: numpy>=1.25.2
|
|
213
213
|
Requires-Dist: opencv-python>=4.9.0.80
|
|
214
|
-
Requires-Dist:
|
|
215
|
-
Requires-Dist: transformers>=4.38.1
|
|
216
|
-
Requires-Dist: diffusers>=0.26.3
|
|
217
|
-
Requires-Dist: torch>=2.1.0
|
|
218
|
-
Requires-Dist: stability-sdk>=0.8.5
|
|
219
|
-
Requires-Dist: openai==1.3.5
|
|
214
|
+
Requires-Dist: pillow>=10.3.0
|
|
220
215
|
Requires-Dist: pydub>=0.25.1
|
|
216
|
+
Requires-Dist: tqdm>=4.66.3
|
|
217
|
+
Provides-Extra: dev
|
|
218
|
+
Requires-Dist: black==24.3.0; extra == "dev"
|
|
219
|
+
Requires-Dist: isort==5.12.0; extra == "dev"
|
|
220
|
+
Requires-Dist: mypy==1.8.0; extra == "dev"
|
|
221
|
+
Requires-Dist: pytest==7.4.0; extra == "dev"
|
|
222
|
+
Requires-Dist: types-Pillow==10.2.0.20240213; extra == "dev"
|
|
223
|
+
Requires-Dist: types-tqdm==4.66.0.20240106; extra == "dev"
|
|
224
|
+
Requires-Dist: pydub-stubs==0.25.1.1; extra == "dev"
|
|
225
|
+
Provides-Extra: generation
|
|
226
|
+
Requires-Dist: accelerate>=0.29.2; extra == "generation"
|
|
227
|
+
Requires-Dist: diffusers>=0.26.3; extra == "generation"
|
|
228
|
+
Requires-Dist: torch>=2.1.0; extra == "generation"
|
|
229
|
+
Requires-Dist: transformers>=4.38.1; extra == "generation"
|
|
221
230
|
|
|
222
231
|
# About
|
|
223
232
|
|
|
@@ -235,41 +244,40 @@ sudo apt-get install ffmpeg
|
|
|
235
244
|
|
|
236
245
|
### Install with pip
|
|
237
246
|
```bash
|
|
238
|
-
pip install videopython
|
|
247
|
+
pip install videopython[generation]
|
|
239
248
|
```
|
|
249
|
+
> You can install without `[generation]` dependencies for basic video handling and processing.
|
|
250
|
+
> The funcionalities found in `videopython.generation` won't work.
|
|
240
251
|
|
|
241
252
|
## Basic Usage
|
|
253
|
+
> Using Nvidia A40 or better is recommended for the `videopython.generation` module.
|
|
242
254
|
|
|
243
255
|
```python
|
|
244
|
-
|
|
245
|
-
from videopython.
|
|
256
|
+
# Generate image and animate it
|
|
257
|
+
from videopython.generation import ImageToVideo
|
|
258
|
+
from videopython.generation import TextToImage
|
|
246
259
|
|
|
247
|
-
|
|
248
|
-
video =
|
|
249
|
-
print(video.metadata)
|
|
250
|
-
print(video.frames.shape) # Video is based on numpy representation of frames
|
|
260
|
+
image = TextToImage().generate_image(prompt="Golden Retriever playing in the park")
|
|
261
|
+
video = ImageToVideo().generate_video(image=image, fps=24)
|
|
251
262
|
|
|
252
|
-
#
|
|
253
|
-
|
|
254
|
-
|
|
263
|
+
# Video generation directly from prompt
|
|
264
|
+
from videopython.generation import TextToVideo
|
|
265
|
+
video_gen = TextToVideo()
|
|
266
|
+
video = video_gen.generate_video("Dogs playing in the snow")
|
|
267
|
+
for _ in range(10):
|
|
268
|
+
video += video_gen.generate_video("Dogs playing in the snow")
|
|
255
269
|
|
|
256
|
-
#
|
|
257
|
-
|
|
258
|
-
|
|
270
|
+
# Cut the first 2 seconds
|
|
271
|
+
from videopython.base.transforms import CutSeconds
|
|
272
|
+
transformed_video = CutSeconds(start_second=0, end_second=2).apply(video.copy())
|
|
259
273
|
|
|
260
|
-
#
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
print(faded_video.metadata)
|
|
274
|
+
# Upsample to 30 FPS
|
|
275
|
+
from videopython.base.transforms import ResampleFPS
|
|
276
|
+
transformed_video = ResampleFPS(new_fps=30).apply(transformed_video)
|
|
264
277
|
|
|
265
|
-
#
|
|
266
|
-
|
|
278
|
+
# Resize to 1000x1000
|
|
279
|
+
from videopython.base.transforms import Resize
|
|
280
|
+
transformed_video = Resize(width=1000, height=1000).apply(transformed_video)
|
|
267
281
|
|
|
268
|
-
|
|
269
|
-
faded_video.save("my_video.mp4")
|
|
270
|
-
```
|
|
271
|
-
|
|
272
|
-
### Running Unit Tests
|
|
273
|
-
```bash
|
|
274
|
-
PYTHONPATH=./src/ pytest
|
|
282
|
+
filepath = transformed_video.save()
|
|
275
283
|
```
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
# About
|
|
2
|
+
|
|
3
|
+
Minimal video generation and processing library.
|
|
4
|
+
|
|
5
|
+
## Setup
|
|
6
|
+
|
|
7
|
+
### Install ffmpeg
|
|
8
|
+
```bash
|
|
9
|
+
# Install with brew for MacOS:
|
|
10
|
+
brew install ffmpeg
|
|
11
|
+
# Install with apt-get for Ubuntu:
|
|
12
|
+
sudo apt-get install ffmpeg
|
|
13
|
+
```
|
|
14
|
+
|
|
15
|
+
### Install with pip
|
|
16
|
+
```bash
|
|
17
|
+
pip install videopython[generation]
|
|
18
|
+
```
|
|
19
|
+
> You can install without `[generation]` dependencies for basic video handling and processing.
|
|
20
|
+
> The funcionalities found in `videopython.generation` won't work.
|
|
21
|
+
|
|
22
|
+
## Basic Usage
|
|
23
|
+
> Using Nvidia A40 or better is recommended for the `videopython.generation` module.
|
|
24
|
+
|
|
25
|
+
```python
|
|
26
|
+
# Generate image and animate it
|
|
27
|
+
from videopython.generation import ImageToVideo
|
|
28
|
+
from videopython.generation import TextToImage
|
|
29
|
+
|
|
30
|
+
image = TextToImage().generate_image(prompt="Golden Retriever playing in the park")
|
|
31
|
+
video = ImageToVideo().generate_video(image=image, fps=24)
|
|
32
|
+
|
|
33
|
+
# Video generation directly from prompt
|
|
34
|
+
from videopython.generation import TextToVideo
|
|
35
|
+
video_gen = TextToVideo()
|
|
36
|
+
video = video_gen.generate_video("Dogs playing in the snow")
|
|
37
|
+
for _ in range(10):
|
|
38
|
+
video += video_gen.generate_video("Dogs playing in the snow")
|
|
39
|
+
|
|
40
|
+
# Cut the first 2 seconds
|
|
41
|
+
from videopython.base.transforms import CutSeconds
|
|
42
|
+
transformed_video = CutSeconds(start_second=0, end_second=2).apply(video.copy())
|
|
43
|
+
|
|
44
|
+
# Upsample to 30 FPS
|
|
45
|
+
from videopython.base.transforms import ResampleFPS
|
|
46
|
+
transformed_video = ResampleFPS(new_fps=30).apply(transformed_video)
|
|
47
|
+
|
|
48
|
+
# Resize to 1000x1000
|
|
49
|
+
from videopython.base.transforms import Resize
|
|
50
|
+
transformed_video = Resize(width=1000, height=1000).apply(transformed_video)
|
|
51
|
+
|
|
52
|
+
filepath = transformed_video.save()
|
|
53
|
+
```
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
[build-system]
|
|
2
|
-
requires = ["setuptools>=
|
|
2
|
+
requires = ["setuptools>=66.1"]
|
|
3
3
|
build-backend = "setuptools.build_meta"
|
|
4
4
|
|
|
5
5
|
[tool.setuptools.packages.find]
|
|
@@ -11,12 +11,13 @@ include = ["videopython.*"]
|
|
|
11
11
|
|
|
12
12
|
[project]
|
|
13
13
|
name = "videopython"
|
|
14
|
-
version = "0.1.
|
|
14
|
+
version = "0.1.41"
|
|
15
15
|
description = "Minimal video generation and processing library."
|
|
16
16
|
readme = "README.md"
|
|
17
17
|
requires-python = ">=3.10"
|
|
18
18
|
license = {file = "LICENSE"}
|
|
19
|
-
keywords = ["videopython", "video", "movie", "opencv", "generation", "editing"]
|
|
19
|
+
keywords = ["python", "videopython", "video", "movie", "opencv", "generation", "editing"]
|
|
20
|
+
dynamic = ["dependencies", "optional-dependencies"]
|
|
20
21
|
|
|
21
22
|
authors = [
|
|
22
23
|
{name = "Bartosz Wójtowicz", email = "bartoszwojtowicz@outlook.com" },
|
|
@@ -32,20 +33,11 @@ classifiers = [
|
|
|
32
33
|
"Operating System :: OS Independent",
|
|
33
34
|
]
|
|
34
35
|
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
"opencv-python>=4.9.0.80",
|
|
39
|
-
"pytest>=7.4.0",
|
|
40
|
-
"transformers>=4.38.1",
|
|
41
|
-
"diffusers>=0.26.3",
|
|
42
|
-
"torch>=2.1.0",
|
|
43
|
-
"stability-sdk>=0.8.5",
|
|
44
|
-
"openai==1.3.5",
|
|
45
|
-
"pydub>=0.25.1"
|
|
46
|
-
]
|
|
36
|
+
[tool.setuptools.dynamic]
|
|
37
|
+
dependencies = {file = ["requirements.txt"]}
|
|
38
|
+
optional-dependencies = { dev = {file = ["requirements-dev.txt"]}, generation = {file = ["requirements-generation.txt"]} }
|
|
47
39
|
|
|
48
|
-
[project.urls]
|
|
40
|
+
[project.urls]
|
|
49
41
|
"Homepage" = "https://github.com/bartwojtowicz/videopython/"
|
|
50
42
|
"Bug Reports" = "https://github.com/bartwojtowicz/videopython/issues"
|
|
51
43
|
"Source" = "https://github.com/bartwojtowicz/videopython/"
|
|
@@ -0,0 +1,183 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Literal, final
|
|
3
|
+
|
|
4
|
+
import cv2
|
|
5
|
+
import numpy as np
|
|
6
|
+
from PIL import Image
|
|
7
|
+
from tqdm import tqdm
|
|
8
|
+
|
|
9
|
+
from videopython.base.video import Video
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class Effect(ABC):
|
|
13
|
+
"""Abstract class for effect on frames of video.
|
|
14
|
+
|
|
15
|
+
The effect must not change the number of frames and the shape of the frames.
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
@final
|
|
19
|
+
def apply(self, video: Video, start: float | None = None, stop: float | None = None) -> Video:
|
|
20
|
+
original_shape = video.video_shape
|
|
21
|
+
start = start if start is not None else 0
|
|
22
|
+
stop = stop if stop is not None else video.total_seconds
|
|
23
|
+
# Check for start and stop correctness
|
|
24
|
+
if not 0 <= start <= video.total_seconds:
|
|
25
|
+
raise ValueError(f"Video is only {video.total_seconds} long, but passed start: {start}!")
|
|
26
|
+
elif not start <= stop <= video.total_seconds:
|
|
27
|
+
raise ValueError(f"Video is only {video.total_seconds} long, but passed stop: {stop}!")
|
|
28
|
+
# Apply effect on video slice
|
|
29
|
+
effect_start_frame = round(start * video.fps)
|
|
30
|
+
effect_end_frame = round(stop * video.fps)
|
|
31
|
+
video_with_effect = self._apply(video[effect_start_frame:effect_end_frame])
|
|
32
|
+
old_audio = video.audio
|
|
33
|
+
video = Video.from_frames(
|
|
34
|
+
np.r_[
|
|
35
|
+
"0,2",
|
|
36
|
+
video.frames[:effect_start_frame],
|
|
37
|
+
video_with_effect.frames,
|
|
38
|
+
video.frames[effect_end_frame:],
|
|
39
|
+
],
|
|
40
|
+
fps=video.fps,
|
|
41
|
+
)
|
|
42
|
+
video.audio = old_audio
|
|
43
|
+
# Check if dimensions didn't change
|
|
44
|
+
if not video.video_shape == original_shape:
|
|
45
|
+
raise RuntimeError("The effect must not change the number of frames and the shape of the frames!")
|
|
46
|
+
|
|
47
|
+
return video
|
|
48
|
+
|
|
49
|
+
@abstractmethod
|
|
50
|
+
def _apply(self, video: Video) -> Video:
|
|
51
|
+
pass
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class FullImageOverlay(Effect):
|
|
55
|
+
def __init__(self, overlay_image: np.ndarray, alpha: float | None = None, fade_time: float = 0.0):
|
|
56
|
+
if alpha is not None and not 0 <= alpha <= 1:
|
|
57
|
+
raise ValueError("Alpha must be in range [0, 1]!")
|
|
58
|
+
elif not (overlay_image.ndim == 3 and overlay_image.shape[-1] in [3, 4]):
|
|
59
|
+
raise ValueError("Only RGB and RGBA images are supported as an overlay!")
|
|
60
|
+
elif alpha is None:
|
|
61
|
+
alpha = 1.0
|
|
62
|
+
|
|
63
|
+
if overlay_image.shape[-1] == 3:
|
|
64
|
+
overlay_image = np.dstack([overlay_image, np.full(overlay_image.shape[:2], 255, dtype=np.uint8)])
|
|
65
|
+
|
|
66
|
+
self.alpha = alpha
|
|
67
|
+
self.overlay = overlay_image.astype(np.uint8)
|
|
68
|
+
self.fade_time = fade_time
|
|
69
|
+
|
|
70
|
+
def _overlay(self, img: np.ndarray, alpha: float = 1.0) -> np.ndarray:
|
|
71
|
+
img_pil = Image.fromarray(img)
|
|
72
|
+
overlay = self.overlay.copy()
|
|
73
|
+
overlay[:, :, 3] = overlay[:, :, 3] * (self.alpha * alpha)
|
|
74
|
+
overlay_pil = Image.fromarray(overlay)
|
|
75
|
+
img_pil.paste(overlay_pil, (0, 0), overlay_pil)
|
|
76
|
+
return np.array(img_pil)
|
|
77
|
+
|
|
78
|
+
def _apply(self, video: Video) -> Video:
|
|
79
|
+
if not video.frame_shape == self.overlay[:, :, :3].shape:
|
|
80
|
+
raise ValueError(
|
|
81
|
+
f"Mismatch of overlay shape `{self.overlay.shape}` with video shape: `{video.frame_shape}`!"
|
|
82
|
+
)
|
|
83
|
+
elif not (0 <= 2 * self.fade_time <= video.total_seconds):
|
|
84
|
+
raise ValueError(f"Video is only {video.total_seconds}s long, but fade time is {self.fade_time}s!")
|
|
85
|
+
|
|
86
|
+
print("Overlaying video...")
|
|
87
|
+
if self.fade_time == 0:
|
|
88
|
+
video.frames = np.array([self._overlay(frame) for frame in tqdm(video.frames)], dtype=np.uint8)
|
|
89
|
+
else:
|
|
90
|
+
num_video_frames = len(video.frames)
|
|
91
|
+
num_fade_frames = round(self.fade_time * video.fps)
|
|
92
|
+
new_frames = []
|
|
93
|
+
for i, frame in enumerate(tqdm(video.frames)):
|
|
94
|
+
frames_dist_from_end = min(i, num_video_frames - i)
|
|
95
|
+
if frames_dist_from_end >= num_fade_frames:
|
|
96
|
+
fade_alpha = 1.0
|
|
97
|
+
else:
|
|
98
|
+
fade_alpha = frames_dist_from_end / num_fade_frames
|
|
99
|
+
new_frames.append(self._overlay(frame, fade_alpha))
|
|
100
|
+
video.frames = np.array(new_frames, dtype=np.uint8)
|
|
101
|
+
return video
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
class Blur(Effect):
|
|
105
|
+
def __init__(
|
|
106
|
+
self,
|
|
107
|
+
mode: Literal["constant", "ascending", "descending"],
|
|
108
|
+
iterations: int,
|
|
109
|
+
kernel_size: tuple[int, int] = (5, 5),
|
|
110
|
+
):
|
|
111
|
+
if iterations < 1:
|
|
112
|
+
raise ValueError("Iterations must be at least 1!")
|
|
113
|
+
self.mode = mode
|
|
114
|
+
self.iterations = iterations
|
|
115
|
+
self.kernel_size = kernel_size
|
|
116
|
+
|
|
117
|
+
def _apply(self, video: Video) -> Video:
|
|
118
|
+
n_frames = len(video.frames)
|
|
119
|
+
new_frames = []
|
|
120
|
+
if self.mode == "constant":
|
|
121
|
+
for frame in video.frames:
|
|
122
|
+
blurred_frame = frame
|
|
123
|
+
for _ in range(self.iterations):
|
|
124
|
+
blurred_frame = cv2.GaussianBlur(blurred_frame, self.kernel_size, 0)
|
|
125
|
+
new_frames.append(blurred_frame)
|
|
126
|
+
elif self.mode == "ascending":
|
|
127
|
+
for i, frame in tqdm(enumerate(video.frames)):
|
|
128
|
+
frame_iterations = max(1, round((i / n_frames) * self.iterations))
|
|
129
|
+
blurred_frame = frame
|
|
130
|
+
for _ in range(frame_iterations):
|
|
131
|
+
blurred_frame = cv2.GaussianBlur(blurred_frame, self.kernel_size, 0)
|
|
132
|
+
new_frames.append(blurred_frame)
|
|
133
|
+
elif self.mode == "descending":
|
|
134
|
+
for i, frame in tqdm(enumerate(video.frames)):
|
|
135
|
+
frame_iterations = max(round(((n_frames - i) / n_frames) * self.iterations), 1)
|
|
136
|
+
blurred_frame = frame
|
|
137
|
+
for _ in range(frame_iterations):
|
|
138
|
+
blurred_frame = cv2.GaussianBlur(blurred_frame, self.kernel_size, 0)
|
|
139
|
+
new_frames.append(blurred_frame)
|
|
140
|
+
else:
|
|
141
|
+
raise ValueError(f"Unknown mode: `{self.mode}`.")
|
|
142
|
+
video.frames = np.asarray(new_frames)
|
|
143
|
+
return video
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
class Zoom(Effect):
|
|
147
|
+
def __init__(self, zoom_factor: float, mode: Literal["in", "out"]):
|
|
148
|
+
if zoom_factor <= 1:
|
|
149
|
+
raise ValueError("Zoom factor must be greater than 1!")
|
|
150
|
+
self.zoom_factor = zoom_factor
|
|
151
|
+
self.mode = mode
|
|
152
|
+
|
|
153
|
+
def _apply(self, video: Video) -> Video:
|
|
154
|
+
n_frames = len(video.frames)
|
|
155
|
+
new_frames = []
|
|
156
|
+
|
|
157
|
+
width = video.metadata.width
|
|
158
|
+
height = video.metadata.height
|
|
159
|
+
crop_sizes_w, crop_sizes_h = np.linspace(width // self.zoom_factor, width, n_frames), np.linspace(
|
|
160
|
+
height // self.zoom_factor, height, n_frames
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
if self.mode == "in":
|
|
164
|
+
for frame, w, h in tqdm(zip(video.frames, reversed(crop_sizes_w), reversed(crop_sizes_h))):
|
|
165
|
+
|
|
166
|
+
x = width / 2 - w / 2
|
|
167
|
+
y = height / 2 - h / 2
|
|
168
|
+
|
|
169
|
+
cropped_frame = frame[round(y) : round(y + h), round(x) : round(x + w)]
|
|
170
|
+
zoomed_frame = cv2.resize(cropped_frame, (width, height))
|
|
171
|
+
new_frames.append(zoomed_frame)
|
|
172
|
+
elif self.mode == "out":
|
|
173
|
+
for frame, w, h in tqdm(zip(video.frames, crop_sizes_w, crop_sizes_h)):
|
|
174
|
+
x = width / 2 - w / 2
|
|
175
|
+
y = height / 2 - h / 2
|
|
176
|
+
|
|
177
|
+
cropped_frame = frame[round(y) : round(y + h), round(x) : round(x + w)]
|
|
178
|
+
zoomed_frame = cv2.resize(cropped_frame, (width, height))
|
|
179
|
+
new_frames.append(zoomed_frame)
|
|
180
|
+
else:
|
|
181
|
+
raise ValueError(f"Unknown mode: `{self.mode}`.")
|
|
182
|
+
video.frames = np.asarray(new_frames)
|
|
183
|
+
return video
|
|
@@ -1,5 +1,7 @@
|
|
|
1
1
|
from abc import ABC, abstractmethod
|
|
2
|
+
from enum import Enum
|
|
2
3
|
from multiprocessing import Pool
|
|
4
|
+
from typing import Literal
|
|
3
5
|
|
|
4
6
|
import cv2
|
|
5
7
|
import numpy as np
|
|
@@ -71,9 +73,11 @@ class CutSeconds(Transformation):
|
|
|
71
73
|
|
|
72
74
|
|
|
73
75
|
class Resize(Transformation):
|
|
74
|
-
def __init__(self,
|
|
75
|
-
self.
|
|
76
|
-
self.
|
|
76
|
+
def __init__(self, width: int | None = None, height: int | None = None):
|
|
77
|
+
self.width = width
|
|
78
|
+
self.height = height
|
|
79
|
+
if width is None and height is None:
|
|
80
|
+
raise ValueError("You must provide either `width` or `height`!")
|
|
77
81
|
|
|
78
82
|
def _resize_frame(self, frame: np.ndarray, new_width: int, new_height: int) -> np.ndarray:
|
|
79
83
|
return cv2.resize(
|
|
@@ -83,10 +87,25 @@ class Resize(Transformation):
|
|
|
83
87
|
)
|
|
84
88
|
|
|
85
89
|
def apply(self, video: Video) -> Video:
|
|
90
|
+
if self.width and self.height:
|
|
91
|
+
new_height = self.height
|
|
92
|
+
new_width = self.width
|
|
93
|
+
elif self.height is None and self.width:
|
|
94
|
+
video_height = video.video_shape[1]
|
|
95
|
+
video_width = video.video_shape[2]
|
|
96
|
+
new_height = round(video_height * (self.width / video_width))
|
|
97
|
+
new_width = self.width
|
|
98
|
+
elif self.width is None and self.height:
|
|
99
|
+
video_height = video.video_shape[1]
|
|
100
|
+
video_width = video.video_shape[2]
|
|
101
|
+
new_width = round(video_width * (self.height / video_height))
|
|
102
|
+
new_height = self.height
|
|
103
|
+
|
|
104
|
+
print(f"Resizing video to: {new_width}x{new_height}!")
|
|
86
105
|
with Pool() as pool:
|
|
87
106
|
frames_copy = pool.starmap(
|
|
88
107
|
self._resize_frame,
|
|
89
|
-
[(frame,
|
|
108
|
+
[(frame, new_width, new_height) for frame in video.frames],
|
|
90
109
|
)
|
|
91
110
|
video.frames = np.array(frames_copy)
|
|
92
111
|
return video
|
|
@@ -128,3 +147,32 @@ class ResampleFPS(Transformation):
|
|
|
128
147
|
print(f"Upsampling video from {video.fps} to {self.new_fps} FPS.")
|
|
129
148
|
video = self._upsample(video)
|
|
130
149
|
return video
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class CropMode(Enum):
|
|
153
|
+
CENTER = "center"
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
class Crop(Transformation):
|
|
157
|
+
|
|
158
|
+
def __init__(self, width: int, height: int, mode: CropMode = CropMode.CENTER):
|
|
159
|
+
self.width = width
|
|
160
|
+
self.height = height
|
|
161
|
+
self.mode = mode
|
|
162
|
+
|
|
163
|
+
def apply(self, video: Video) -> Video:
|
|
164
|
+
if self.mode == CropMode.CENTER:
|
|
165
|
+
current_shape = video.frame_shape[:2]
|
|
166
|
+
center_height = current_shape[0] // 2
|
|
167
|
+
center_width = current_shape[1] // 2
|
|
168
|
+
width_offset = self.width // 2
|
|
169
|
+
height_offset = self.height // 2
|
|
170
|
+
video.frames = video.frames[
|
|
171
|
+
:,
|
|
172
|
+
center_height - height_offset : center_height + height_offset,
|
|
173
|
+
center_width - width_offset : center_width + width_offset,
|
|
174
|
+
:,
|
|
175
|
+
]
|
|
176
|
+
else:
|
|
177
|
+
raise ValueError(f"Unknown mode: {self.mode}")
|
|
178
|
+
return video
|
|
@@ -4,6 +4,7 @@ from typing import final
|
|
|
4
4
|
|
|
5
5
|
import numpy as np
|
|
6
6
|
|
|
7
|
+
from videopython.base.effects import Blur
|
|
7
8
|
from videopython.base.video import Video
|
|
8
9
|
|
|
9
10
|
|
|
@@ -68,3 +69,38 @@ class FadeTransition(Transition):
|
|
|
68
69
|
)
|
|
69
70
|
faded_videos.audio = videos[0].audio.append(videos[1].audio, crossfade=(effect_time_fps / video_fps) * 1000)
|
|
70
71
|
return faded_videos
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
class BlurTransition(Transition):
|
|
75
|
+
def __init__(
|
|
76
|
+
self, effect_time_seconds: float = 1.5, blur_iterations: int = 400, blur_kernel_size: tuple[int, int] = (11, 11)
|
|
77
|
+
):
|
|
78
|
+
self.effect_time_seconds = effect_time_seconds
|
|
79
|
+
self.blur_iterations = blur_iterations
|
|
80
|
+
self.blur_kernel_size = blur_kernel_size
|
|
81
|
+
|
|
82
|
+
def _apply(self, videos: tuple[Video, Video]) -> Video:
|
|
83
|
+
video_fps = videos[0].fps
|
|
84
|
+
for video in videos:
|
|
85
|
+
if video.total_seconds < self.effect_time_seconds:
|
|
86
|
+
raise RuntimeError("Not enough space to make transition!")
|
|
87
|
+
|
|
88
|
+
effect_time_fps = math.floor(self.effect_time_seconds * video_fps)
|
|
89
|
+
|
|
90
|
+
ascending_blur = Blur("ascending", self.blur_iterations, self.blur_kernel_size)
|
|
91
|
+
descending_blur = Blur("descending", self.blur_iterations, self.blur_kernel_size)
|
|
92
|
+
transition = ascending_blur.apply(videos[0][-effect_time_fps:]) + descending_blur.apply(
|
|
93
|
+
videos[1][:effect_time_fps]
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
blurred_videos = Video.from_frames(
|
|
97
|
+
np.r_[
|
|
98
|
+
"0,2",
|
|
99
|
+
videos[0].frames[:-effect_time_fps],
|
|
100
|
+
transition.frames,
|
|
101
|
+
videos[1].frames[effect_time_fps:],
|
|
102
|
+
],
|
|
103
|
+
fps=video_fps,
|
|
104
|
+
)
|
|
105
|
+
blurred_videos.audio = videos[0].audio.append(videos[1].audio)
|
|
106
|
+
return blurred_videos
|
|
@@ -23,7 +23,7 @@ class VideoMetadata:
|
|
|
23
23
|
total_seconds: float
|
|
24
24
|
|
|
25
25
|
def __str__(self):
|
|
26
|
-
return f"{self.
|
|
26
|
+
return f"{self.width}x{self.height} @ {self.fps}fps, {self.total_seconds} seconds"
|
|
27
27
|
|
|
28
28
|
def __repr__(self) -> str:
|
|
29
29
|
return self.__str__()
|
|
@@ -122,6 +122,12 @@ class Video:
|
|
|
122
122
|
@classmethod
|
|
123
123
|
def from_frames(cls, frames: np.ndarray, fps: float) -> Video:
|
|
124
124
|
new_vid = cls()
|
|
125
|
+
if frames.ndim != 4:
|
|
126
|
+
raise ValueError(f"Unsupported number of dimensions: {frames.shape}!")
|
|
127
|
+
elif frames.shape[-1] == 4:
|
|
128
|
+
frames = frames[:, :, :, :3]
|
|
129
|
+
elif frames.shape[-1] != 3:
|
|
130
|
+
raise ValueError(f"Unsupported number of dimensions: {frames.shape}!")
|
|
125
131
|
new_vid.frames = frames
|
|
126
132
|
new_vid.fps = fps
|
|
127
133
|
new_vid.audio = AudioSegment.silent(duration=round(new_vid.total_seconds * 1000))
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import torch
|
|
3
|
+
from pydub import AudioSegment
|
|
4
|
+
from transformers import AutoTokenizer, VitsModel
|
|
5
|
+
|
|
6
|
+
TEXT_TO_SPEECH_MODEL = "facebook/mms-tts-eng"
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class TextToSpeech:
|
|
10
|
+
def __init__(self):
|
|
11
|
+
self.pipeline = VitsModel.from_pretrained(TEXT_TO_SPEECH_MODEL)
|
|
12
|
+
self.tokenizer = AutoTokenizer.from_pretrained(TEXT_TO_SPEECH_MODEL)
|
|
13
|
+
|
|
14
|
+
def generate_audio(self, text: str) -> AudioSegment:
|
|
15
|
+
tokenized = self.tokenizer(text, return_tensors="pt")
|
|
16
|
+
|
|
17
|
+
with torch.no_grad():
|
|
18
|
+
output = self.pipeline(**tokenized).waveform
|
|
19
|
+
|
|
20
|
+
output = (output.T.float().numpy() * (2**31 - 1)).astype(np.int32)
|
|
21
|
+
audio = AudioSegment(data=output, frame_rate=self.pipeline.config.sampling_rate, sample_width=4, channels=1)
|
|
22
|
+
return audio
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
import io
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from diffusers import DiffusionPipeline
|
|
6
|
+
from PIL import Image
|
|
7
|
+
|
|
8
|
+
TEXT_TO_IMAGE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class TextToImage:
|
|
12
|
+
def __init__(self):
|
|
13
|
+
if not torch.cuda.is_available():
|
|
14
|
+
raise ValueError("CUDA is not available, but TextToVideo model requires CUDA.")
|
|
15
|
+
self.pipeline = DiffusionPipeline.from_pretrained(
|
|
16
|
+
TEXT_TO_IMAGE_MODEL, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
|
17
|
+
)
|
|
18
|
+
self.pipeline.to("cuda")
|
|
19
|
+
|
|
20
|
+
def generate_image(self, prompt: str) -> Image.Image:
|
|
21
|
+
image = self.pipeline(prompt=prompt).images[0]
|
|
22
|
+
return image
|
|
@@ -10,13 +10,12 @@ IMAGE_TO_VIDEO_MODEL = "stabilityai/stable-video-diffusion-img2vid-xt"
|
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class TextToVideo:
|
|
13
|
-
def __init__(self
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
)
|
|
13
|
+
def __init__(self):
|
|
14
|
+
if not torch.cuda.is_available():
|
|
15
|
+
raise ValueError("CUDA is not available, but TextToVideo model requires CUDA.")
|
|
16
|
+
self.pipeline = DiffusionPipeline.from_pretrained(TEXT_TO_VIDEO_MODEL, torch_dtype=torch.float16)
|
|
17
17
|
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config)
|
|
18
|
-
|
|
19
|
-
self.pipeline.enable_model_cpu_offload()
|
|
18
|
+
self.pipeline.to("cuda")
|
|
20
19
|
|
|
21
20
|
def generate_video(
|
|
22
21
|
self, prompt: str, num_steps: int = 25, height: int = 320, width: int = 576, num_frames: int = 24
|
|
@@ -39,7 +38,6 @@ class ImageToVideo:
|
|
|
39
38
|
self.pipeline = DiffusionPipeline.from_pretrained(
|
|
40
39
|
IMAGE_TO_VIDEO_MODEL, torch_dtype=torch.float16, variant="fp16"
|
|
41
40
|
).to("cuda")
|
|
42
|
-
self.pipeline.enable_model_cpu_offload()
|
|
43
41
|
|
|
44
42
|
def generate_video(self, image: Image, fps: int = 24) -> Video:
|
|
45
43
|
video_frames = self.pipeline(image=image, fps=fps, output_type="np").frames[0]
|