vectordb-bench 0.0.8__tar.gz → 0.0.10__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/PKG-INFO +4 -3
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/pyproject.toml +3 -2
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/__init__.py +4 -4
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/api.py +1 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/milvus/config.py +6 -2
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/milvus/milvus.py +8 -5
- vectordb_bench-0.0.10/vectordb_bench/backend/clients/pgvector/config.py +215 -0
- vectordb_bench-0.0.10/vectordb_bench/backend/clients/pgvector/pgvector.py +347 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/runner/serial_runner.py +0 -2
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/caseSelector.py +6 -3
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/const/dbCaseConfigs.py +118 -2
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/models.py +6 -3
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench.egg-info/PKG-INFO +4 -3
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench.egg-info/requires.txt +3 -2
- vectordb_bench-0.0.8/vectordb_bench/backend/clients/pgvector/config.py +0 -100
- vectordb_bench-0.0.8/vectordb_bench/backend/clients/pgvector/pgvector.py +0 -187
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.devcontainer/Dockerfile +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.devcontainer/devcontainer.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.env.example +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.github/workflows/publish_package_on_release.yml +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.github/workflows/pull_request.yml +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.gitignore +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/.ruff.toml +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/Dockerfile +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/LICENSE +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/Makefile +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/OWNERS +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/README.md +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/install/requirements_py3.11.txt +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/install.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/setup.cfg +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/conftest.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/pytest.ini +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_bench_runner.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_chroma.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_data_source.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_dataset.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_elasticsearch_cloud.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_models.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_redis.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/test_utils.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/tests/ut_cases.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/__main__.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/__init__.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/assembler.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/cases.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/__init__.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/chroma/chroma.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/chroma/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/elastic_cloud/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/pgvecto_rs/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/pgvecto_rs/pgvecto_rs.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/pinecone/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/pinecone/pinecone.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/qdrant_cloud/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/redis/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/redis/redis.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/weaviate_cloud/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/zilliz_cloud/config.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/data_source.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/dataset.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/result_collector.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/runner/__init__.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/runner/mp_runner.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/task_runner.py +1 -1
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/utils.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/base.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/charts.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/data.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/expanderStyle.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/filters.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/footer.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/headerIcon.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/nav.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/priceTable.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/check_results/stPageConfig.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/get_results/saveAsImage.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/autoRefresh.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/dbConfigSetting.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/dbSelector.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/generateTasks.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/hideSidebar.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/components/run_test/submitTask.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/const/dbPrices.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/const/styles.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/pages/quries_per_dollar.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/pages/run_test.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/utils.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/frontend/vdb_benchmark.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/interface.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/log_util.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/metric.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/ElasticCloud/result_20230727_standard_elasticcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/ElasticCloud/result_20230808_standard_elasticcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/Milvus/result_20230727_standard_milvus.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/Milvus/result_20230808_standard_milvus.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/PgVector/result_20230727_standard_pgvector.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/PgVector/result_20230808_standard_pgvector.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/Pinecone/result_20230727_standard_pinecone.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/Pinecone/result_20230808_standard_pinecone.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/QdrantCloud/result_20230727_standard_qdrantcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/QdrantCloud/result_20230808_standard_qdrantcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/WeaviateCloud/result_20230727_standard_weaviatecloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/WeaviateCloud/result_20230808_standard_weaviatecloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/dbPrices.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/getLeaderboardData.py +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/results/leaderboard.json +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench.egg-info/SOURCES.txt +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench.egg-info/dependency_links.txt +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench.egg-info/entry_points.txt +0 -0
- {vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vectordb-bench
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.10
|
4
4
|
Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
|
5
5
|
Author-email: XuanYang-cn <xuan.yang@zilliz.com>
|
6
6
|
Project-URL: repository, https://github.com/zilliztech/VectorDBBench
|
@@ -12,7 +12,7 @@ Description-Content-Type: text/markdown
|
|
12
12
|
License-File: LICENSE
|
13
13
|
Requires-Dist: pytz
|
14
14
|
Requires-Dist: streamlit-autorefresh
|
15
|
-
Requires-Dist: streamlit
|
15
|
+
Requires-Dist: streamlit!=1.34.0
|
16
16
|
Requires-Dist: streamlit_extras
|
17
17
|
Requires-Dist: tqdm
|
18
18
|
Requires-Dist: s3fs
|
@@ -39,6 +39,7 @@ Requires-Dist: sqlalchemy; extra == "all"
|
|
39
39
|
Requires-Dist: redis; extra == "all"
|
40
40
|
Requires-Dist: chromadb; extra == "all"
|
41
41
|
Requires-Dist: psycopg2; extra == "all"
|
42
|
+
Requires-Dist: psycopg; extra == "all"
|
42
43
|
Provides-Extra: qdrant
|
43
44
|
Requires-Dist: qdrant-client; extra == "qdrant"
|
44
45
|
Provides-Extra: pinecone
|
@@ -49,7 +50,7 @@ Provides-Extra: elastic
|
|
49
50
|
Requires-Dist: elasticsearch; extra == "elastic"
|
50
51
|
Provides-Extra: pgvector
|
51
52
|
Requires-Dist: pgvector; extra == "pgvector"
|
52
|
-
Requires-Dist:
|
53
|
+
Requires-Dist: psycopg; extra == "pgvector"
|
53
54
|
Provides-Extra: pgvecto-rs
|
54
55
|
Requires-Dist: psycopg2; extra == "pgvecto-rs"
|
55
56
|
Provides-Extra: redis
|
@@ -26,7 +26,7 @@ classifiers = [
|
|
26
26
|
dependencies = [
|
27
27
|
"pytz",
|
28
28
|
"streamlit-autorefresh",
|
29
|
-
"streamlit
|
29
|
+
"streamlit!=1.34.0",
|
30
30
|
"streamlit_extras",
|
31
31
|
"tqdm",
|
32
32
|
"s3fs",
|
@@ -59,13 +59,14 @@ all = [
|
|
59
59
|
"redis",
|
60
60
|
"chromadb",
|
61
61
|
"psycopg2",
|
62
|
+
"psycopg",
|
62
63
|
]
|
63
64
|
|
64
65
|
qdrant = [ "qdrant-client" ]
|
65
66
|
pinecone = [ "pinecone-client" ]
|
66
67
|
weaviate = [ "weaviate-client" ]
|
67
68
|
elastic = [ "elasticsearch" ]
|
68
|
-
pgvector = [ "pgvector", "
|
69
|
+
pgvector = [ "pgvector", "psycopg" ]
|
69
70
|
pgvecto_rs = [ "psycopg2" ]
|
70
71
|
redis = [ "redis" ]
|
71
72
|
chromadb = [ "chromadb" ]
|
@@ -32,10 +32,10 @@ class config:
|
|
32
32
|
LOAD_TIMEOUT_1536D_500K = 2.5 * 3600 # 2.5h
|
33
33
|
LOAD_TIMEOUT_1536D_5M = 25 * 3600 # 25h
|
34
34
|
|
35
|
-
OPTIMIZE_TIMEOUT_DEFAULT =
|
36
|
-
OPTIMIZE_TIMEOUT_768D_1M =
|
37
|
-
OPTIMIZE_TIMEOUT_768D_10M =
|
38
|
-
OPTIMIZE_TIMEOUT_768D_100M =
|
35
|
+
OPTIMIZE_TIMEOUT_DEFAULT = 30 * 60 # 30min
|
36
|
+
OPTIMIZE_TIMEOUT_768D_1M = 30 * 60 # 30min
|
37
|
+
OPTIMIZE_TIMEOUT_768D_10M = 5 * 3600 # 5h
|
38
|
+
OPTIMIZE_TIMEOUT_768D_100M = 50 * 3600 # 50h
|
39
39
|
|
40
40
|
|
41
41
|
OPTIMIZE_TIMEOUT_1536D_500K = 15 * 60 # 15min
|
{vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/milvus/config.py
RENAMED
@@ -14,13 +14,17 @@ class MilvusIndexConfig(BaseModel):
|
|
14
14
|
|
15
15
|
index: IndexType
|
16
16
|
metric_type: MetricType | None = None
|
17
|
+
|
18
|
+
@property
|
19
|
+
def is_gpu_index(self) -> bool:
|
20
|
+
return self.index in [IndexType.GPU_CAGRA, IndexType.GPU_IVF_FLAT, IndexType.GPU_IVF_PQ]
|
17
21
|
|
18
22
|
def parse_metric(self) -> str:
|
19
23
|
if not self.metric_type:
|
20
24
|
return ""
|
21
25
|
|
22
|
-
|
23
|
-
|
26
|
+
if self.is_gpu_index and self.metric_type == MetricType.COSINE:
|
27
|
+
return MetricType.L2.value
|
24
28
|
return self.metric_type.value
|
25
29
|
|
26
30
|
|
{vectordb_bench-0.0.8 → vectordb_bench-0.0.10}/vectordb_bench/backend/clients/milvus/milvus.py
RENAMED
@@ -8,7 +8,7 @@ from typing import Iterable
|
|
8
8
|
from pymilvus import Collection, utility
|
9
9
|
from pymilvus import CollectionSchema, DataType, FieldSchema, MilvusException
|
10
10
|
|
11
|
-
from ..api import VectorDB
|
11
|
+
from ..api import VectorDB
|
12
12
|
from .config import MilvusIndexConfig
|
13
13
|
|
14
14
|
|
@@ -89,6 +89,7 @@ class Milvus(VectorDB):
|
|
89
89
|
connections.disconnect("default")
|
90
90
|
|
91
91
|
def _optimize(self):
|
92
|
+
self._post_insert()
|
92
93
|
log.info(f"{self.name} optimizing before search")
|
93
94
|
try:
|
94
95
|
self.col.load()
|
@@ -116,9 +117,9 @@ class Milvus(VectorDB):
|
|
116
117
|
time.sleep(5)
|
117
118
|
|
118
119
|
wait_index()
|
119
|
-
|
120
|
+
|
120
121
|
# Skip compaction if use GPU indexType
|
121
|
-
if self.case_config.
|
122
|
+
if self.case_config.is_gpu_index:
|
122
123
|
log.debug("skip compaction for gpu index type.")
|
123
124
|
else :
|
124
125
|
self.col.compact()
|
@@ -156,6 +157,10 @@ class Milvus(VectorDB):
|
|
156
157
|
|
157
158
|
def need_normalize_cosine(self) -> bool:
|
158
159
|
"""Wheather this database need to normalize dataset to support COSINE"""
|
160
|
+
if self.case_config.is_gpu_index:
|
161
|
+
log.info(f"current gpu_index only supports IP / L2, cosine dataset need normalize.")
|
162
|
+
return True
|
163
|
+
|
159
164
|
return False
|
160
165
|
|
161
166
|
def insert_embeddings(
|
@@ -179,8 +184,6 @@ class Milvus(VectorDB):
|
|
179
184
|
]
|
180
185
|
res = self.col.insert(insert_data)
|
181
186
|
insert_count += len(res.primary_keys)
|
182
|
-
if kwargs.get("last_batch"):
|
183
|
-
self._post_insert()
|
184
187
|
except MilvusException as e:
|
185
188
|
log.info(f"Failed to insert data: {e}")
|
186
189
|
return (insert_count, e)
|
@@ -0,0 +1,215 @@
|
|
1
|
+
from abc import abstractmethod
|
2
|
+
from typing import Any, Mapping, Optional, Sequence, TypedDict
|
3
|
+
from pydantic import BaseModel, SecretStr
|
4
|
+
from typing_extensions import LiteralString
|
5
|
+
from ..api import DBCaseConfig, DBConfig, IndexType, MetricType
|
6
|
+
|
7
|
+
POSTGRE_URL_PLACEHOLDER = "postgresql://%s:%s@%s/%s"
|
8
|
+
|
9
|
+
|
10
|
+
class PgVectorConfigDict(TypedDict):
|
11
|
+
"""These keys will be directly used as kwargs in psycopg connection string,
|
12
|
+
so the names must match exactly psycopg API"""
|
13
|
+
|
14
|
+
user: str
|
15
|
+
password: str
|
16
|
+
host: str
|
17
|
+
port: int
|
18
|
+
dbname: str
|
19
|
+
|
20
|
+
|
21
|
+
class PgVectorConfig(DBConfig):
|
22
|
+
user_name: SecretStr = SecretStr("postgres")
|
23
|
+
password: SecretStr
|
24
|
+
host: str = "localhost"
|
25
|
+
port: int = 5432
|
26
|
+
db_name: str
|
27
|
+
|
28
|
+
def to_dict(self) -> PgVectorConfigDict:
|
29
|
+
user_str = self.user_name.get_secret_value()
|
30
|
+
pwd_str = self.password.get_secret_value()
|
31
|
+
return {
|
32
|
+
"host": self.host,
|
33
|
+
"port": self.port,
|
34
|
+
"dbname": self.db_name,
|
35
|
+
"user": user_str,
|
36
|
+
"password": pwd_str,
|
37
|
+
}
|
38
|
+
|
39
|
+
|
40
|
+
class PgVectorIndexParam(TypedDict):
|
41
|
+
metric: str
|
42
|
+
index_type: str
|
43
|
+
index_creation_with_options: Sequence[dict[str, Any]]
|
44
|
+
maintenance_work_mem: Optional[str]
|
45
|
+
max_parallel_workers: Optional[int]
|
46
|
+
|
47
|
+
|
48
|
+
class PgVectorSearchParam(TypedDict):
|
49
|
+
metric_fun_op: LiteralString
|
50
|
+
|
51
|
+
|
52
|
+
class PgVectorSessionCommands(TypedDict):
|
53
|
+
session_options: Sequence[dict[str, Any]]
|
54
|
+
|
55
|
+
|
56
|
+
class PgVectorIndexConfig(BaseModel, DBCaseConfig):
|
57
|
+
metric_type: MetricType | None = None
|
58
|
+
create_index_before_load: bool = False
|
59
|
+
create_index_after_load: bool = True
|
60
|
+
|
61
|
+
def parse_metric(self) -> str:
|
62
|
+
if self.metric_type == MetricType.L2:
|
63
|
+
return "vector_l2_ops"
|
64
|
+
elif self.metric_type == MetricType.IP:
|
65
|
+
return "vector_ip_ops"
|
66
|
+
return "vector_cosine_ops"
|
67
|
+
|
68
|
+
def parse_metric_fun_op(self) -> LiteralString:
|
69
|
+
if self.metric_type == MetricType.L2:
|
70
|
+
return "<->"
|
71
|
+
elif self.metric_type == MetricType.IP:
|
72
|
+
return "<#>"
|
73
|
+
return "<=>"
|
74
|
+
|
75
|
+
def parse_metric_fun_str(self) -> str:
|
76
|
+
if self.metric_type == MetricType.L2:
|
77
|
+
return "l2_distance"
|
78
|
+
elif self.metric_type == MetricType.IP:
|
79
|
+
return "max_inner_product"
|
80
|
+
return "cosine_distance"
|
81
|
+
|
82
|
+
@abstractmethod
|
83
|
+
def index_param(self) -> PgVectorIndexParam:
|
84
|
+
...
|
85
|
+
|
86
|
+
@abstractmethod
|
87
|
+
def search_param(self) -> PgVectorSearchParam:
|
88
|
+
...
|
89
|
+
|
90
|
+
@abstractmethod
|
91
|
+
def session_param(self) -> PgVectorSessionCommands:
|
92
|
+
...
|
93
|
+
|
94
|
+
@staticmethod
|
95
|
+
def _optionally_build_with_options(with_options: Mapping[str, Any]) -> Sequence[dict[str, Any]]:
|
96
|
+
"""Walk through mappings, creating a List of {key1 = value} pairs. That will be used to build a where clause"""
|
97
|
+
options = []
|
98
|
+
for option_name, value in with_options.items():
|
99
|
+
if value is not None:
|
100
|
+
options.append(
|
101
|
+
{
|
102
|
+
"option_name": option_name,
|
103
|
+
"val": str(value),
|
104
|
+
}
|
105
|
+
)
|
106
|
+
return options
|
107
|
+
|
108
|
+
@staticmethod
|
109
|
+
def _optionally_build_set_options(
|
110
|
+
set_mapping: Mapping[str, Any]
|
111
|
+
) -> Sequence[dict[str, Any]]:
|
112
|
+
"""Walk through options, creating 'SET 'key1 = "value1";' commands"""
|
113
|
+
session_options = []
|
114
|
+
for setting_name, value in set_mapping.items():
|
115
|
+
if value:
|
116
|
+
session_options.append(
|
117
|
+
{"parameter": {
|
118
|
+
"setting_name": setting_name,
|
119
|
+
"val": str(value),
|
120
|
+
},
|
121
|
+
}
|
122
|
+
)
|
123
|
+
return session_options
|
124
|
+
|
125
|
+
|
126
|
+
class PgVectorIVFFlatConfig(PgVectorIndexConfig):
|
127
|
+
"""
|
128
|
+
An IVFFlat index divides vectors into lists, and then searches a subset of those lists that are
|
129
|
+
closest to the query vector. It has faster build times and uses less memory than HNSW,
|
130
|
+
but has lower query performance (in terms of speed-recall tradeoff).
|
131
|
+
|
132
|
+
Three keys to achieving good recall are:
|
133
|
+
|
134
|
+
Create the index after the table has some data
|
135
|
+
Choose an appropriate number of lists - a good place to start is rows / 1000 for up to 1M rows and sqrt(rows) for
|
136
|
+
over 1M rows.
|
137
|
+
When querying, specify an appropriate number of probes (higher is better for recall, lower is better for speed) -
|
138
|
+
a good place to start is sqrt(lists)
|
139
|
+
"""
|
140
|
+
|
141
|
+
lists: int | None
|
142
|
+
probes: int | None
|
143
|
+
index: IndexType = IndexType.ES_IVFFlat
|
144
|
+
maintenance_work_mem: Optional[str] = None
|
145
|
+
max_parallel_workers: Optional[int] = None
|
146
|
+
|
147
|
+
def index_param(self) -> PgVectorIndexParam:
|
148
|
+
index_parameters = {"lists": self.lists}
|
149
|
+
return {
|
150
|
+
"metric": self.parse_metric(),
|
151
|
+
"index_type": self.index.value,
|
152
|
+
"index_creation_with_options": self._optionally_build_with_options(
|
153
|
+
index_parameters
|
154
|
+
),
|
155
|
+
"maintenance_work_mem": self.maintenance_work_mem,
|
156
|
+
"max_parallel_workers": self.max_parallel_workers,
|
157
|
+
}
|
158
|
+
|
159
|
+
def search_param(self) -> PgVectorSearchParam:
|
160
|
+
return {
|
161
|
+
"metric_fun_op": self.parse_metric_fun_op(),
|
162
|
+
}
|
163
|
+
|
164
|
+
def session_param(self) -> PgVectorSessionCommands:
|
165
|
+
session_parameters = {"ivfflat.probes": self.probes}
|
166
|
+
return {
|
167
|
+
"session_options": self._optionally_build_set_options(session_parameters)
|
168
|
+
}
|
169
|
+
|
170
|
+
|
171
|
+
class PgVectorHNSWConfig(PgVectorIndexConfig):
|
172
|
+
"""
|
173
|
+
An HNSW index creates a multilayer graph. It has better query performance than IVFFlat (in terms of
|
174
|
+
speed-recall tradeoff), but has slower build times and uses more memory. Also, an index can be
|
175
|
+
created without any data in the table since there isn't a training step like IVFFlat.
|
176
|
+
"""
|
177
|
+
|
178
|
+
m: int | None # DETAIL: Valid values are between "2" and "100".
|
179
|
+
ef_construction: (
|
180
|
+
int | None
|
181
|
+
) # ef_construction must be greater than or equal to 2 * m
|
182
|
+
ef_search: int | None
|
183
|
+
index: IndexType = IndexType.ES_HNSW
|
184
|
+
maintenance_work_mem: Optional[str] = None
|
185
|
+
max_parallel_workers: Optional[int] = None
|
186
|
+
|
187
|
+
def index_param(self) -> PgVectorIndexParam:
|
188
|
+
index_parameters = {"m": self.m, "ef_construction": self.ef_construction}
|
189
|
+
return {
|
190
|
+
"metric": self.parse_metric(),
|
191
|
+
"index_type": self.index.value,
|
192
|
+
"index_creation_with_options": self._optionally_build_with_options(
|
193
|
+
index_parameters
|
194
|
+
),
|
195
|
+
"maintenance_work_mem": self.maintenance_work_mem,
|
196
|
+
"max_parallel_workers": self.max_parallel_workers,
|
197
|
+
}
|
198
|
+
|
199
|
+
def search_param(self) -> PgVectorSearchParam:
|
200
|
+
return {
|
201
|
+
"metric_fun_op": self.parse_metric_fun_op(),
|
202
|
+
}
|
203
|
+
|
204
|
+
def session_param(self) -> PgVectorSessionCommands:
|
205
|
+
session_parameters = {"hnsw.ef_search": self.ef_search}
|
206
|
+
return {
|
207
|
+
"session_options": self._optionally_build_set_options(session_parameters)
|
208
|
+
}
|
209
|
+
|
210
|
+
|
211
|
+
_pgvector_case_config = {
|
212
|
+
IndexType.HNSW: PgVectorHNSWConfig,
|
213
|
+
IndexType.ES_HNSW: PgVectorHNSWConfig,
|
214
|
+
IndexType.IVFFlat: PgVectorIVFFlatConfig,
|
215
|
+
}
|