vectordb-bench 0.0.2__tar.gz → 0.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (87) hide show
  1. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/.gitignore +2 -0
  2. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/PKG-INFO +95 -13
  3. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/README.md +94 -12
  4. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/pyproject.toml +3 -0
  5. vectordb-bench-0.0.3/tests/test_dataset.py +36 -0
  6. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/test_models.py +1 -1
  7. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/ut_cases.py +7 -20
  8. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/__init__.py +14 -3
  9. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/cases.py +34 -13
  10. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/__init__.py +6 -1
  11. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/api.py +12 -8
  12. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +4 -2
  13. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/milvus/milvus.py +17 -10
  14. vectordb-bench-0.0.3/vectordb_bench/backend/clients/pgvector/config.py +49 -0
  15. vectordb-bench-0.0.3/vectordb_bench/backend/clients/pgvector/pgvector.py +171 -0
  16. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/pinecone/pinecone.py +4 -3
  17. vectordb-bench-0.0.3/vectordb_bench/backend/clients/qdrant_cloud/config.py +33 -0
  18. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +11 -11
  19. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py +5 -5
  20. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +3 -1
  21. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/dataset.py +99 -149
  22. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/result_collector.py +2 -2
  23. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/runner/mp_runner.py +29 -13
  24. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/runner/serial_runner.py +69 -51
  25. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/task_runner.py +43 -48
  26. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/get_results/saveAsImage.py +4 -2
  27. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/const/dbCaseConfigs.py +35 -4
  28. vectordb-bench-0.0.3/vectordb_bench/frontend/const/dbPrices.py +6 -0
  29. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/const/styles.py +9 -3
  30. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/metric.py +0 -1
  31. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/models.py +12 -8
  32. vectordb-bench-0.0.3/vectordb_bench/results/dbPrices.json +32 -0
  33. vectordb-bench-0.0.3/vectordb_bench/results/getLeaderboardData.py +52 -0
  34. vectordb-bench-0.0.3/vectordb_bench/results/leaderboard.json +1 -0
  35. vectordb-bench-0.0.2/vectordb_bench/results/result_20230609_standard.json → vectordb-bench-0.0.3/vectordb_bench/results/result_20230705_standard.json +670 -214
  36. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench.egg-info/PKG-INFO +95 -13
  37. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench.egg-info/SOURCES.txt +6 -1
  38. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench.egg-info/requires.txt +3 -0
  39. vectordb-bench-0.0.2/tests/test_dataset.py +0 -53
  40. vectordb-bench-0.0.2/vectordb_bench/backend/clients/qdrant_cloud/config.py +0 -15
  41. vectordb-bench-0.0.2/vectordb_bench/frontend/const/dbPrices.py +0 -34
  42. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/.env.example +0 -0
  43. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/.github/workflows/publish_package_on_release.yml +0 -0
  44. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/.ruff.toml +0 -0
  45. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/LICENSE +0 -0
  46. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/setup.cfg +0 -0
  47. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/conftest.py +0 -0
  48. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/pytest.ini +0 -0
  49. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/test_bench_runner.py +0 -0
  50. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/test_elasticsearch_cloud.py +0 -0
  51. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/tests/test_utils.py +0 -0
  52. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/__main__.py +0 -0
  53. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/__init__.py +0 -0
  54. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/assembler.py +0 -0
  55. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/elastic_cloud/config.py +0 -0
  56. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/milvus/config.py +0 -0
  57. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/pinecone/config.py +0 -0
  58. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/weaviate_cloud/config.py +0 -0
  59. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/clients/zilliz_cloud/config.py +0 -0
  60. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/runner/__init__.py +0 -0
  61. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/backend/utils.py +0 -0
  62. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/base.py +0 -0
  63. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/charts.py +0 -0
  64. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/data.py +0 -0
  65. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/expanderStyle.py +0 -0
  66. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/filters.py +0 -0
  67. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/footer.py +0 -0
  68. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/headerIcon.py +0 -0
  69. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/nav.py +0 -0
  70. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/priceTable.py +0 -0
  71. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/check_results/stPageConfig.py +0 -0
  72. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/autoRefresh.py +0 -0
  73. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/caseSelector.py +0 -0
  74. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/dbConfigSetting.py +0 -0
  75. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/dbSelector.py +0 -0
  76. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/generateTasks.py +0 -0
  77. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/hideSidebar.py +0 -0
  78. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/components/run_test/submitTask.py +0 -0
  79. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/pages/quries_per_dollar.py +0 -0
  80. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/pages/run_test.py +0 -0
  81. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/utils.py +0 -0
  82. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/frontend/vdb_benchmark.py +0 -0
  83. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/interface.py +0 -0
  84. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench/log_util.py +0 -0
  85. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench.egg-info/dependency_links.txt +0 -0
  86. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench.egg-info/entry_points.txt +0 -0
  87. {vectordb-bench-0.0.2 → vectordb-bench-0.0.3}/vectordb_bench.egg-info/top_level.txt +0 -0
@@ -7,3 +7,5 @@ __pycache__
7
7
  __MACOSX
8
8
  .DS_Store
9
9
  build/
10
+ venv/
11
+ .idea/
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectordb-bench
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
5
5
  Author-email: XuanYang-cn <xuan.yang@zilliz.com>
6
6
  Project-URL: repository, https://github.com/zilliztech/VectorDBBench
@@ -17,6 +17,7 @@ License-File: LICENSE
17
17
  [![version](https://img.shields.io/pypi/v/vectordb-bench.svg?color=blue)](https://pypi.org/project/vectordb-bench/)
18
18
  [![Downloads](https://pepy.tech/badge/vectordb-bench)](https://pepy.tech/project/vectordb-bench)
19
19
 
20
+ **Leaderboard:** https://zilliz.com/benchmark
20
21
  ## Quick Start
21
22
  ### Prerequirement
22
23
  ``` shell
@@ -41,6 +42,24 @@ Closely mimicking real-world production environments, we've set up diverse testi
41
42
 
42
43
  Prepare to delve into the world of VectorDBBench, and let it guide you in uncovering your perfect vector database match.
43
44
 
45
+ ## Leaderboard
46
+ ### Introduction
47
+ To facilitate the presentation of test results and provide a comprehensive performance analysis report, we offer a [leaderboard page](https://zilliz.com/benchmark). It allows us to choose from QPS, QP$, and latency metrics, and provides a comprehensive assessment of a system's performance based on the test results of various cases and a set of scoring mechanisms (to be introduced later). On this leaderboard, we can select the systems and models to be compared, and filter out cases we do not want to consider. Comprehensive scores are always ranked from best to worst, and the specific test results of each query will be presented in the list below.
48
+
49
+ ### Scoring Rules
50
+
51
+ 1. For each case, select a base value and score each system based on relative values.
52
+ - For QPS and QP$, we use the highest value as the reference, denoted as `base_QPS` or `base_QP$`, and the score of each system is `(QPS/base_QPS) * 100` or `(QP$/base_QP$) * 100`.
53
+ - For Latency, we use the lowest value as the reference, that is, `base_Latency`, and the score of each system is `(Latency + 10ms)/(base_Latency + 10ms)`.
54
+
55
+ We want to give equal weight to different cases, and not let a case with high absolute result values become the sole reason for the overall scoring. Therefore, when scoring different systems in each case, we need to use relative values.
56
+
57
+ Also, for Latency, we add 10ms to the numerator and denominator to ensure that if every system performs particularly well in a case, its advantage will not be infinitely magnified when latency tends to 0.
58
+
59
+ 2. For systems that fail or timeout in a particular case, we will give them a score based on a value worse than the worst result by a factor of two. For example, in QPS or QP$, it would be half the lowest value. For Latency, it would be twice the maximum value.
60
+
61
+ 3. For each system, we will take the geometric mean of its scores in all cases as its comprehensive score for a particular metric.
62
+
44
63
  ## Build on your own
45
64
  ### Install requirements
46
65
  ``` shell
@@ -69,10 +88,12 @@ $ ruff check vectordb_bench --fix
69
88
 
70
89
  ## How does it work?
71
90
  ### Result Page
72
- ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/66ab83c4-656e-41a8-a643-d9790faccbeb)
91
+ ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/7f5cdae7-f9f2-4a81-b2e0-e5c6268cd970)
73
92
  This is the main page of VectorDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
74
93
 
75
94
  The standard benchmark results displayed here include all 9 cases that we currently support for all our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, and Weaviate Cloud). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
95
+
96
+ All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
76
97
  ### Run Test Page
77
98
  ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/a789099a-3707-4214-8052-b73463b8f2c6)
78
99
  This is the page to run a test:
@@ -102,17 +123,17 @@ We've developed an array of 9 comprehensive benchmark cases to test vector datab
102
123
  - **Medium Dataset, High Filtering Rate:** This case uses a medium dataset (Cohere 1M vectors, 768 dimensions) with a high filtering rate.
103
124
  For a quick reference, here is a table summarizing the key aspects of each case:
104
125
 
105
- Case No. | Case Type | Dataset Size | Dataset Type | Filtering Rate | Results |
106
- |----------|-----------|--------------|--------------|----------------|---------|
107
- 1 | Capacity Case | Large Dim | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
108
- 2 | Capacity Case | Small Dim | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
109
- 3 | Search Performance Case | XLarge Dataset | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
110
- 4 | Search Performance Case | Large Dataset | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
111
- 5 | Search Performance Case | Medium Dataset | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
112
- 6 | Filtering Search Performance Case | Large Dataset, Low Filtering Rate | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
113
- 7 | Filtering Search Performance Case | Medium Dataset, Low Filtering Rate | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
114
- 8 | Filtering Search Performance Case | Large Dataset, High Filtering Rate | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
115
- 9 | Filtering Search Performance Case | Medium Dataset, High Filtering Rate | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
126
+ Case No. | Case Type | Dataset Size | Filtering Rate | Results |
127
+ |----------|-----------|--------------|----------------|---------|
128
+ 1 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
129
+ 2 | Capacity Case | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
130
+ 3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
131
+ 4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
132
+ 5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
133
+ 6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
134
+ 7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
135
+ 8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
136
+ 9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
116
137
 
117
138
  Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
118
139
 
@@ -200,3 +221,64 @@ For the Client, we welcome any parameter tuning to obtain better results.
200
221
  Many databases may not be able to complete all test cases due to issues such as Out of Memory (OOM), crashes, or timeouts. In these scenarios, we will clearly state these occurrences in the test results.
201
222
  ### Mistake Or Misrepresentation
202
223
  We strive for accuracy in learning and supporting various vector databases, yet there might be oversights or misapplications. For any such occurrences, feel free to [raise an issue](https://github.com/zilliztech/VectorDBBench/issues/new) or make amendments on our GitHub page.
224
+ ## Timeout
225
+ In our pursuit to ensure that our benchmark reflects the reality of a production environment while guaranteeing the practicality of the system, we have implemented a timeout plan based on our experiences for various tests.
226
+
227
+ **1. Capacity Case:**
228
+ - For Capacity Case, we have assigned an overall timeout.
229
+
230
+ **2. Other Cases:**
231
+
232
+ For other cases, we have set two timeouts:
233
+
234
+ - **Data Loading Timeout:** This timeout is designed to filter out systems that are too slow in inserting data, thus ensuring that we are only considering systems that is able to cope with the demands of a real-world production environment within a reasonable time frame.
235
+
236
+ - **Optimization Preparation Timeout**: This timeout is established to avoid excessive optimization strategies that might work for benchmarks but fail to deliver in real production environments. By doing this, we ensure that the systems we consider are not only suitable for testing environments but also applicable and efficient in production scenarios.
237
+
238
+ This multi-tiered timeout approach allows our benchmark to be more representative of actual production environments and assists us in identifying systems that can truly perform in real-world scenarios.
239
+ <table>
240
+ <tr>
241
+ <th>Case</th>
242
+ <th>Data Size</th>
243
+ <th>Timeout Type</th>
244
+ <th>Value</th>
245
+ </tr>
246
+ <tr>
247
+ <td>Capacity Case</td>
248
+ <td>N/A</td>
249
+ <td>Loading timeout</td>
250
+ <td>24 hours</td>
251
+ </tr>
252
+ <tr>
253
+ <td rowspan="2">Other Cases</td>
254
+ <td rowspan="2">1M vectors, 768 dimensions</td>
255
+ <td>Loading timeout</td>
256
+ <td>2.5 hours</td>
257
+ </tr>
258
+ <tr>
259
+ <td>Optimization timeout</td>
260
+ <td>15 mins</td>
261
+ </tr>
262
+ <tr>
263
+ <td rowspan="2">Other Cases</td>
264
+ <td rowspan="2">10M vectors, 768 dimensions</td>
265
+ <td>Loading timeout</td>
266
+ <td>25 hours</td>
267
+ </tr>
268
+ <tr>
269
+ <td>Optimization timeout</td>
270
+ <td>2.5 hours</td>
271
+ </tr>
272
+ <tr>
273
+ <td rowspan="2">Other Cases</td>
274
+ <td rowspan="2">100M vectors, 768 dimensions</td>
275
+ <td>Loading timeout</td>
276
+ <td>250 hours</td>
277
+ </tr>
278
+ <tr>
279
+ <td>Optimization timeout</td>
280
+ <td>25 hours</td>
281
+ </tr>
282
+ </table>
283
+
284
+ **Note:** Some datapoints in the standard benchmark results that voilate this timeout will be kept for now for reference. We will remove them in the future.
@@ -3,6 +3,7 @@
3
3
  [![version](https://img.shields.io/pypi/v/vectordb-bench.svg?color=blue)](https://pypi.org/project/vectordb-bench/)
4
4
  [![Downloads](https://pepy.tech/badge/vectordb-bench)](https://pepy.tech/project/vectordb-bench)
5
5
 
6
+ **Leaderboard:** https://zilliz.com/benchmark
6
7
  ## Quick Start
7
8
  ### Prerequirement
8
9
  ``` shell
@@ -27,6 +28,24 @@ Closely mimicking real-world production environments, we've set up diverse testi
27
28
 
28
29
  Prepare to delve into the world of VectorDBBench, and let it guide you in uncovering your perfect vector database match.
29
30
 
31
+ ## Leaderboard
32
+ ### Introduction
33
+ To facilitate the presentation of test results and provide a comprehensive performance analysis report, we offer a [leaderboard page](https://zilliz.com/benchmark). It allows us to choose from QPS, QP$, and latency metrics, and provides a comprehensive assessment of a system's performance based on the test results of various cases and a set of scoring mechanisms (to be introduced later). On this leaderboard, we can select the systems and models to be compared, and filter out cases we do not want to consider. Comprehensive scores are always ranked from best to worst, and the specific test results of each query will be presented in the list below.
34
+
35
+ ### Scoring Rules
36
+
37
+ 1. For each case, select a base value and score each system based on relative values.
38
+ - For QPS and QP$, we use the highest value as the reference, denoted as `base_QPS` or `base_QP$`, and the score of each system is `(QPS/base_QPS) * 100` or `(QP$/base_QP$) * 100`.
39
+ - For Latency, we use the lowest value as the reference, that is, `base_Latency`, and the score of each system is `(Latency + 10ms)/(base_Latency + 10ms)`.
40
+
41
+ We want to give equal weight to different cases, and not let a case with high absolute result values become the sole reason for the overall scoring. Therefore, when scoring different systems in each case, we need to use relative values.
42
+
43
+ Also, for Latency, we add 10ms to the numerator and denominator to ensure that if every system performs particularly well in a case, its advantage will not be infinitely magnified when latency tends to 0.
44
+
45
+ 2. For systems that fail or timeout in a particular case, we will give them a score based on a value worse than the worst result by a factor of two. For example, in QPS or QP$, it would be half the lowest value. For Latency, it would be twice the maximum value.
46
+
47
+ 3. For each system, we will take the geometric mean of its scores in all cases as its comprehensive score for a particular metric.
48
+
30
49
  ## Build on your own
31
50
  ### Install requirements
32
51
  ``` shell
@@ -55,10 +74,12 @@ $ ruff check vectordb_bench --fix
55
74
 
56
75
  ## How does it work?
57
76
  ### Result Page
58
- ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/66ab83c4-656e-41a8-a643-d9790faccbeb)
77
+ ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/7f5cdae7-f9f2-4a81-b2e0-e5c6268cd970)
59
78
  This is the main page of VectorDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
60
79
 
61
80
  The standard benchmark results displayed here include all 9 cases that we currently support for all our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, and Weaviate Cloud). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
81
+
82
+ All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
62
83
  ### Run Test Page
63
84
  ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/a789099a-3707-4214-8052-b73463b8f2c6)
64
85
  This is the page to run a test:
@@ -88,17 +109,17 @@ We've developed an array of 9 comprehensive benchmark cases to test vector datab
88
109
  - **Medium Dataset, High Filtering Rate:** This case uses a medium dataset (Cohere 1M vectors, 768 dimensions) with a high filtering rate.
89
110
  For a quick reference, here is a table summarizing the key aspects of each case:
90
111
 
91
- Case No. | Case Type | Dataset Size | Dataset Type | Filtering Rate | Results |
92
- |----------|-----------|--------------|--------------|----------------|---------|
93
- 1 | Capacity Case | Large Dim | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
94
- 2 | Capacity Case | Small Dim | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
95
- 3 | Search Performance Case | XLarge Dataset | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
96
- 4 | Search Performance Case | Large Dataset | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
97
- 5 | Search Performance Case | Medium Dataset | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
98
- 6 | Filtering Search Performance Case | Large Dataset, Low Filtering Rate | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
99
- 7 | Filtering Search Performance Case | Medium Dataset, Low Filtering Rate | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
100
- 8 | Filtering Search Performance Case | Large Dataset, High Filtering Rate | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
101
- 9 | Filtering Search Performance Case | Medium Dataset, High Filtering Rate | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
112
+ Case No. | Case Type | Dataset Size | Filtering Rate | Results |
113
+ |----------|-----------|--------------|----------------|---------|
114
+ 1 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
115
+ 2 | Capacity Case | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
116
+ 3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
117
+ 4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
118
+ 5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
119
+ 6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
120
+ 7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
121
+ 8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
122
+ 9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
102
123
 
103
124
  Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
104
125
 
@@ -186,3 +207,64 @@ For the Client, we welcome any parameter tuning to obtain better results.
186
207
  Many databases may not be able to complete all test cases due to issues such as Out of Memory (OOM), crashes, or timeouts. In these scenarios, we will clearly state these occurrences in the test results.
187
208
  ### Mistake Or Misrepresentation
188
209
  We strive for accuracy in learning and supporting various vector databases, yet there might be oversights or misapplications. For any such occurrences, feel free to [raise an issue](https://github.com/zilliztech/VectorDBBench/issues/new) or make amendments on our GitHub page.
210
+ ## Timeout
211
+ In our pursuit to ensure that our benchmark reflects the reality of a production environment while guaranteeing the practicality of the system, we have implemented a timeout plan based on our experiences for various tests.
212
+
213
+ **1. Capacity Case:**
214
+ - For Capacity Case, we have assigned an overall timeout.
215
+
216
+ **2. Other Cases:**
217
+
218
+ For other cases, we have set two timeouts:
219
+
220
+ - **Data Loading Timeout:** This timeout is designed to filter out systems that are too slow in inserting data, thus ensuring that we are only considering systems that is able to cope with the demands of a real-world production environment within a reasonable time frame.
221
+
222
+ - **Optimization Preparation Timeout**: This timeout is established to avoid excessive optimization strategies that might work for benchmarks but fail to deliver in real production environments. By doing this, we ensure that the systems we consider are not only suitable for testing environments but also applicable and efficient in production scenarios.
223
+
224
+ This multi-tiered timeout approach allows our benchmark to be more representative of actual production environments and assists us in identifying systems that can truly perform in real-world scenarios.
225
+ <table>
226
+ <tr>
227
+ <th>Case</th>
228
+ <th>Data Size</th>
229
+ <th>Timeout Type</th>
230
+ <th>Value</th>
231
+ </tr>
232
+ <tr>
233
+ <td>Capacity Case</td>
234
+ <td>N/A</td>
235
+ <td>Loading timeout</td>
236
+ <td>24 hours</td>
237
+ </tr>
238
+ <tr>
239
+ <td rowspan="2">Other Cases</td>
240
+ <td rowspan="2">1M vectors, 768 dimensions</td>
241
+ <td>Loading timeout</td>
242
+ <td>2.5 hours</td>
243
+ </tr>
244
+ <tr>
245
+ <td>Optimization timeout</td>
246
+ <td>15 mins</td>
247
+ </tr>
248
+ <tr>
249
+ <td rowspan="2">Other Cases</td>
250
+ <td rowspan="2">10M vectors, 768 dimensions</td>
251
+ <td>Loading timeout</td>
252
+ <td>25 hours</td>
253
+ </tr>
254
+ <tr>
255
+ <td>Optimization timeout</td>
256
+ <td>2.5 hours</td>
257
+ </tr>
258
+ <tr>
259
+ <td rowspan="2">Other Cases</td>
260
+ <td rowspan="2">100M vectors, 768 dimensions</td>
261
+ <td>Loading timeout</td>
262
+ <td>250 hours</td>
263
+ </tr>
264
+ <tr>
265
+ <td>Optimization timeout</td>
266
+ <td>25 hours</td>
267
+ </tr>
268
+ </table>
269
+
270
+ **Note:** Some datapoints in the standard benchmark results that voilate this timeout will be kept for now for reference. We will remove them in the future.
@@ -37,6 +37,9 @@ dependencies = [
37
37
  "scikit-learn",
38
38
  "s3fs",
39
39
  "psutil",
40
+ "polars",
41
+ "pgvector",
42
+ "sqlalchemy"
40
43
  ]
41
44
  dynamic = ["version"]
42
45
 
@@ -0,0 +1,36 @@
1
+ from vectordb_bench.backend.dataset import Dataset
2
+ import logging
3
+ import pytest
4
+ from pydantic import ValidationError
5
+
6
+
7
+ log = logging.getLogger("vectordb_bench")
8
+
9
+ class TestDataSet:
10
+ def test_iter_dataset(self):
11
+ for ds in Dataset:
12
+ log.info(ds)
13
+
14
+ def test_cohere(self):
15
+ cohere = Dataset.COHERE.get(100_000)
16
+ log.info(cohere)
17
+ assert cohere.name == "Cohere"
18
+ assert cohere.size == 100_000
19
+ assert cohere.label == "SMALL"
20
+ assert cohere.dim == 768
21
+
22
+ def test_cohere_error(self):
23
+ with pytest.raises(ValidationError):
24
+ Dataset.COHERE.get(9999)
25
+
26
+ def test_init_cohere(self):
27
+ coheres = [Dataset.COHERE.manager(i) for i in [100_000, 1_000_000, 10_000_000]]
28
+ for t in coheres:
29
+ t._validate_local_file()
30
+
31
+ def test_iter_cohere(self):
32
+ cohere_10m = Dataset.COHERE.manager(10_000_000)
33
+ cohere_10m.prepare(False)
34
+ for i in cohere_10m:
35
+ log.debug(i.head(1))
36
+
@@ -65,6 +65,6 @@ class TestModels:
65
65
 
66
66
  def test_test_result_display(self):
67
67
  result_dir = config.RESULTS_LOCAL_DIR
68
- for json_file in result_dir.glob("*.json"):
68
+ for json_file in result_dir.glob("result*.json"):
69
69
  res = TestResult.read_file(json_file)
70
70
  res.display()
@@ -3,32 +3,21 @@ from vectordb_bench.backend.cases import (
3
3
  CaseType,
4
4
  )
5
5
 
6
- import vectordb_bench.backend.dataset as ds
7
- from pydantic.dataclasses import dataclass
8
-
9
- @dataclass
10
- class Cohere_S(ds.Cohere):
11
- label: str = "SMALL"
12
- size: int = 100_000
13
-
14
- @dataclass
15
- class Glove_S(ds.Glove):
16
- label: str = "SMALL"
17
- size : int = 100_000
6
+ from vectordb_bench.backend.datase import Dataset, DatasetManager
18
7
 
19
8
 
20
9
  class Performance100K99p(PerformanceCase):
21
- case_id: CaseType = CaseType.PerformanceSHigh
10
+ case_id: CaseType = 100
22
11
  filter_rate: float | int | None = 0.99
23
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.SMALL)
12
+ dataset: DatasetManager = Dataset.COHERE.manager(100_000)
24
13
  name: str = "Filtering Search Performance Test (100K Dataset, 768 Dim, Filter 99%)"
25
14
  description: str = """This case tests the search performance of a vector database with a small dataset (<b>Cohere 100K vectors</b>, 768 dimensions) under a high filtering rate (<b>99% vectors</b>), at varying parallel levels.
26
15
  Results will show index building time, recall, and maximum QPS."""
27
16
 
28
17
  class Performance100K1p(PerformanceCase):
29
- case_id: CaseType = CaseType.PerformanceSLow
18
+ case_id: CaseType = 100
30
19
  filter_rate: float | int | None = 0.01
31
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.SMALL)
20
+ dataset: DatasetManager = Dataset.COHERE.manager(100_000)
32
21
  name: str = "Filtering Search Performance Test (100K Dataset, 768 Dim, Filter 1%)"
33
22
  description: str = (
34
23
  """This case tests the search performance of a vector database with a small dataset (<b>Cohere 100K vectors</b>, 768 dimensions) under a low filtering rate (<b>1% vectors</b>), at varying parallel levels.
@@ -37,10 +26,8 @@ Results will show index building time, recall, and maximum QPS.""",
37
26
 
38
27
 
39
28
  class Performance100K(PerformanceCase):
40
- case_id: CaseType = CaseType.PerformanceSZero
41
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.SMALL)
29
+ case_id: CaseType = 100
30
+ dataset: DatasetManager = Dataset.COHERE.manager(100_000)
42
31
  name: str = "Search Performance Test (100K Dataset, 768 Dim)"
43
32
  description: str = """This case tests the search performance of a vector database with a small dataset (<b>Cohere 100K vectors</b>, 768 dimensions) at varying parallel levels.
44
33
  Results will show index building time, recall, and maximum QPS."""
45
-
46
-
@@ -18,12 +18,23 @@ class config:
18
18
  USE_SHUFFLED_DATA = env.bool("USE_SHUFFLED_DATA", True)
19
19
 
20
20
  RESULTS_LOCAL_DIR = pathlib.Path(__file__).parent.joinpath("results")
21
- CASE_TIMEOUT_IN_SECOND = 24 * 60 * 60
21
+
22
+ CAPACITY_TIMEOUT_IN_SECONDS = 24 * 3600 # 24h
23
+ LOAD_TIMEOUT_1M = 2.5 * 3600 # 2.5h
24
+ LOAD_TIMEOUT_10M = 25 * 3600 # 25h
25
+ LOAD_TIMEOUT_100M = 250 * 3600 # 10.41d
26
+
27
+ OPTIMIZE_TIMEOUT_1M = 15 * 60 # 15min
28
+ OPTIMIZE_TIMEOUT_10M = 2.5 * 3600 # 2.5h
29
+ OPTIMIZE_TIMEOUT_100M = 25 * 3600 # 1.04d
22
30
 
23
31
 
24
32
  def display(self) -> str:
25
- tmp = [i for i in inspect.getmembers(self)
26
- if not inspect.ismethod(i[1]) and not i[0].startswith('_') \
33
+ tmp = [
34
+ i for i in inspect.getmembers(self)
35
+ if not inspect.ismethod(i[1])
36
+ and not i[0].startswith('_')
37
+ and "TIMEOUT" not in i[0]
27
38
  ]
28
39
  return tmp
29
40
 
@@ -2,8 +2,10 @@ import typing
2
2
  import logging
3
3
  from enum import Enum, auto
4
4
 
5
- from . import dataset as ds
6
- from ..base import BaseModel
5
+ from vectordb_bench import config
6
+ from vectordb_bench.base import BaseModel
7
+
8
+ from .dataset import Dataset, DatasetManager
7
9
 
8
10
 
9
11
  log = logging.getLogger(__name__)
@@ -44,7 +46,7 @@ class CaseType(Enum):
44
46
  if c is not None:
45
47
  return c().name
46
48
  raise ValueError("Case unsupported")
47
-
49
+
48
50
  @property
49
51
  def case_description(self) -> str:
50
52
  c = self.case_cls
@@ -73,7 +75,10 @@ class Case(BaseModel):
73
75
  label: CaseLabel
74
76
  name: str
75
77
  description: str
76
- dataset: ds.DataSet
78
+ dataset: DatasetManager
79
+
80
+ load_timeout: float | int
81
+ optimize_timeout: float | int | None
77
82
 
78
83
  filter_rate: float | None
79
84
 
@@ -92,6 +97,8 @@ class Case(BaseModel):
92
97
  class CapacityCase(Case, BaseModel):
93
98
  label: CaseLabel = CaseLabel.Load
94
99
  filter_rate: float | None = None
100
+ load_timeout: float | int = config.CAPACITY_TIMEOUT_IN_SECONDS
101
+ optimize_timeout: float | int | None = None
95
102
 
96
103
 
97
104
  class PerformanceCase(Case, BaseModel):
@@ -101,7 +108,7 @@ class PerformanceCase(Case, BaseModel):
101
108
 
102
109
  class CapacityDim960(CapacityCase):
103
110
  case_id: CaseType = CaseType.CapacityDim960
104
- dataset: ds.DataSet = ds.get(ds.Name.GIST, ds.Label.SMALL)
111
+ dataset: DatasetManager = Dataset.GIST.manager(100_000)
105
112
  name: str = "Capacity Test (960 Dim Repeated)"
106
113
  description: str = """This case tests the vector database's loading capacity by repeatedly inserting large-dimension vectors (GIST 100K vectors, <b>960 dimensions</b>) until it is fully loaded.
107
114
  Number of inserted vectors will be reported."""
@@ -109,7 +116,7 @@ Number of inserted vectors will be reported."""
109
116
 
110
117
  class CapacityDim128(CapacityCase):
111
118
  case_id: CaseType = CaseType.CapacityDim128
112
- dataset: ds.DataSet = ds.get(ds.Name.SIFT, ds.Label.SMALL)
119
+ dataset: DatasetManager = Dataset.SIFT.manager(500_000)
113
120
  name: str = "Capacity Test (128 Dim Repeated)"
114
121
  description: str = """This case tests the vector database's loading capacity by repeatedly inserting small-dimension vectors (SIFT 100K vectors, <b>128 dimensions</b>) until it is fully loaded.
115
122
  Number of inserted vectors will be reported."""
@@ -117,64 +124,78 @@ Number of inserted vectors will be reported."""
117
124
 
118
125
  class Performance10M(PerformanceCase):
119
126
  case_id: CaseType = CaseType.Performance10M
120
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.LARGE)
127
+ dataset: DatasetManager = Dataset.COHERE.manager(10_000_000)
121
128
  name: str = "Search Performance Test (10M Dataset, 768 Dim)"
122
129
  description: str = """This case tests the search performance of a vector database with a large dataset (<b>Cohere 10M vectors</b>, 768 dimensions) at varying parallel levels.
123
130
  Results will show index building time, recall, and maximum QPS."""
131
+ load_timeout: float | int = config.LOAD_TIMEOUT_10M
132
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_10M
124
133
 
125
134
 
126
135
  class Performance1M(PerformanceCase):
127
136
  case_id: CaseType = CaseType.Performance1M
128
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.MEDIUM)
137
+ dataset: DatasetManager = Dataset.COHERE.manager(1_000_000)
129
138
  name: str = "Search Performance Test (1M Dataset, 768 Dim)"
130
139
  description: str = """This case tests the search performance of a vector database with a medium dataset (<b>Cohere 1M vectors</b>, 768 dimensions) at varying parallel levels.
131
140
  Results will show index building time, recall, and maximum QPS."""
141
+ load_timeout: float | int = config.LOAD_TIMEOUT_1M
142
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_1M
132
143
 
133
144
 
134
145
  class Performance10M1P(PerformanceCase):
135
146
  case_id: CaseType = CaseType.Performance10M1P
136
147
  filter_rate: float | int | None = 0.01
137
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.LARGE)
148
+ dataset: DatasetManager = Dataset.COHERE.manager(10_000_000)
138
149
  name: str = "Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 1%)"
139
150
  description: str = """This case tests the search performance of a vector database with a large dataset (<b>Cohere 10M vectors</b>, 768 dimensions) under a low filtering rate (<b>1% vectors</b>), at varying parallel levels.
140
151
  Results will show index building time, recall, and maximum QPS."""
152
+ load_timeout: float | int = config.LOAD_TIMEOUT_10M
153
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_10M
141
154
 
142
155
 
143
156
  class Performance1M1P(PerformanceCase):
144
157
  case_id: CaseType = CaseType.Performance1M1P
145
158
  filter_rate: float | int | None = 0.01
146
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.MEDIUM)
159
+ dataset: DatasetManager = Dataset.COHERE.manager(1_000_000)
147
160
  name: str = "Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 1%)"
148
161
  description: str = """This case tests the search performance of a vector database with a medium dataset (<b>Cohere 1M vectors</b>, 768 dimensions) under a low filtering rate (<b>1% vectors</b>), at varying parallel levels.
149
162
  Results will show index building time, recall, and maximum QPS."""
163
+ load_timeout: float | int = config.LOAD_TIMEOUT_1M
164
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_1M
150
165
 
151
166
 
152
167
  class Performance10M99P(PerformanceCase):
153
168
  case_id: CaseType = CaseType.Performance10M99P
154
169
  filter_rate: float | int | None = 0.99
155
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.LARGE)
170
+ dataset: DatasetManager = Dataset.COHERE.manager(10_000_000)
156
171
  name: str = "Filtering Search Performance Test (10M Dataset, 768 Dim, Filter 99%)"
157
172
  description: str = """This case tests the search performance of a vector database with a large dataset (<b>Cohere 10M vectors</b>, 768 dimensions) under a high filtering rate (<b>99% vectors</b>), at varying parallel levels.
158
173
  Results will show index building time, recall, and maximum QPS."""
174
+ load_timeout: float | int = config.LOAD_TIMEOUT_10M
175
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_10M
159
176
 
160
177
 
161
178
  class Performance1M99P(PerformanceCase):
162
179
  case_id: CaseType = CaseType.Performance1M99P
163
180
  filter_rate: float | int | None = 0.99
164
- dataset: ds.DataSet = ds.get(ds.Name.Cohere, ds.Label.MEDIUM)
181
+ dataset: DatasetManager = Dataset.COHERE.manager(1_000_000)
165
182
  name: str = "Filtering Search Performance Test (1M Dataset, 768 Dim, Filter 99%)"
166
183
  description: str = """This case tests the search performance of a vector database with a medium dataset (<b>Cohere 1M vectors</b>, 768 dimensions) under a high filtering rate (<b>99% vectors</b>), at varying parallel levels.
167
184
  Results will show index building time, recall, and maximum QPS."""
185
+ load_timeout: float | int = config.LOAD_TIMEOUT_1M
186
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_1M
168
187
 
169
188
 
170
189
 
171
190
  class Performance100M(PerformanceCase):
172
191
  case_id: CaseType = CaseType.Performance100M
173
192
  filter_rate: float | int | None = None
174
- dataset: ds.DataSet = ds.get(ds.Name.LAION, ds.Label.LARGE)
193
+ dataset: DatasetManager = Dataset.LAION.manager(100_000_000)
175
194
  name: str = "Search Performance Test (100M Dataset, 768 Dim)"
176
195
  description: str = """This case tests the search performance of a vector database with a large 100M dataset (<b>LAION 100M vectors</b>, 768 dimensions), at varying parallel levels.
177
196
  Results will show index building time, recall, and maximum QPS."""
197
+ load_timeout: float | int = config.LOAD_TIMEOUT_100M
198
+ optimize_timeout: float | int | None = config.OPTIMIZE_TIMEOUT_100M
178
199
 
179
200
 
180
201
  type2case = {
@@ -15,7 +15,7 @@ from .pinecone.pinecone import Pinecone
15
15
  from .weaviate_cloud.weaviate_cloud import WeaviateCloud
16
16
  from .qdrant_cloud.qdrant_cloud import QdrantCloud
17
17
  from .zilliz_cloud.zilliz_cloud import ZillizCloud
18
-
18
+ from .pgvector.pgvector import PgVector
19
19
 
20
20
  class DB(Enum):
21
21
  """Database types
@@ -35,6 +35,7 @@ class DB(Enum):
35
35
  ElasticCloud = "ElasticCloud"
36
36
  QdrantCloud = "QdrantCloud"
37
37
  WeaviateCloud = "WeaviateCloud"
38
+ PgVector = "PgVector"
38
39
 
39
40
 
40
41
  @property
@@ -49,8 +50,12 @@ db2client = {
49
50
  DB.ElasticCloud: ElasticCloud,
50
51
  DB.QdrantCloud: QdrantCloud,
51
52
  DB.Pinecone: Pinecone,
53
+ DB.PgVector: PgVector
52
54
  }
53
55
 
56
+ for db in DB:
57
+ assert issubclass(db.init_cls, VectorDB)
58
+
54
59
 
55
60
  __all__ = [
56
61
  "DB", "VectorDB", "DBConfig", "DBCaseConfig", "IndexType", "MetricType", "EmptyDBCaseConfig",