vectara-agentic 0.4.7__tar.gz → 0.4.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vectara-agentic might be problematic. Click here for more details.

Files changed (72) hide show
  1. {vectara_agentic-0.4.7/vectara_agentic.egg-info → vectara_agentic-0.4.9}/PKG-INFO +32 -32
  2. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/README.md +3 -3
  3. vectara_agentic-0.4.9/requirements.txt +44 -0
  4. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/benchmark_models.py +12 -12
  5. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_agent.py +4 -3
  6. vectara_agentic-0.4.9/tests/test_bedrock.py +170 -0
  7. vectara_agentic-0.4.9/tests/test_gemini.py +143 -0
  8. vectara_agentic-0.4.9/tests/test_groq.py +184 -0
  9. vectara_agentic-0.4.9/tests/test_openai.py +261 -0
  10. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_react_streaming.py +26 -2
  11. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/_version.py +1 -1
  12. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent.py +19 -30
  13. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/factory.py +11 -4
  14. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/prompts.py +64 -8
  15. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/serialization.py +3 -3
  16. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/streaming.py +174 -197
  17. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/utils/hallucination.py +33 -1
  18. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/db_tools.py +4 -0
  19. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/llm_utils.py +55 -2
  20. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/sub_query_workflow.py +31 -31
  21. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/tools.py +0 -2
  22. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/utils.py +35 -10
  23. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9/vectara_agentic.egg-info}/PKG-INFO +32 -32
  24. vectara_agentic-0.4.9/vectara_agentic.egg-info/requires.txt +44 -0
  25. vectara_agentic-0.4.7/requirements.txt +0 -44
  26. vectara_agentic-0.4.7/tests/test_bedrock.py +0 -69
  27. vectara_agentic-0.4.7/tests/test_gemini.py +0 -57
  28. vectara_agentic-0.4.7/tests/test_groq.py +0 -103
  29. vectara_agentic-0.4.7/tests/test_openai.py +0 -160
  30. vectara_agentic-0.4.7/vectara_agentic.egg-info/requires.txt +0 -44
  31. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/LICENSE +0 -0
  32. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/MANIFEST.in +0 -0
  33. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/setup.cfg +0 -0
  34. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/setup.py +0 -0
  35. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/__init__.py +0 -0
  36. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/conftest.py +0 -0
  37. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/endpoint.py +0 -0
  38. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/run_tests.py +0 -0
  39. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_agent_fallback_memory.py +0 -0
  40. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_agent_memory_consistency.py +0 -0
  41. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_agent_type.py +0 -0
  42. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_api_endpoint.py +0 -0
  43. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_fallback.py +0 -0
  44. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_private_llm.py +0 -0
  45. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_react_error_handling.py +0 -0
  46. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_react_memory.py +0 -0
  47. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_react_workflow_events.py +0 -0
  48. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_return_direct.py +0 -0
  49. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_serialization.py +0 -0
  50. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_session_memory.py +0 -0
  51. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_streaming.py +0 -0
  52. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_together.py +0 -0
  53. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_tools.py +0 -0
  54. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_vectara_llms.py +0 -0
  55. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_vhc.py +0 -0
  56. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/tests/test_workflow.py +0 -0
  57. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/__init__.py +0 -0
  58. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/_callback.py +0 -0
  59. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/_observability.py +0 -0
  60. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_config.py +0 -0
  61. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/__init__.py +0 -0
  62. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/utils/__init__.py +0 -0
  63. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/utils/logging.py +0 -0
  64. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/utils/schemas.py +0 -0
  65. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_core/utils/tools.py +0 -0
  66. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/agent_endpoint.py +0 -0
  67. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/tool_utils.py +0 -0
  68. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/tools_catalog.py +0 -0
  69. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic/types.py +0 -0
  70. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic.egg-info/SOURCES.txt +0 -0
  71. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic.egg-info/dependency_links.txt +0 -0
  72. {vectara_agentic-0.4.7 → vectara_agentic-0.4.9}/vectara_agentic.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectara_agentic
3
- Version: 0.4.7
3
+ Version: 0.4.9
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
@@ -16,34 +16,34 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
16
16
  Requires-Python: >=3.10
17
17
  Description-Content-Type: text/markdown
18
18
  License-File: LICENSE
19
- Requires-Dist: llama-index==0.13.6
20
- Requires-Dist: llama-index-core==0.13.6
21
- Requires-Dist: llama-index-workflows==1.3.0
22
- Requires-Dist: llama-index-cli==0.5.0
23
- Requires-Dist: llama-index-indices-managed-vectara==0.5.0
24
- Requires-Dist: llama-index-llms-openai==0.5.4
25
- Requires-Dist: llama-index-llms-openai-like==0.5.0
26
- Requires-Dist: llama-index-llms-anthropic==0.8.6
27
- Requires-Dist: llama-index-llms-together==0.4.0
28
- Requires-Dist: llama-index-llms-groq==0.4.0
29
- Requires-Dist: llama-index-llms-cohere==0.6.0
30
- Requires-Dist: llama-index-llms-google-genai==0.3.0
31
- Requires-Dist: google_genai>=1.31.0
32
- Requires-Dist: llama-index-llms-bedrock-converse==0.9.0
33
- Requires-Dist: llama-index-tools-yahoo-finance==0.4.0
34
- Requires-Dist: llama-index-tools-arxiv==0.4.0
35
- Requires-Dist: llama-index-tools-database==0.4.0
36
- Requires-Dist: llama-index-tools-google==0.6.0
37
- Requires-Dist: llama-index-tools-tavily_research==0.4.0
38
- Requires-Dist: llama_index.tools.brave_search==0.4.0
39
- Requires-Dist: llama-index-tools-neo4j==0.4.0
40
- Requires-Dist: llama-index-tools-waii==0.4.0
41
- Requires-Dist: llama-index-graph-stores-kuzu==0.9.0
42
- Requires-Dist: llama-index-tools-salesforce==0.4.0
43
- Requires-Dist: llama-index-tools-slack==0.4.0
44
- Requires-Dist: llama-index-tools-exa==0.4.0
45
- Requires-Dist: llama-index-tools-wikipedia==0.4.0
46
- Requires-Dist: llama-index-tools-bing-search==0.4.0
19
+ Requires-Dist: llama-index==0.14.3
20
+ Requires-Dist: llama-index-core==0.14.3
21
+ Requires-Dist: llama-index-workflows==2.5.0
22
+ Requires-Dist: llama-index-cli==0.5.1
23
+ Requires-Dist: llama-index-indices-managed-vectara==0.5.1
24
+ Requires-Dist: llama-index-llms-openai==0.5.6
25
+ Requires-Dist: llama-index-llms-openai-like==0.5.1
26
+ Requires-Dist: llama-index-llms-anthropic==0.9.3
27
+ Requires-Dist: llama-index-llms-together==0.4.1
28
+ Requires-Dist: llama-index-llms-groq==0.4.1
29
+ Requires-Dist: llama-index-llms-cohere==0.6.1
30
+ Requires-Dist: llama-index-llms-google-genai==0.5.1
31
+ Requires-Dist: google_genai==1.39.1
32
+ Requires-Dist: llama-index-llms-bedrock-converse==0.9.5
33
+ Requires-Dist: llama-index-tools-yahoo-finance==0.4.1
34
+ Requires-Dist: llama-index-tools-arxiv==0.4.1
35
+ Requires-Dist: llama-index-tools-database==0.4.1
36
+ Requires-Dist: llama-index-tools-google==0.6.2
37
+ Requires-Dist: llama-index-tools-tavily_research==0.4.1
38
+ Requires-Dist: llama_index.tools.brave_search==0.4.1
39
+ Requires-Dist: llama-index-tools-neo4j==0.4.1
40
+ Requires-Dist: llama-index-tools-waii==0.4.1
41
+ Requires-Dist: llama-index-graph-stores-kuzu==0.9.1
42
+ Requires-Dist: llama-index-tools-salesforce==0.4.1
43
+ Requires-Dist: llama-index-tools-slack==0.4.1
44
+ Requires-Dist: llama-index-tools-exa==0.4.1
45
+ Requires-Dist: llama-index-tools-wikipedia==0.4.1
46
+ Requires-Dist: llama-index-tools-bing-search==0.4.1
47
47
  Requires-Dist: openai>=1.99.3
48
48
  Requires-Dist: tavily-python>=0.7.10
49
49
  Requires-Dist: exa-py>=1.14.20
@@ -736,13 +736,13 @@ If you want to use `agent`, `tools`, `llm` or `verbose` in other events (that ar
736
736
  the `Context` of the Workflow as follows:
737
737
 
738
738
  ```python
739
- await ctx.set("agent", ev.agent)
739
+ await ctx.store.set("agent", ev.agent)
740
740
  ```
741
741
 
742
742
  and then in any other event you can pull that agent object with
743
743
 
744
744
  ```python
745
- agent = await ctx.get("agent")
745
+ agent = await ctx.store.get("agent")
746
746
  ```
747
747
 
748
748
  Similarly you can reuse the `llm`, `tools` or `verbose` arguments within other nodes in the workflow.
@@ -886,7 +886,7 @@ The `AgentConfig` object may include the following items:
886
886
  - `main_llm_provider` and `tool_llm_provider`: the LLM provider for main agent and for the tools. Valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` (default: `OPENAI`).
887
887
 
888
888
  > **Note:** Fireworks AI support has been removed. If you were using Fireworks, please migrate to one of the supported providers listed above.
889
- - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash-lite).
889
+ - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Anthropic uses claude-sonnet-4-5, Gemini uses models/gemini-2.5-flash, Together.AI uses deepseek-ai/DeepSeek-V3, GROQ uses openai/gpt-oss-20b, Bedrock uses us.anthropic.claude-sonnet-4-20250514-v1:0, Cohere uses command-a-03-2025).
890
890
  - `observer`: the observer type; should be `ARIZE_PHOENIX` or if undefined no observation framework will be used.
891
891
  - `endpoint_api_key`: a secret key if using the API endpoint option (defaults to `dev-api-key`)
892
892
 
@@ -661,13 +661,13 @@ If you want to use `agent`, `tools`, `llm` or `verbose` in other events (that ar
661
661
  the `Context` of the Workflow as follows:
662
662
 
663
663
  ```python
664
- await ctx.set("agent", ev.agent)
664
+ await ctx.store.set("agent", ev.agent)
665
665
  ```
666
666
 
667
667
  and then in any other event you can pull that agent object with
668
668
 
669
669
  ```python
670
- agent = await ctx.get("agent")
670
+ agent = await ctx.store.get("agent")
671
671
  ```
672
672
 
673
673
  Similarly you can reuse the `llm`, `tools` or `verbose` arguments within other nodes in the workflow.
@@ -811,7 +811,7 @@ The `AgentConfig` object may include the following items:
811
811
  - `main_llm_provider` and `tool_llm_provider`: the LLM provider for main agent and for the tools. Valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` (default: `OPENAI`).
812
812
 
813
813
  > **Note:** Fireworks AI support has been removed. If you were using Fireworks, please migrate to one of the supported providers listed above.
814
- - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash-lite).
814
+ - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Anthropic uses claude-sonnet-4-5, Gemini uses models/gemini-2.5-flash, Together.AI uses deepseek-ai/DeepSeek-V3, GROQ uses openai/gpt-oss-20b, Bedrock uses us.anthropic.claude-sonnet-4-20250514-v1:0, Cohere uses command-a-03-2025).
815
815
  - `observer`: the observer type; should be `ARIZE_PHOENIX` or if undefined no observation framework will be used.
816
816
  - `endpoint_api_key`: a secret key if using the API endpoint option (defaults to `dev-api-key`)
817
817
 
@@ -0,0 +1,44 @@
1
+ llama-index==0.14.3
2
+ llama-index-core==0.14.3
3
+ llama-index-workflows==2.5.0
4
+ llama-index-cli==0.5.1
5
+ llama-index-indices-managed-vectara==0.5.1
6
+ llama-index-llms-openai==0.5.6
7
+ llama-index-llms-openai-like==0.5.1
8
+ llama-index-llms-anthropic==0.9.3
9
+ llama-index-llms-together==0.4.1
10
+ llama-index-llms-groq==0.4.1
11
+ llama-index-llms-cohere==0.6.1
12
+ llama-index-llms-google-genai==0.5.1
13
+ google_genai==1.39.1
14
+ llama-index-llms-bedrock-converse==0.9.5
15
+ llama-index-tools-yahoo-finance==0.4.1
16
+ llama-index-tools-arxiv==0.4.1
17
+ llama-index-tools-database==0.4.1
18
+ llama-index-tools-google==0.6.2
19
+ llama-index-tools-tavily_research==0.4.1
20
+ llama_index.tools.brave_search==0.4.1
21
+ llama-index-tools-neo4j==0.4.1
22
+ llama-index-tools-waii==0.4.1
23
+ llama-index-graph-stores-kuzu==0.9.1
24
+ llama-index-tools-salesforce==0.4.1
25
+ llama-index-tools-slack==0.4.1
26
+ llama-index-tools-exa==0.4.1
27
+ llama-index-tools-wikipedia==0.4.1
28
+ llama-index-tools-bing-search==0.4.1
29
+ openai>=1.99.3
30
+ tavily-python>=0.7.10
31
+ exa-py>=1.14.20
32
+ openinference-instrumentation-llama-index==4.3.4
33
+ opentelemetry-proto>=1.31.0
34
+ arize-phoenix==10.9.1
35
+ arize-phoenix-otel==0.10.3
36
+ protobuf==5.29.5
37
+ tokenizers>=0.20
38
+ pydantic>=2.11.5
39
+ pandas==2.2.3
40
+ retrying==1.4.2
41
+ python-dotenv==1.0.1
42
+ cloudpickle>=3.1.1
43
+ httpx==0.28.1
44
+ commonmark==0.9.1
@@ -68,7 +68,7 @@ def validate_api_keys(models_to_test: List[Dict]) -> None:
68
68
  missing_keys.append(key)
69
69
 
70
70
  if missing_keys:
71
- print("ERROR: Missing required API keys for benchmark execution:")
71
+ print("ERROR: Missing required API keys for benchmark execution:")
72
72
  print()
73
73
  for key in sorted(missing_keys):
74
74
  print(f" • {key}")
@@ -83,7 +83,7 @@ def validate_api_keys(models_to_test: List[Dict]) -> None:
83
83
 
84
84
  sys.exit(1)
85
85
 
86
- print("All required API keys are present")
86
+ print("All required API keys are present")
87
87
  print(f"Found API keys for {len(required_keys)} required environment variables")
88
88
 
89
89
 
@@ -135,7 +135,7 @@ class ModelBenchmark:
135
135
  {"provider": ModelProvider.OPENAI, "model": "gpt-5-mini"},
136
136
  {"provider": ModelProvider.OPENAI, "model": "gpt-4o-mini"},
137
137
  {"provider": ModelProvider.OPENAI, "model": "gpt-4.1-mini"},
138
- {"provider": ModelProvider.ANTHROPIC, "model": "claude-sonnet-4-20250514"},
138
+ {"provider": ModelProvider.ANTHROPIC, "model": "claude-sonnet-4-5"},
139
139
  {"provider": ModelProvider.TOGETHER, "model": "deepseek-ai/DeepSeek-V3"},
140
140
  {"provider": ModelProvider.GROQ, "model": "openai/gpt-oss-20b"},
141
141
  {"provider": ModelProvider.GEMINI, "model": "models/gemini-2.5-flash-lite"},
@@ -817,11 +817,11 @@ class ModelBenchmark:
817
817
  observability_setup = setup_observer(dummy_config, verbose=True)
818
818
  if observability_setup:
819
819
  print(
820
- "Arize Phoenix observability enabled - LLM calls will be traced\n"
820
+ "Arize Phoenix observability enabled - LLM calls will be traced\n"
821
821
  )
822
822
  _observability_initialized = True
823
823
  else:
824
- print("⚠️ Arize Phoenix observability setup failed\n")
824
+ print("Arize Phoenix observability setup failed\n")
825
825
 
826
826
  # Create semaphore to limit concurrent model testing
827
827
  model_semaphore = asyncio.Semaphore(self.max_concurrent_models)
@@ -835,7 +835,7 @@ class ModelBenchmark:
835
835
  tasks.append(task)
836
836
 
837
837
  # Execute all model benchmarks in parallel
838
- print("🚀 Starting parallel benchmark execution...\n")
838
+ print("Starting parallel benchmark execution...\n")
839
839
  await asyncio.gather(*tasks, return_exceptions=True)
840
840
 
841
841
  async def _run_model_benchmark(
@@ -857,9 +857,9 @@ class ModelBenchmark:
857
857
  provider, model_name, test_name, test_config
858
858
  )
859
859
  except Exception as e:
860
- print(f"Error in {model_name} - {test_name}: {e}")
860
+ print(f"Error in {model_name} - {test_name}: {e}")
861
861
 
862
- print(f"Completed: {provider.value} - {model_name}")
862
+ print(f"Completed: {provider.value} - {model_name}")
863
863
 
864
864
  async def _run_scenario_benchmark(
865
865
  self,
@@ -892,18 +892,18 @@ class ModelBenchmark:
892
892
 
893
893
  if result.error:
894
894
  print(
895
- f"{model_name}/{test_name} Iteration {iteration_num}: {result.error}"
895
+ f"{model_name}/{test_name} Iteration {iteration_num}: {result.error}"
896
896
  )
897
897
  else:
898
898
  print(
899
- f"{model_name}/{test_name} Iteration {iteration_num}: "
899
+ f"{model_name}/{test_name} Iteration {iteration_num}: "
900
900
  f"{result.total_response_time:.2f}s, "
901
901
  f"first token: {result.first_token_latency:.2f}s, "
902
902
  f"{result.tokens_per_second:.1f} chars/sec"
903
903
  )
904
904
 
905
905
  except Exception as e:
906
- print(f"{model_name}/{test_name} Iteration {iteration_num}: {e}")
906
+ print(f"{model_name}/{test_name} Iteration {iteration_num}: {e}")
907
907
  # Create error result
908
908
  error_result = BenchmarkResult(
909
909
  model_name=model_name,
@@ -929,7 +929,7 @@ class ModelBenchmark:
929
929
  successful = len([r for r in iteration_results if r.error is None])
930
930
  success_rate = (successful / len(iteration_results)) * 100
931
931
  print(
932
- f" 📊 {model_name}/{test_name} complete: {successful}/{len(iteration_results)} successful ({success_rate:.1f}%)"
932
+ f"{model_name}/{test_name} complete: {successful}/{len(iteration_results)} successful ({success_rate:.1f}%)"
933
933
  )
934
934
 
935
935
  return iteration_results
@@ -13,7 +13,6 @@ from vectara_agentic.agent_config import AgentConfig
13
13
  from vectara_agentic.types import ModelProvider, ObserverType
14
14
  from vectara_agentic.tools import ToolsFactory
15
15
 
16
- from vectara_agentic.agent_core.prompts import GENERAL_INSTRUCTIONS
17
16
  from conftest import mult, STANDARD_TEST_TOPIC, STANDARD_TEST_INSTRUCTIONS
18
17
 
19
18
 
@@ -54,9 +53,11 @@ class TestAgentPackage(unittest.TestCase):
54
53
  + date.today().strftime("%A, %B %d, %Y")
55
54
  + " with Always do as your mother tells you!"
56
55
  )
56
+ # Test format_prompt with dummy instructions since we're only testing template substitution
57
+ dummy_instructions = "Test instructions"
57
58
  self.assertEqual(
58
59
  format_prompt(
59
- prompt_template, GENERAL_INSTRUCTIONS, topic, custom_instructions
60
+ prompt_template, dummy_instructions, topic, custom_instructions
60
61
  ),
61
62
  expected_output,
62
63
  )
@@ -83,7 +84,7 @@ class TestAgentPackage(unittest.TestCase):
83
84
  config = AgentConfig(
84
85
  agent_type=AgentType.REACT,
85
86
  main_llm_provider=ModelProvider.ANTHROPIC,
86
- main_llm_model_name="claude-sonnet-4-20250514",
87
+ main_llm_model_name="claude-sonnet-4-5",
87
88
  tool_llm_provider=ModelProvider.TOGETHER,
88
89
  tool_llm_model_name="moonshotai/Kimi-K2-Instruct",
89
90
  observer=ObserverType.ARIZE_PHOENIX,
@@ -0,0 +1,170 @@
1
+ # Suppress external dependency warnings before any other imports
2
+ import warnings
3
+
4
+ warnings.simplefilter("ignore", DeprecationWarning)
5
+
6
+ import unittest
7
+ import threading
8
+
9
+ from vectara_agentic.agent import Agent
10
+ from vectara_agentic.tools import ToolsFactory
11
+ from vectara_agentic.tools_catalog import ToolsCatalog
12
+
13
+ import nest_asyncio
14
+
15
+ nest_asyncio.apply()
16
+
17
+ from conftest import (
18
+ mult,
19
+ add,
20
+ fc_config_bedrock,
21
+ STANDARD_TEST_TOPIC,
22
+ STANDARD_TEST_INSTRUCTIONS,
23
+ )
24
+
25
+ ARIZE_LOCK = threading.Lock()
26
+
27
+
28
+ class TestBedrock(unittest.IsolatedAsyncioTestCase):
29
+
30
+ async def test_multiturn(self):
31
+ with ARIZE_LOCK:
32
+ tools = [ToolsFactory().create_tool(mult)]
33
+ agent = Agent(
34
+ tools=tools,
35
+ topic=STANDARD_TEST_TOPIC,
36
+ custom_instructions=STANDARD_TEST_INSTRUCTIONS,
37
+ agent_config=fc_config_bedrock,
38
+ )
39
+
40
+ # First calculation: 5 * 10 = 50
41
+ stream1 = await agent.astream_chat(
42
+ "What is 5 times 10. Only give the answer, nothing else"
43
+ )
44
+ # Consume the stream
45
+ async for chunk in stream1.async_response_gen():
46
+ pass
47
+ _ = await stream1.aget_response()
48
+
49
+ # Second calculation: 3 * 7 = 21
50
+ stream2 = await agent.astream_chat(
51
+ "what is 3 times 7. Only give the answer, nothing else"
52
+ )
53
+ # Consume the stream
54
+ async for chunk in stream2.async_response_gen():
55
+ pass
56
+ _ = await stream2.aget_response()
57
+
58
+ # Final calculation: 50 * 21 = 1050
59
+ stream3 = await agent.astream_chat(
60
+ "multiply the results of the last two questions. Output only the answer."
61
+ )
62
+ # Consume the stream
63
+ async for chunk in stream3.async_response_gen():
64
+ pass
65
+ response3 = await stream3.aget_response()
66
+
67
+ self.assertEqual(response3.response, "1050")
68
+
69
+ async def test_claude_sonnet_4_multi_tool_chain(self):
70
+ """Test Claude Sonnet 4 with complex multi-step reasoning chain using multiple tools via Bedrock."""
71
+ with ARIZE_LOCK:
72
+ # Use Bedrock config (Claude Sonnet 4)
73
+ tools_catalog = ToolsCatalog(fc_config_bedrock)
74
+ tools = [
75
+ ToolsFactory().create_tool(mult),
76
+ ToolsFactory().create_tool(add),
77
+ ToolsFactory().create_tool(tools_catalog.summarize_text),
78
+ ToolsFactory().create_tool(tools_catalog.rephrase_text),
79
+ ]
80
+
81
+ agent = Agent(
82
+ agent_config=fc_config_bedrock,
83
+ tools=tools,
84
+ topic=STANDARD_TEST_TOPIC,
85
+ custom_instructions="You are a mathematical reasoning agent that explains your work step by step.",
86
+ )
87
+
88
+ # Complex multi-step reasoning task
89
+ complex_query = (
90
+ "Perform this calculation step by step: "
91
+ "First multiply 5 by 9, then add 13 to that result, "
92
+ "then multiply the new result by 2. "
93
+ "After getting the final number, summarize the entire mathematical process "
94
+ "with expertise in 'mathematics education', "
95
+ "then rephrase that summary as a 10-year-old would explain it."
96
+ )
97
+
98
+ print("\nStarting Claude Sonnet 4 multi-tool chain test (Bedrock)")
99
+ print(f"Query: {complex_query}")
100
+ print("Streaming response:\n" + "="*50)
101
+
102
+ stream = await agent.astream_chat(complex_query)
103
+
104
+ # Capture streaming deltas and tool calls
105
+ streaming_deltas = []
106
+ tool_calls_made = []
107
+ full_response = ""
108
+
109
+ async for chunk in stream.async_response_gen():
110
+ if chunk and chunk.strip():
111
+ streaming_deltas.append(chunk)
112
+ full_response += chunk
113
+ # Display each streaming delta
114
+ print(f"Delta: {repr(chunk)}")
115
+
116
+ # Track tool calls in the stream
117
+ if "mult" in chunk.lower():
118
+ if "mult" not in [call["tool"] for call in tool_calls_made]:
119
+ tool_calls_made.append({"tool": "mult", "order": len(tool_calls_made) + 1})
120
+ print(f"Tool call detected: mult (#{len(tool_calls_made)})")
121
+ if "add" in chunk.lower():
122
+ if "add" not in [call["tool"] for call in tool_calls_made]:
123
+ tool_calls_made.append({"tool": "add", "order": len(tool_calls_made) + 1})
124
+ print(f"Tool call detected: add (#{len(tool_calls_made)})")
125
+ if "summarize" in chunk.lower():
126
+ if "summarize_text" not in [call["tool"] for call in tool_calls_made]:
127
+ tool_calls_made.append({"tool": "summarize_text", "order": len(tool_calls_made) + 1})
128
+ print(f"Tool call detected: summarize_text (#{len(tool_calls_made)})")
129
+ if "rephrase" in chunk.lower():
130
+ if "rephrase_text" not in [call["tool"] for call in tool_calls_made]:
131
+ tool_calls_made.append({"tool": "rephrase_text", "order": len(tool_calls_made) + 1})
132
+ print(f"Tool call detected: rephrase_text (#{len(tool_calls_made)})")
133
+
134
+ response = await stream.aget_response()
135
+
136
+ print("="*50)
137
+ print(f"Streaming completed. Total deltas: {len(streaming_deltas)}")
138
+ print(f"Tool calls made: {[call['tool'] for call in tool_calls_made]}")
139
+ print(f"📄 Final response length: {len(response.response)} chars")
140
+ print(f"Final response: {response.response}")
141
+
142
+ # Validate tool usage sequence
143
+ tools_used = [call["tool"] for call in tool_calls_made]
144
+ print(f"🧪 Tools used in order: {tools_used}")
145
+
146
+ # Check that at least multiplication happened (basic requirement)
147
+ self.assertIn("mult", tools_used, f"Expected multiplication tool to be used. Tools used: {tools_used}")
148
+
149
+ # Check for mathematical results in the full response or streaming deltas
150
+ # Expected: 5*9=45, 45+13=58, 58*2=116
151
+ expected_intermediate_results = ["45", "58", "116"]
152
+ all_text = (full_response + " " + response.response).lower()
153
+ math_results_found = sum(1 for result in expected_intermediate_results
154
+ if result in all_text)
155
+
156
+ print(f"🔢 Mathematical results found: {math_results_found}/3 expected")
157
+ print(f"Full text searched: {all_text[:200]}...")
158
+
159
+ # More lenient assertion - just check that some mathematical progress was made
160
+ self.assertGreaterEqual(math_results_found, 1,
161
+ f"Expected at least 1 mathematical result. Found {math_results_found}. "
162
+ f"Full text: {all_text}")
163
+
164
+ # Verify that streaming actually produced content
165
+ self.assertGreater(len(streaming_deltas), 0, "Expected streaming deltas to be produced")
166
+ self.assertGreater(len(response.response.strip()), 0, "Expected non-empty final response")
167
+
168
+
169
+ if __name__ == "__main__":
170
+ unittest.main()
@@ -0,0 +1,143 @@
1
+ # Suppress external dependency warnings before any other imports
2
+ import warnings
3
+
4
+ warnings.simplefilter("ignore", DeprecationWarning)
5
+
6
+ import unittest
7
+ import asyncio
8
+ import gc
9
+
10
+ from vectara_agentic.agent import Agent
11
+ from vectara_agentic.tools import ToolsFactory
12
+ from vectara_agentic.tools_catalog import ToolsCatalog
13
+ from vectara_agentic.llm_utils import clear_llm_cache
14
+
15
+
16
+ import nest_asyncio
17
+
18
+ nest_asyncio.apply()
19
+
20
+ from tests.conftest import (
21
+ mult,
22
+ add,
23
+ fc_config_gemini,
24
+ STANDARD_TEST_TOPIC,
25
+ STANDARD_TEST_INSTRUCTIONS,
26
+ )
27
+
28
+
29
+ class TestGEMINI(unittest.IsolatedAsyncioTestCase):
30
+ def setUp(self):
31
+ """Set up test fixtures."""
32
+ super().setUp()
33
+ # Clear any cached LLM instances before each test
34
+ clear_llm_cache()
35
+ # Force garbage collection to clean up any lingering resources
36
+ gc.collect()
37
+
38
+ async def asyncTearDown(self):
39
+ """Clean up after each test - async version."""
40
+ await super().asyncTearDown()
41
+ # Clear cached LLM instances after each test
42
+ clear_llm_cache()
43
+ # Force garbage collection
44
+ gc.collect()
45
+ # Small delay to allow cleanup
46
+ await asyncio.sleep(0.01)
47
+
48
+ async def test_gemini(self):
49
+ tools = [ToolsFactory().create_tool(mult)]
50
+
51
+ agent = Agent(
52
+ agent_config=fc_config_gemini,
53
+ tools=tools,
54
+ topic=STANDARD_TEST_TOPIC,
55
+ custom_instructions=STANDARD_TEST_INSTRUCTIONS,
56
+ )
57
+ _ = await agent.achat("What is 5 times 10. Only give the answer, nothing else")
58
+ _ = await agent.achat("what is 3 times 7. Only give the answer, nothing else")
59
+ res = await agent.achat(
60
+ "what is the result of multiplying the results of the last two multiplications. Only give the answer, nothing else."
61
+ )
62
+ self.assertIn("1050", res.response)
63
+
64
+ async def test_gemini_single_prompt(self):
65
+ tools = [ToolsFactory().create_tool(mult)]
66
+
67
+ agent = Agent(
68
+ agent_config=fc_config_gemini,
69
+ tools=tools,
70
+ topic=STANDARD_TEST_TOPIC,
71
+ custom_instructions=STANDARD_TEST_INSTRUCTIONS,
72
+ )
73
+ res = await agent.achat(
74
+ "First, multiply 5 by 10. Then, multiply 3 by 7. Finally, multiply the results of the first two calculations."
75
+ )
76
+ self.assertIn("1050", res.response)
77
+
78
+ async def test_gemini_25_flash_multi_tool_chain(self):
79
+ """Test Gemini 2.5 Flash with complex multi-step reasoning chain using multiple tools."""
80
+ # Use Gemini config (Gemini 2.5 Flash)
81
+ tools_catalog = ToolsCatalog(fc_config_gemini)
82
+ tools = [
83
+ ToolsFactory().create_tool(mult),
84
+ ToolsFactory().create_tool(add),
85
+ ToolsFactory().create_tool(tools_catalog.summarize_text),
86
+ ToolsFactory().create_tool(tools_catalog.rephrase_text),
87
+ ]
88
+
89
+ agent = Agent(
90
+ agent_config=fc_config_gemini,
91
+ tools=tools,
92
+ topic=STANDARD_TEST_TOPIC,
93
+ custom_instructions="You are a mathematical reasoning agent that explains your work step by step.",
94
+ )
95
+
96
+ # Complex multi-step reasoning task
97
+ complex_query = (
98
+ "Perform this calculation step by step: "
99
+ "First multiply 3 by 8, then add 14 to that result, "
100
+ "then multiply the new result by 3. "
101
+ "After getting the final number, create a text description of the entire mathematical process "
102
+ "(e.g., 'First I multiplied 3 by 8 to get 24, then added 14 to get 38, then multiplied by 3 to get 114'). "
103
+ "Then use the summarize_text tool to summarize that text description with expertise in 'mathematics education'. "
104
+ "Finally, use the rephrase_text tool to rephrase that summary as a 10-year-old would explain it."
105
+ )
106
+
107
+ print("\nStarting Gemini 2.5 Flash multi-tool chain test")
108
+ print(f"Query: {complex_query}")
109
+
110
+ # Note: Gemini tests now use async chat
111
+ response = await agent.achat(complex_query)
112
+
113
+ print(f"Final response: {response.response}")
114
+ print(f"📄 Final response length: {len(response.response)} chars")
115
+
116
+ # Check for mathematical results in the response
117
+ # Expected: 3*8=24, 24+14=38, 38*3=114
118
+ expected_intermediate_results = ["24", "38", "114"]
119
+ response_text = response.response.lower()
120
+ math_results_found = sum(1 for result in expected_intermediate_results
121
+ if result in response_text)
122
+
123
+ print(f"Mathematical results found: {math_results_found}/3 expected")
124
+ print(f"Response text searched: {response_text[:200]}...")
125
+
126
+ # More lenient assertion - just check that some mathematical progress was made
127
+ self.assertGreaterEqual(math_results_found, 1,
128
+ f"Expected at least 1 mathematical result. Found {math_results_found}. "
129
+ f"Response: {response.response}")
130
+
131
+ # Verify response has content and mentions math concepts
132
+ self.assertGreater(len(response.response.strip()), 50, "Expected substantial response content")
133
+
134
+ # Check for indications of multi-tool usage (math, summary, or explanation content)
135
+ multi_tool_indicators = ["calculate", "multipl", "add", "summary", "explain", "mathematical", "process"]
136
+ indicators_found = sum(1 for indicator in multi_tool_indicators
137
+ if indicator in response_text)
138
+ self.assertGreaterEqual(indicators_found, 2,
139
+ f"Expected multiple tool usage indicators. Found {indicators_found}: {response.response}")
140
+
141
+
142
+ if __name__ == "__main__":
143
+ unittest.main()