vectara-agentic 0.1.3__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vectara-agentic might be problematic. Click here for more details.

Files changed (22) hide show
  1. {vectara_agentic-0.1.3/vectara_agentic.egg-info → vectara_agentic-0.1.4}/PKG-INFO +5 -7
  2. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/README.md +4 -5
  3. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/setup.py +1 -2
  4. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4/vectara_agentic.egg-info}/PKG-INFO +5 -7
  5. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/LICENSE +0 -0
  6. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/MANIFEST.in +0 -0
  7. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/requirements.txt +0 -0
  8. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/setup.cfg +0 -0
  9. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/tests/test_agent.py +0 -0
  10. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/tests/test_tools.py +0 -0
  11. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/__init__.py +0 -0
  12. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/_callback.py +0 -0
  13. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/_prompts.py +0 -0
  14. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/agent.py +0 -0
  15. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/tools.py +0 -0
  16. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/tools_catalog.py +0 -0
  17. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/types.py +0 -0
  18. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic/utils.py +0 -0
  19. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic.egg-info/SOURCES.txt +0 -0
  20. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic.egg-info/dependency_links.txt +0 -0
  21. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic.egg-info/requires.txt +0 -0
  22. {vectara_agentic-0.1.3 → vectara_agentic-0.1.4}/vectara_agentic.egg-info/top_level.txt +0 -0
@@ -1,11 +1,10 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectara_agentic
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
7
7
  Author-email: ofer@vectara.com
8
- License: Apache-2.0
9
8
  Project-URL: Documentation, https://vectara.github.io/vectara-agentic-docs/
10
9
  Keywords: LLM,NLP,RAG,Agentic-RAG
11
10
  Classifier: Programming Language :: Python :: 3
@@ -48,7 +47,7 @@ Requires-Dist: python-dotenv==1.0.1
48
47
  [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/GFb8gMz6UH)
49
48
 
50
49
 
51
- The idea of LLM-based agents it to use the LLM for building sophisticated AI assistants:
50
+ The idea of LLM-based agents is to use the LLM for building sophisticated AI assistants:
52
51
  - The LLM is used for reasoning and coming up with a game-plan for how to respond to the user query.
53
52
  - There are 1 or more "tools" provided to the agent. These tools can be used by the LLM to execute its plan.
54
53
 
@@ -67,7 +66,7 @@ The idea of LLM-based agents it to use the LLM for building sophisticated AI ass
67
66
 
68
67
  ### Install vectara-agentic
69
68
 
70
- - `python -m pip install vectara-agentic`
69
+ - `pip install vectara-agentic`
71
70
 
72
71
  ### Create your AI assistant
73
72
 
@@ -82,7 +81,7 @@ vec_factory = VectaraToolFactory(vectara_api_key=os.environ['VECTARA_API_KEY'],
82
81
  vectara_customer_id=os.environ['VECTARA_CUSTOMER_ID'],
83
82
  vectara_corpus_id=os.environ['VECTARA_CORPUS_ID'])
84
83
  ```
85
- The tools factory has a useful helper function called `create_rag_tool` which automates the creation of a
84
+ The Vectara tool factory has a useful helper function called `create_rag_tool` which automates the creation of a
86
85
  tool to query Vectara RAG.
87
86
 
88
87
  For example if my Vectara corpus includes financial information from company
@@ -112,8 +111,7 @@ this tool in the most effective way.
112
111
  The `tool_filter_template` provides the template filtering expression the tool should use when calling Vectara.
113
112
 
114
113
  You can of course create more than one Vectara tool; tools may point at different corpora or may have different parameters for search
115
- or generation. Remember though to think about your tools wisely and from the agent point of view - at the end of the day they are just tools
116
- in the service of the agent, so should be differentiated.
114
+ or generation.
117
115
 
118
116
  #### Step 2: Create Other Tools, as needed
119
117
 
@@ -7,7 +7,7 @@
7
7
  [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/GFb8gMz6UH)
8
8
 
9
9
 
10
- The idea of LLM-based agents it to use the LLM for building sophisticated AI assistants:
10
+ The idea of LLM-based agents is to use the LLM for building sophisticated AI assistants:
11
11
  - The LLM is used for reasoning and coming up with a game-plan for how to respond to the user query.
12
12
  - There are 1 or more "tools" provided to the agent. These tools can be used by the LLM to execute its plan.
13
13
 
@@ -26,7 +26,7 @@ The idea of LLM-based agents it to use the LLM for building sophisticated AI ass
26
26
 
27
27
  ### Install vectara-agentic
28
28
 
29
- - `python -m pip install vectara-agentic`
29
+ - `pip install vectara-agentic`
30
30
 
31
31
  ### Create your AI assistant
32
32
 
@@ -41,7 +41,7 @@ vec_factory = VectaraToolFactory(vectara_api_key=os.environ['VECTARA_API_KEY'],
41
41
  vectara_customer_id=os.environ['VECTARA_CUSTOMER_ID'],
42
42
  vectara_corpus_id=os.environ['VECTARA_CORPUS_ID'])
43
43
  ```
44
- The tools factory has a useful helper function called `create_rag_tool` which automates the creation of a
44
+ The Vectara tool factory has a useful helper function called `create_rag_tool` which automates the creation of a
45
45
  tool to query Vectara RAG.
46
46
 
47
47
  For example if my Vectara corpus includes financial information from company
@@ -71,8 +71,7 @@ this tool in the most effective way.
71
71
  The `tool_filter_template` provides the template filtering expression the tool should use when calling Vectara.
72
72
 
73
73
  You can of course create more than one Vectara tool; tools may point at different corpora or may have different parameters for search
74
- or generation. Remember though to think about your tools wisely and from the agent point of view - at the end of the day they are just tools
75
- in the service of the agent, so should be differentiated.
74
+ or generation.
76
75
 
77
76
  #### Step 2: Create Other Tools, as needed
78
77
 
@@ -8,8 +8,7 @@ def read_requirements():
8
8
 
9
9
  setup(
10
10
  name="vectara_agentic",
11
- version="0.1.3",
12
- license="Apache-2.0",
11
+ version="0.1.4",
13
12
  author="Ofer Mendelevitch",
14
13
  author_email="ofer@vectara.com",
15
14
  description="A Python package for creating AI Assistants and AI Agents with Vectara",
@@ -1,11 +1,10 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectara_agentic
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
7
7
  Author-email: ofer@vectara.com
8
- License: Apache-2.0
9
8
  Project-URL: Documentation, https://vectara.github.io/vectara-agentic-docs/
10
9
  Keywords: LLM,NLP,RAG,Agentic-RAG
11
10
  Classifier: Programming Language :: Python :: 3
@@ -48,7 +47,7 @@ Requires-Dist: python-dotenv==1.0.1
48
47
  [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/GFb8gMz6UH)
49
48
 
50
49
 
51
- The idea of LLM-based agents it to use the LLM for building sophisticated AI assistants:
50
+ The idea of LLM-based agents is to use the LLM for building sophisticated AI assistants:
52
51
  - The LLM is used for reasoning and coming up with a game-plan for how to respond to the user query.
53
52
  - There are 1 or more "tools" provided to the agent. These tools can be used by the LLM to execute its plan.
54
53
 
@@ -67,7 +66,7 @@ The idea of LLM-based agents it to use the LLM for building sophisticated AI ass
67
66
 
68
67
  ### Install vectara-agentic
69
68
 
70
- - `python -m pip install vectara-agentic`
69
+ - `pip install vectara-agentic`
71
70
 
72
71
  ### Create your AI assistant
73
72
 
@@ -82,7 +81,7 @@ vec_factory = VectaraToolFactory(vectara_api_key=os.environ['VECTARA_API_KEY'],
82
81
  vectara_customer_id=os.environ['VECTARA_CUSTOMER_ID'],
83
82
  vectara_corpus_id=os.environ['VECTARA_CORPUS_ID'])
84
83
  ```
85
- The tools factory has a useful helper function called `create_rag_tool` which automates the creation of a
84
+ The Vectara tool factory has a useful helper function called `create_rag_tool` which automates the creation of a
86
85
  tool to query Vectara RAG.
87
86
 
88
87
  For example if my Vectara corpus includes financial information from company
@@ -112,8 +111,7 @@ this tool in the most effective way.
112
111
  The `tool_filter_template` provides the template filtering expression the tool should use when calling Vectara.
113
112
 
114
113
  You can of course create more than one Vectara tool; tools may point at different corpora or may have different parameters for search
115
- or generation. Remember though to think about your tools wisely and from the agent point of view - at the end of the day they are just tools
116
- in the service of the agent, so should be differentiated.
114
+ or generation.
117
115
 
118
116
  #### Step 2: Create Other Tools, as needed
119
117
 
File without changes