vectara-agentic 0.1.24__tar.gz → 0.1.25__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. {vectara_agentic-0.1.24/vectara_agentic.egg-info → vectara_agentic-0.1.25}/PKG-INFO +100 -31
  2. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/README.md +87 -18
  3. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/requirements.txt +12 -12
  4. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/__init__.py +7 -0
  5. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/_prompts.py +3 -2
  6. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/_version.py +1 -1
  7. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/agent.py +107 -28
  8. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/agent_config.py +2 -2
  9. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/tools.py +266 -113
  10. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/tools_catalog.py +8 -1
  11. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/types.py +10 -0
  12. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/utils.py +4 -0
  13. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25/vectara_agentic.egg-info}/PKG-INFO +100 -31
  14. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic.egg-info/requires.txt +12 -12
  15. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/LICENSE +0 -0
  16. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/MANIFEST.in +0 -0
  17. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/setup.cfg +0 -0
  18. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/setup.py +0 -0
  19. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/tests/__init__.py +0 -0
  20. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/tests/test_agent.py +0 -0
  21. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/tests/test_tools.py +0 -0
  22. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/_callback.py +0 -0
  23. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/_observability.py +0 -0
  24. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/agent_endpoint.py +0 -0
  25. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic/db_tools.py +0 -0
  26. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic.egg-info/SOURCES.txt +0 -0
  27. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic.egg-info/dependency_links.txt +0 -0
  28. {vectara_agentic-0.1.24 → vectara_agentic-0.1.25}/vectara_agentic.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: vectara_agentic
3
- Version: 0.1.24
3
+ Version: 0.1.25
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
@@ -16,39 +16,39 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
16
16
  Requires-Python: >=3.10
17
17
  Description-Content-Type: text/markdown
18
18
  License-File: LICENSE
19
- Requires-Dist: llama-index==0.12.7
19
+ Requires-Dist: llama-index==0.12.11
20
20
  Requires-Dist: llama-index-indices-managed-vectara==0.3.1
21
21
  Requires-Dist: llama-index-agent-llm-compiler==0.3.0
22
22
  Requires-Dist: llama-index-agent-lats==0.3.0
23
- Requires-Dist: llama-index-agent-openai==0.4.1
24
- Requires-Dist: llama-index-llms-openai==0.3.12
25
- Requires-Dist: llama-index-llms-anthropic==0.6.3
23
+ Requires-Dist: llama-index-agent-openai==0.4.3
24
+ Requires-Dist: llama-index-llms-openai==0.3.16
25
+ Requires-Dist: llama-index-llms-anthropic==0.6.4
26
26
  Requires-Dist: llama-index-llms-together==0.3.1
27
27
  Requires-Dist: llama-index-llms-groq==0.3.1
28
- Requires-Dist: llama-index-llms-fireworks==0.3.0
28
+ Requires-Dist: llama-index-llms-fireworks==0.3.1
29
29
  Requires-Dist: llama-index-llms-cohere==0.4.0
30
- Requires-Dist: llama-index-llms-gemini==0.4.2
30
+ Requires-Dist: llama-index-llms-gemini==0.4.4
31
+ Requires-Dist: llama-index-llms-bedrock==0.3.3
31
32
  Requires-Dist: llama-index-tools-yahoo-finance==0.3.0
32
33
  Requires-Dist: llama-index-tools-arxiv==0.3.0
33
34
  Requires-Dist: llama-index-tools-database==0.3.0
34
35
  Requires-Dist: llama-index-tools-google==0.3.0
35
36
  Requires-Dist: llama-index-tools-tavily_research==0.3.0
36
37
  Requires-Dist: llama-index-tools-neo4j==0.3.0
37
- Requires-Dist: llama-index-graph-stores-kuzu==0.5.0
38
+ Requires-Dist: llama-index-graph-stores-kuzu==0.6.0
38
39
  Requires-Dist: llama-index-tools-slack==0.3.0
39
40
  Requires-Dist: llama-index-tools-exa==0.3.0
40
41
  Requires-Dist: tavily-python==0.5.0
41
- Requires-Dist: exa-py==1.7.0
42
+ Requires-Dist: exa-py==1.8.5
42
43
  Requires-Dist: yahoo-finance==1.4.0
43
- Requires-Dist: openinference-instrumentation-llama-index==3.0.3
44
+ Requires-Dist: openinference-instrumentation-llama-index==3.1.4
44
45
  Requires-Dist: opentelemetry-proto==1.26.0
45
- Requires-Dist: arize-phoenix==5.7.0
46
+ Requires-Dist: arize-phoenix==7.11.0
46
47
  Requires-Dist: arize-phoenix-otel==0.6.1
47
48
  Requires-Dist: protobuf==4.25.5
48
49
  Requires-Dist: tokenizers>=0.20
49
- Requires-Dist: pydantic==2.9.2
50
+ Requires-Dist: pydantic==2.10.3
50
51
  Requires-Dist: retrying==1.3.4
51
- Requires-Dist: pymongo==4.10.1
52
52
  Requires-Dist: python-dotenv==1.0.1
53
53
  Requires-Dist: tiktoken==0.8.0
54
54
  Requires-Dist: dill>=0.3.7
@@ -87,7 +87,7 @@ Dynamic: summary
87
87
 
88
88
  ## ✨ Overview
89
89
 
90
- `vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework, customized for use with Vectara.
90
+ `vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework and provides helper functions to quickly create tools that connect to Vectara corpora.
91
91
 
92
92
  <p align="center">
93
93
  <img src="https://raw.githubusercontent.com/vectara/py-vectara-agentic/main/.github/assets/diagram1.png" alt="Agentic RAG diagram" width="100%" style="vertical-align: middle;">
@@ -96,10 +96,10 @@ Dynamic: summary
96
96
  ### Features
97
97
 
98
98
  - Enables easy creation of custom AI assistants and agents.
99
- - Create a Vectara RAG tool with a single line of code.
100
- - Supports `ReAct`, `OpenAIAgent`, `LATS' and `LLMCompiler` agent types.
99
+ - Create a Vectara RAG tool or search tool with a single line of code.
100
+ - Supports `ReAct`, `OpenAIAgent`, `LATS` and `LLMCompiler` agent types.
101
101
  - Includes pre-built tools for various domains (e.g., finance, legal).
102
- - Integrates with various LLM inference services like OpenAI, Anthropic, Gemini, GROQ, Together.AI, Cohere and Fireworks
102
+ - Integrates with various LLM inference services like OpenAI, Anthropic, Gemini, GROQ, Together.AI, Cohere, Bedrock and Fireworks
103
103
  - Built-in support for observability with Arize Phoenix
104
104
 
105
105
  ### 📚 Example AI Assistants
@@ -109,14 +109,14 @@ Check out our example AI assistants:
109
109
  - [Financial Assistant](https://huggingface.co/spaces/vectara/finance-chat)
110
110
  - [Justice Harvard Teaching Assistant](https://huggingface.co/spaces/vectara/Justice-Harvard)
111
111
  - [Legal Assistant](https://huggingface.co/spaces/vectara/legal-agent)
112
-
112
+ - [EV Assistant](https://huggingface.co/spaces/vectara/ev-assistant)
113
113
 
114
114
  ### Prerequisites
115
115
 
116
116
  - [Vectara account](https://console.vectara.com/signup/?utm_source=github&utm_medium=code&utm_term=DevRel&utm_content=vectara-agentic&utm_campaign=github-code-DevRel-vectara-agentic)
117
117
  - A Vectara corpus with an [API key](https://docs.vectara.com/docs/api-keys)
118
118
  - [Python 3.10 or higher](https://www.python.org/downloads/)
119
- - OpenAI API key (or API keys for Anthropic, TOGETHER.AI, Fireworks AI, Cohere, GEMINI or GROQ, if you choose to use them)
119
+ - OpenAI API key (or API keys for Anthropic, TOGETHER.AI, Fireworks AI, Bedrock, Cohere, GEMINI or GROQ, if you choose to use them)
120
120
 
121
121
  ### Installation
122
122
 
@@ -126,18 +126,25 @@ pip install vectara-agentic
126
126
 
127
127
  ## 🚀 Quick Start
128
128
 
129
- ### 1. Create a Vectara RAG tool
129
+ ### 1. Initialize the Vectara tool factory
130
130
 
131
131
  ```python
132
132
  import os
133
133
  from vectara_agentic.tools import VectaraToolFactory
134
- from pydantic import BaseModel, Field
135
134
 
136
135
  vec_factory = VectaraToolFactory(
137
136
  vectara_api_key=os.environ['VECTARA_API_KEY'],
138
137
  vectara_customer_id=os.environ['VECTARA_CUSTOMER_ID'],
139
138
  vectara_corpus_id=os.environ['VECTARA_CORPUS_ID']
140
139
  )
140
+ ```
141
+
142
+ ### 2. Create a Vectara RAG Tool
143
+
144
+ A RAG tool calls the full Vectara RAG pipeline to provide summarized responses to queries grounded in data.
145
+
146
+ ```python
147
+ from pydantic import BaseModel, Field
141
148
 
142
149
  years = list(range(2020, 2024))
143
150
  tickers = {
@@ -156,17 +163,22 @@ query_financial_reports_tool = vec_factory.create_rag_tool(
156
163
  tool_name="query_financial_reports",
157
164
  tool_description="Query financial reports for a company and year",
158
165
  tool_args_schema=QueryFinancialReportsArgs,
166
+ lambda_val=0.005,
167
+ summary_num_results=7,
168
+ # Additional arguments
159
169
  )
160
170
  ```
161
171
 
162
- ### 2. Create other tools (optional)
172
+ See the [docs](https://vectara.github.io/vectara-agentic-docs/) for additional arguments to customize your Vectara RAG tool.
173
+
174
+ ### 3. Create other tools (optional)
163
175
 
164
176
  In addition to RAG tools, you can generate a lot of other types of tools the agent can use. These could be mathematical tools, tools
165
177
  that call other APIs to get more information, or any other type of tool.
166
178
 
167
179
  See [Agent Tools](#agent-tools) for more information.
168
180
 
169
- ### 3. Create your agent
181
+ ### 4. Create your agent
170
182
 
171
183
  ```python
172
184
  from vectara_agentic import Agent
@@ -186,14 +198,72 @@ agent = Agent(
186
198
  )
187
199
  ```
188
200
 
189
- ### 4. Run your agent
201
+ See the [docs](https://vectara.github.io/vectara-agentic-docs/) for additional arguments, including `agent_progress_callback` and `query_logging_callback`.
202
+
203
+ ### 5. Run your agent
190
204
 
191
205
  ```python
192
- response = agent.chat("What was the revenue for Apple in 2021?")
193
- print(response)
206
+ res = agent.chat("What was the revenue for Apple in 2021?")
207
+ print(res.response)
194
208
  ```
195
209
 
196
- ## 🛠️ Agent Tools
210
+ Note that:
211
+ 1. `vectara-agentic` also supports `achat()` and two streaming variants `stream_chat()` and `astream_chat()`.
212
+ 2. The response types from `chat()` and `achat()` are of type `AgentResponse`. If you just need the actual string
213
+ response it's available as the `response` variable, or just use `str()`. For advanced use-cases you can look
214
+ at other `AgentResponse` variables [such as `sources`](https://github.com/run-llama/llama_index/blob/659f9faaafbecebb6e6c65f42143c0bf19274a37/llama-index-core/llama_index/core/chat_engine/types.py#L53).
215
+
216
+ ## 🧰 Vectara tools
217
+
218
+ `vectara-agentic` provides two helper functions to connect with Vectara RAG
219
+ * `create_rag_tool()` to create an agent tool that connects with a Vectara corpus for querying.
220
+ * `create_search_tool()` to create a tool to search a Vectara corpus and return a list of matching documents.
221
+
222
+ See the documentation for the full list of arguments for `create_rag_tool()` and `create_search_tool()`,
223
+ to understand how to configure Vectara query performed by those tools.
224
+
225
+ ### Creating a Vectara RAG tool
226
+
227
+ A Vectara RAG tool is often the main workhorse for any Agentic RAG application, and enables the agent to query
228
+ one or more Vectara RAG corpora.
229
+
230
+ The tool generated always includes the `query` argument, followed by 1 or more optional arguments used for
231
+ metadata filtering, defined by `tool_args_schema`.
232
+
233
+ For example, in the quickstart example the schema is:
234
+
235
+ ```
236
+ class QueryFinancialReportsArgs(BaseModel):
237
+ query: str = Field(..., description="The user query.")
238
+ year: int | str = Field(..., description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year (example: '>2020').")
239
+ ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
240
+ ```
241
+
242
+ The `query` is required and is always the query string.
243
+ The other arguments are optional and will be interpreted as Vectara metadata filters.
244
+
245
+ For example, in the example above, the agent may call the `query_financial_reports_tool` tool with
246
+ query='what is the revenue?', year=2022 and ticker='AAPL'. Subsequently the RAG tool will issue
247
+ a Vectara RAG query with the same query, but with metadata filtering (doc.year=2022 and doc.ticker='AAPL').
248
+
249
+ There are also additional cool features supported here:
250
+ * An argument can be a condition, for example year='>2022' translates to the correct metadata
251
+ filtering condition doc.year>2022
252
+ * if `fixed_filter` is defined in the RAG tool, it provides a constant metadata filtering that is always applied.
253
+ For example, if fixed_filter=`doc.filing_type='10K'` then a query with query='what is the reveue', year=2022
254
+ and ticker='AAPL' would translate into query='what is the revenue' with metadata filtering condition of
255
+ "doc.year=2022 AND doc.ticker='AAPL' and doc.filing_type='10K'"
256
+
257
+ Note that `tool_args_type` is an optional dictionary that indicates the level at which metadata filtering
258
+ is applied for each argument (`doc` or `part`)
259
+
260
+ ### Creating a Vectara search tool
261
+
262
+ The Vectara search tool allows the agent to list documents that match a query.
263
+ This can be helpful to the agent to answer queries like "how many documents discuss the iPhone?" or other
264
+ similar queries that require a response in terms of a list of matching documents.
265
+
266
+ ## 🛠️ Agent Tools at a Glance
197
267
 
198
268
  `vectara-agentic` provides a few tools out of the box:
199
269
  1. **Standard tools**:
@@ -217,10 +287,9 @@ print(response)
217
287
  - `load_unique_values`: returns the top unique values for a given column
218
288
 
219
289
  In addition, we include various other tools from LlamaIndex ToolSpecs:
220
- * Tavily search
221
- * EXA.AI
290
+ * Tavily search and EXA.AI
222
291
  * arxiv
223
- * neo4j & Kuzu for Graph integration
292
+ * neo4j & Kuzu for Graph DB integration
224
293
  * Google tools (including gmail, calendar, and search)
225
294
  * Slack
226
295
 
@@ -240,7 +309,7 @@ mult_tool = ToolsFactory().create_tool(mult_func)
240
309
  The main way to control the behavior of `vectara-agentic` is by passing an `AgentConfig` object to your `Agent` when creating it.
241
310
  This object will include the following items:
242
311
  - `VECTARA_AGENTIC_AGENT_TYPE`: valid values are `REACT`, `LLMCOMPILER`, `LATS` or `OPENAI` (default: `OPENAI`)
243
- - `VECTARA_AGENTIC_MAIN_LLM_PROVIDER`: valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `GEMINI` or `FIREWORKS` (default: `OPENAI`)
312
+ - `VECTARA_AGENTIC_MAIN_LLM_PROVIDER`: valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` or `FIREWORKS` (default: `OPENAI`)
244
313
  - `VECTARA_AGENTIC_MAIN_MODEL_NAME`: agent model name (default depends on provider)
245
314
  - `VECTARA_AGENTIC_TOOL_LLM_PROVIDER`: tool LLM provider (default: `OPENAI`)
246
315
  - `VECTARA_AGENTIC_TOOL_MODEL_NAME`: tool model name (default depends on provider)
@@ -20,7 +20,7 @@
20
20
 
21
21
  ## ✨ Overview
22
22
 
23
- `vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework, customized for use with Vectara.
23
+ `vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework and provides helper functions to quickly create tools that connect to Vectara corpora.
24
24
 
25
25
  <p align="center">
26
26
  <img src="https://raw.githubusercontent.com/vectara/py-vectara-agentic/main/.github/assets/diagram1.png" alt="Agentic RAG diagram" width="100%" style="vertical-align: middle;">
@@ -29,10 +29,10 @@
29
29
  ### Features
30
30
 
31
31
  - Enables easy creation of custom AI assistants and agents.
32
- - Create a Vectara RAG tool with a single line of code.
33
- - Supports `ReAct`, `OpenAIAgent`, `LATS' and `LLMCompiler` agent types.
32
+ - Create a Vectara RAG tool or search tool with a single line of code.
33
+ - Supports `ReAct`, `OpenAIAgent`, `LATS` and `LLMCompiler` agent types.
34
34
  - Includes pre-built tools for various domains (e.g., finance, legal).
35
- - Integrates with various LLM inference services like OpenAI, Anthropic, Gemini, GROQ, Together.AI, Cohere and Fireworks
35
+ - Integrates with various LLM inference services like OpenAI, Anthropic, Gemini, GROQ, Together.AI, Cohere, Bedrock and Fireworks
36
36
  - Built-in support for observability with Arize Phoenix
37
37
 
38
38
  ### 📚 Example AI Assistants
@@ -42,14 +42,14 @@ Check out our example AI assistants:
42
42
  - [Financial Assistant](https://huggingface.co/spaces/vectara/finance-chat)
43
43
  - [Justice Harvard Teaching Assistant](https://huggingface.co/spaces/vectara/Justice-Harvard)
44
44
  - [Legal Assistant](https://huggingface.co/spaces/vectara/legal-agent)
45
-
45
+ - [EV Assistant](https://huggingface.co/spaces/vectara/ev-assistant)
46
46
 
47
47
  ### Prerequisites
48
48
 
49
49
  - [Vectara account](https://console.vectara.com/signup/?utm_source=github&utm_medium=code&utm_term=DevRel&utm_content=vectara-agentic&utm_campaign=github-code-DevRel-vectara-agentic)
50
50
  - A Vectara corpus with an [API key](https://docs.vectara.com/docs/api-keys)
51
51
  - [Python 3.10 or higher](https://www.python.org/downloads/)
52
- - OpenAI API key (or API keys for Anthropic, TOGETHER.AI, Fireworks AI, Cohere, GEMINI or GROQ, if you choose to use them)
52
+ - OpenAI API key (or API keys for Anthropic, TOGETHER.AI, Fireworks AI, Bedrock, Cohere, GEMINI or GROQ, if you choose to use them)
53
53
 
54
54
  ### Installation
55
55
 
@@ -59,18 +59,25 @@ pip install vectara-agentic
59
59
 
60
60
  ## 🚀 Quick Start
61
61
 
62
- ### 1. Create a Vectara RAG tool
62
+ ### 1. Initialize the Vectara tool factory
63
63
 
64
64
  ```python
65
65
  import os
66
66
  from vectara_agentic.tools import VectaraToolFactory
67
- from pydantic import BaseModel, Field
68
67
 
69
68
  vec_factory = VectaraToolFactory(
70
69
  vectara_api_key=os.environ['VECTARA_API_KEY'],
71
70
  vectara_customer_id=os.environ['VECTARA_CUSTOMER_ID'],
72
71
  vectara_corpus_id=os.environ['VECTARA_CORPUS_ID']
73
72
  )
73
+ ```
74
+
75
+ ### 2. Create a Vectara RAG Tool
76
+
77
+ A RAG tool calls the full Vectara RAG pipeline to provide summarized responses to queries grounded in data.
78
+
79
+ ```python
80
+ from pydantic import BaseModel, Field
74
81
 
75
82
  years = list(range(2020, 2024))
76
83
  tickers = {
@@ -89,17 +96,22 @@ query_financial_reports_tool = vec_factory.create_rag_tool(
89
96
  tool_name="query_financial_reports",
90
97
  tool_description="Query financial reports for a company and year",
91
98
  tool_args_schema=QueryFinancialReportsArgs,
99
+ lambda_val=0.005,
100
+ summary_num_results=7,
101
+ # Additional arguments
92
102
  )
93
103
  ```
94
104
 
95
- ### 2. Create other tools (optional)
105
+ See the [docs](https://vectara.github.io/vectara-agentic-docs/) for additional arguments to customize your Vectara RAG tool.
106
+
107
+ ### 3. Create other tools (optional)
96
108
 
97
109
  In addition to RAG tools, you can generate a lot of other types of tools the agent can use. These could be mathematical tools, tools
98
110
  that call other APIs to get more information, or any other type of tool.
99
111
 
100
112
  See [Agent Tools](#agent-tools) for more information.
101
113
 
102
- ### 3. Create your agent
114
+ ### 4. Create your agent
103
115
 
104
116
  ```python
105
117
  from vectara_agentic import Agent
@@ -119,14 +131,72 @@ agent = Agent(
119
131
  )
120
132
  ```
121
133
 
122
- ### 4. Run your agent
134
+ See the [docs](https://vectara.github.io/vectara-agentic-docs/) for additional arguments, including `agent_progress_callback` and `query_logging_callback`.
135
+
136
+ ### 5. Run your agent
123
137
 
124
138
  ```python
125
- response = agent.chat("What was the revenue for Apple in 2021?")
126
- print(response)
139
+ res = agent.chat("What was the revenue for Apple in 2021?")
140
+ print(res.response)
127
141
  ```
128
142
 
129
- ## 🛠️ Agent Tools
143
+ Note that:
144
+ 1. `vectara-agentic` also supports `achat()` and two streaming variants `stream_chat()` and `astream_chat()`.
145
+ 2. The response types from `chat()` and `achat()` are of type `AgentResponse`. If you just need the actual string
146
+ response it's available as the `response` variable, or just use `str()`. For advanced use-cases you can look
147
+ at other `AgentResponse` variables [such as `sources`](https://github.com/run-llama/llama_index/blob/659f9faaafbecebb6e6c65f42143c0bf19274a37/llama-index-core/llama_index/core/chat_engine/types.py#L53).
148
+
149
+ ## 🧰 Vectara tools
150
+
151
+ `vectara-agentic` provides two helper functions to connect with Vectara RAG
152
+ * `create_rag_tool()` to create an agent tool that connects with a Vectara corpus for querying.
153
+ * `create_search_tool()` to create a tool to search a Vectara corpus and return a list of matching documents.
154
+
155
+ See the documentation for the full list of arguments for `create_rag_tool()` and `create_search_tool()`,
156
+ to understand how to configure Vectara query performed by those tools.
157
+
158
+ ### Creating a Vectara RAG tool
159
+
160
+ A Vectara RAG tool is often the main workhorse for any Agentic RAG application, and enables the agent to query
161
+ one or more Vectara RAG corpora.
162
+
163
+ The tool generated always includes the `query` argument, followed by 1 or more optional arguments used for
164
+ metadata filtering, defined by `tool_args_schema`.
165
+
166
+ For example, in the quickstart example the schema is:
167
+
168
+ ```
169
+ class QueryFinancialReportsArgs(BaseModel):
170
+ query: str = Field(..., description="The user query.")
171
+ year: int | str = Field(..., description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year (example: '>2020').")
172
+ ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
173
+ ```
174
+
175
+ The `query` is required and is always the query string.
176
+ The other arguments are optional and will be interpreted as Vectara metadata filters.
177
+
178
+ For example, in the example above, the agent may call the `query_financial_reports_tool` tool with
179
+ query='what is the revenue?', year=2022 and ticker='AAPL'. Subsequently the RAG tool will issue
180
+ a Vectara RAG query with the same query, but with metadata filtering (doc.year=2022 and doc.ticker='AAPL').
181
+
182
+ There are also additional cool features supported here:
183
+ * An argument can be a condition, for example year='>2022' translates to the correct metadata
184
+ filtering condition doc.year>2022
185
+ * if `fixed_filter` is defined in the RAG tool, it provides a constant metadata filtering that is always applied.
186
+ For example, if fixed_filter=`doc.filing_type='10K'` then a query with query='what is the reveue', year=2022
187
+ and ticker='AAPL' would translate into query='what is the revenue' with metadata filtering condition of
188
+ "doc.year=2022 AND doc.ticker='AAPL' and doc.filing_type='10K'"
189
+
190
+ Note that `tool_args_type` is an optional dictionary that indicates the level at which metadata filtering
191
+ is applied for each argument (`doc` or `part`)
192
+
193
+ ### Creating a Vectara search tool
194
+
195
+ The Vectara search tool allows the agent to list documents that match a query.
196
+ This can be helpful to the agent to answer queries like "how many documents discuss the iPhone?" or other
197
+ similar queries that require a response in terms of a list of matching documents.
198
+
199
+ ## 🛠️ Agent Tools at a Glance
130
200
 
131
201
  `vectara-agentic` provides a few tools out of the box:
132
202
  1. **Standard tools**:
@@ -150,10 +220,9 @@ print(response)
150
220
  - `load_unique_values`: returns the top unique values for a given column
151
221
 
152
222
  In addition, we include various other tools from LlamaIndex ToolSpecs:
153
- * Tavily search
154
- * EXA.AI
223
+ * Tavily search and EXA.AI
155
224
  * arxiv
156
- * neo4j & Kuzu for Graph integration
225
+ * neo4j & Kuzu for Graph DB integration
157
226
  * Google tools (including gmail, calendar, and search)
158
227
  * Slack
159
228
 
@@ -173,7 +242,7 @@ mult_tool = ToolsFactory().create_tool(mult_func)
173
242
  The main way to control the behavior of `vectara-agentic` is by passing an `AgentConfig` object to your `Agent` when creating it.
174
243
  This object will include the following items:
175
244
  - `VECTARA_AGENTIC_AGENT_TYPE`: valid values are `REACT`, `LLMCOMPILER`, `LATS` or `OPENAI` (default: `OPENAI`)
176
- - `VECTARA_AGENTIC_MAIN_LLM_PROVIDER`: valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `GEMINI` or `FIREWORKS` (default: `OPENAI`)
245
+ - `VECTARA_AGENTIC_MAIN_LLM_PROVIDER`: valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` or `FIREWORKS` (default: `OPENAI`)
177
246
  - `VECTARA_AGENTIC_MAIN_MODEL_NAME`: agent model name (default depends on provider)
178
247
  - `VECTARA_AGENTIC_TOOL_LLM_PROVIDER`: tool LLM provider (default: `OPENAI`)
179
248
  - `VECTARA_AGENTIC_TOOL_MODEL_NAME`: tool model name (default depends on provider)
@@ -1,36 +1,36 @@
1
- llama-index==0.12.7
1
+ llama-index==0.12.11
2
2
  llama-index-indices-managed-vectara==0.3.1
3
3
  llama-index-agent-llm-compiler==0.3.0
4
4
  llama-index-agent-lats==0.3.0
5
- llama-index-agent-openai==0.4.1
6
- llama-index-llms-openai==0.3.12
7
- llama-index-llms-anthropic==0.6.3
5
+ llama-index-agent-openai==0.4.3
6
+ llama-index-llms-openai==0.3.16
7
+ llama-index-llms-anthropic==0.6.4
8
8
  llama-index-llms-together==0.3.1
9
9
  llama-index-llms-groq==0.3.1
10
- llama-index-llms-fireworks==0.3.0
10
+ llama-index-llms-fireworks==0.3.1
11
11
  llama-index-llms-cohere==0.4.0
12
- llama-index-llms-gemini==0.4.2
12
+ llama-index-llms-gemini==0.4.4
13
+ llama-index-llms-bedrock==0.3.3
13
14
  llama-index-tools-yahoo-finance==0.3.0
14
15
  llama-index-tools-arxiv==0.3.0
15
16
  llama-index-tools-database==0.3.0
16
17
  llama-index-tools-google==0.3.0
17
18
  llama-index-tools-tavily_research==0.3.0
18
19
  llama-index-tools-neo4j==0.3.0
19
- llama-index-graph-stores-kuzu==0.5.0
20
+ llama-index-graph-stores-kuzu==0.6.0
20
21
  llama-index-tools-slack==0.3.0
21
22
  llama-index-tools-exa==0.3.0
22
23
  tavily-python==0.5.0
23
- exa-py==1.7.0
24
+ exa-py==1.8.5
24
25
  yahoo-finance==1.4.0
25
- openinference-instrumentation-llama-index==3.0.3
26
+ openinference-instrumentation-llama-index==3.1.4
26
27
  opentelemetry-proto==1.26.0
27
- arize-phoenix==5.7.0
28
+ arize-phoenix==7.11.0
28
29
  arize-phoenix-otel==0.6.1
29
30
  protobuf==4.25.5
30
31
  tokenizers>=0.20
31
- pydantic==2.9.2
32
+ pydantic==2.10.3
32
33
  retrying==1.3.4
33
- pymongo==4.10.1
34
34
  python-dotenv==1.0.1
35
35
  tiktoken==0.8.0
36
36
  dill>=0.3.7
@@ -7,3 +7,10 @@ from .tools import VectaraToolFactory, VectaraTool
7
7
 
8
8
  # Define the __all__ variable for wildcard imports
9
9
  __all__ = ['Agent', 'VectaraToolFactory', 'VectaraTool']
10
+
11
+ # Ensure package version is available
12
+ try:
13
+ import importlib.metadata
14
+ __version__ = importlib.metadata.version("vectara_agentic")
15
+ except Exception:
16
+ __version__ = "0.0.0" # fallback if not installed
@@ -5,6 +5,7 @@ This file contains the prompt templates for the different types of agents.
5
5
  # General (shared) instructions
6
6
  GENERAL_INSTRUCTIONS = """
7
7
  - Use tools as your main source of information, do not respond without using a tool. Do not respond based on pre-trained knowledge.
8
+ - Always call the 'get_current_date' tool to ensure you know the exact date when a user asks a question.
8
9
  - When using a tool with arguments, simplify the query as much as possible if you use the tool with arguments.
9
10
  For example, if the original query is "revenue for apple in 2021", you can use the tool with a query "revenue" with arguments year=2021 and company=apple.
10
11
  - If a tool responds with "I do not have enough information", try one of the following:
@@ -43,7 +44,7 @@ GENERAL_PROMPT_TEMPLATE = """
43
44
  You are a helpful chatbot in conversation with a user, with expertise in {chat_topic}.
44
45
 
45
46
  ## Date
46
- Today's date is {today}.
47
+ Your birth date is {today}.
47
48
 
48
49
  ## INSTRUCTIONS:
49
50
  IMPORTANT - FOLLOW THESE INSTRUCTIONS CAREFULLY:
@@ -63,7 +64,7 @@ You are designed to help with a variety of tasks, from answering questions to pr
63
64
  You have expertise in {chat_topic}.
64
65
 
65
66
  ## Date
66
- Today's date is {today}.
67
+ Your birth date is {today}.
67
68
 
68
69
  ## Tools
69
70
  You have access to a wide variety of tools.
@@ -1,4 +1,4 @@
1
1
  """
2
2
  Define the version of the package.
3
3
  """
4
- __version__ = "0.1.24"
4
+ __version__ = "0.1.25"