vbi 0.1.3__tar.gz → 0.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (190) hide show
  1. vbi-0.2/Dockerfile +51 -0
  2. {vbi-0.1.3/vbi.egg-info → vbi-0.2}/PKG-INFO +30 -11
  3. {vbi-0.1.3 → vbi-0.2}/README.md +28 -8
  4. {vbi-0.1.3 → vbi-0.2}/docs/examples/mpr_sde_cpp.ipynb +6 -1
  5. vbi-0.2/docs/examples/mpr_sde_numba.ipynb +1020 -0
  6. {vbi-0.1.3 → vbi-0.2}/docs/examples/mpr_tvbk.ipynb +4 -1
  7. vbi-0.2/docs/examples/wilson_cowan_cupy.ipynb +457 -0
  8. vbi-0.2/docs/examples/wilson_cowan_sde_numba.ipynb +296 -0
  9. vbi-0.2/docs/examples/ww_full_sde_cupy.ipynb +472 -0
  10. vbi-0.2/docs/examples/ww_full_sde_numba.ipynb +513 -0
  11. {vbi-0.1.3 → vbi-0.2}/docs/index.rst +10 -0
  12. {vbi-0.1.3 → vbi-0.2}/docs/models.rst +156 -13
  13. {vbi-0.1.3 → vbi-0.2}/pyproject.toml +9 -3
  14. {vbi-0.1.3 → vbi-0.2}/setup.py +23 -15
  15. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/features.json +4 -1
  16. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/features.py +10 -4
  17. {vbi-0.1.3 → vbi-0.2}/vbi/inference.py +50 -22
  18. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sde.hpp +5 -6
  19. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sde_wrap.cxx +28 -28
  20. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/jansen_rit.py +2 -9
  21. vbi-0.2/vbi/models/cupy/bold.py +228 -0
  22. {vbi-0.1.3 → vbi-0.2}/vbi/models/cupy/jansen_rit.py +1 -1
  23. {vbi-0.1.3 → vbi-0.2}/vbi/models/cupy/km.py +62 -34
  24. {vbi-0.1.3 → vbi-0.2}/vbi/models/cupy/mpr.py +24 -4
  25. vbi-0.2/vbi/models/cupy/utils.py +345 -0
  26. vbi-0.2/vbi/models/cupy/wilson_cowan.py +317 -0
  27. vbi-0.2/vbi/models/cupy/ww.py +342 -0
  28. vbi-0.2/vbi/models/numba/__init__.py +4 -0
  29. vbi-0.2/vbi/models/numba/jansen_rit.py +532 -0
  30. {vbi-0.1.3 → vbi-0.2}/vbi/models/numba/mpr.py +8 -0
  31. vbi-0.2/vbi/models/numba/wilson_cowan.py +443 -0
  32. vbi-0.2/vbi/models/numba/ww.py +564 -0
  33. {vbi-0.1.3 → vbi-0.2/vbi.egg-info}/PKG-INFO +30 -11
  34. {vbi-0.1.3 → vbi-0.2}/vbi.egg-info/SOURCES.txt +10 -1
  35. vbi-0.1.3/docs/examples/mpr_sde_numba.ipynb +0 -264
  36. vbi-0.1.3/vbi/models/cupy/bold.py +0 -111
  37. vbi-0.1.3/vbi/models/cupy/utils.py +0 -184
  38. vbi-0.1.3/vbi/models/numba/_ww_EI.py +0 -444
  39. vbi-0.1.3/vbi/tests/__init__.py +0 -0
  40. {vbi-0.1.3 → vbi-0.2}/.github/workflows/docker-image.yml +0 -0
  41. {vbi-0.1.3 → vbi-0.2}/.github/workflows/tests.yml +0 -0
  42. {vbi-0.1.3 → vbi-0.2}/.gitignore +0 -0
  43. {vbi-0.1.3 → vbi-0.2}/.readthedocs.yaml +0 -0
  44. {vbi-0.1.3 → vbi-0.2}/CONTRIBUTING.md +0 -0
  45. {vbi-0.1.3 → vbi-0.2}/LICENSE +0 -0
  46. {vbi-0.1.3 → vbi-0.2}/MANIFEST.in +0 -0
  47. {vbi-0.1.3 → vbi-0.2}/docs/API.rst +0 -0
  48. {vbi-0.1.3 → vbi-0.2}/docs/Makefile +0 -0
  49. {vbi-0.1.3 → vbi-0.2}/docs/_static/Fig1.png +0 -0
  50. {vbi-0.1.3 → vbi-0.2}/docs/_static/custom.css +0 -0
  51. {vbi-0.1.3 → vbi-0.2}/docs/_static/vbi_flowchart.png +0 -0
  52. {vbi-0.1.3 → vbi-0.2}/docs/_static/vbi_log.png +0 -0
  53. {vbi-0.1.3 → vbi-0.2}/docs/conf.py +0 -0
  54. {vbi-0.1.3 → vbi-0.2}/docs/examples/.gitattributes +0 -0
  55. {vbi-0.1.3 → vbi-0.2}/docs/examples/.ipynb_checkpoints/intro-checkpoint.ipynb +0 -0
  56. {vbi-0.1.3 → vbi-0.2}/docs/examples/__pycache__/helpers.cpython-310.pyc +0 -0
  57. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/centers.txt +0 -0
  58. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/centres.txt +0 -0
  59. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/cortical.txt +0 -0
  60. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/tract_lengths.txt +0 -0
  61. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/weights.txt +0 -0
  62. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/weights1.txt +0 -0
  63. {vbi-0.1.3 → vbi-0.2}/docs/examples/data/weights_68.txt +0 -0
  64. {vbi-0.1.3 → vbi-0.2}/docs/examples/do_cpp.ipynb +0 -0
  65. {vbi-0.1.3 → vbi-0.2}/docs/examples/do_nb.ipynb +0 -0
  66. {vbi-0.1.3 → vbi-0.2}/docs/examples/ghb_sde_cupy.ipynb +0 -0
  67. {vbi-0.1.3 → vbi-0.2}/docs/examples/helpers.py +0 -0
  68. {vbi-0.1.3 → vbi-0.2}/docs/examples/intro.ipynb +0 -0
  69. {vbi-0.1.3 → vbi-0.2}/docs/examples/intro_feature.ipynb +0 -0
  70. {vbi-0.1.3 → vbi-0.2}/docs/examples/jansen_rit_sde_cpp.ipynb +0 -0
  71. {vbi-0.1.3 → vbi-0.2}/docs/examples/jansen_rit_sde_cupy.ipynb +0 -0
  72. {vbi-0.1.3 → vbi-0.2}/docs/examples/mpr_sde_cupy.ipynb +0 -0
  73. {vbi-0.1.3 → vbi-0.2}/docs/examples/my_features.json +0 -0
  74. {vbi-0.1.3 → vbi-0.2}/docs/examples/my_features.py +0 -0
  75. {vbi-0.1.3 → vbi-0.2}/docs/examples/output/damp_oscillator_ts.jpeg +0 -0
  76. {vbi-0.1.3 → vbi-0.2}/docs/examples/output/stat_vec.pt +0 -0
  77. {vbi-0.1.3 → vbi-0.2}/docs/examples/output/theta.pt +0 -0
  78. {vbi-0.1.3 → vbi-0.2}/docs/examples/output/vep/posterior.pkl +0 -0
  79. {vbi-0.1.3 → vbi-0.2}/docs/examples/output/vep84/posterior.pkl +0 -0
  80. {vbi-0.1.3 → vbi-0.2}/docs/examples/sbi-logs/NPE_C/2025-03-24T17_33_52.754987/events.out.tfevents.1742834032.ziaee.319710.0 +0 -0
  81. {vbi-0.1.3 → vbi-0.2}/docs/examples/vep_sde.ipynb +0 -0
  82. {vbi-0.1.3 → vbi-0.2}/docs/examples/ww_sde_torch_kong.ipynb +0 -0
  83. {vbi-0.1.3 → vbi-0.2}/docs/requirements.txt +0 -0
  84. {vbi-0.1.3 → vbi-0.2}/setup.cfg +0 -0
  85. {vbi-0.1.3 → vbi-0.2}/vbi/__init__.py +0 -0
  86. {vbi-0.1.3 → vbi-0.2}/vbi/_version.py +0 -0
  87. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/__init__.py +0 -0
  88. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_84/centers.txt +0 -0
  89. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_84/centres.txt +0 -0
  90. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_84/cortical.txt +0 -0
  91. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_84/tract_lengths.txt +0 -0
  92. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_84/weights.txt +0 -0
  93. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_88/Aud_88.txt +0 -0
  94. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_88/Bold.npz +0 -0
  95. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_88/Labels.txt +0 -0
  96. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_88/Region_labels.txt +0 -0
  97. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_88/tract_lengths.txt +0 -0
  98. {vbi-0.1.3 → vbi-0.2}/vbi/dataset/connectivity_88/weights.txt +0 -0
  99. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/__init__.py +0 -0
  100. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/calc_features.py +0 -0
  101. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/features_settings.py +0 -0
  102. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/features_utils.py +0 -0
  103. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/infodynamics.jar +0 -0
  104. {vbi-0.1.3 → vbi-0.2}/vbi/feature_extraction/utility.py +0 -0
  105. {vbi-0.1.3 → vbi-0.2}/vbi/models/__init__.py +0 -0
  106. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/__init__.py +0 -0
  107. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/__init__.py +0 -0
  108. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/__pycache__/mpr_sde.cpython-310.pyc +0 -0
  109. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_do.cpython-310-x86_64-linux-gnu.so +0 -0
  110. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_jr_sdde.cpython-310-x86_64-linux-gnu.so +0 -0
  111. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_jr_sde.cpython-310-x86_64-linux-gnu.so +0 -0
  112. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_km_sde.cpython-310-x86_64-linux-gnu.so +0 -0
  113. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_mpr_sde.cpython-310-x86_64-linux-gnu.so +0 -0
  114. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_vep.cpython-310-x86_64-linux-gnu.so +0 -0
  115. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/_wc_ode.cpython-310-x86_64-linux-gnu.so +0 -0
  116. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/bold.hpp +0 -0
  117. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/do.hpp +0 -0
  118. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/do.i +0 -0
  119. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/do.py +0 -0
  120. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/do_wrap.cxx +0 -0
  121. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sdde.hpp +0 -0
  122. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sdde.i +0 -0
  123. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sdde.py +0 -0
  124. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sdde_wrap.cxx +0 -0
  125. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sde.i +0 -0
  126. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/jr_sde.py +0 -0
  127. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/km_sde.hpp +0 -0
  128. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/km_sde.i +0 -0
  129. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/km_sde.py +0 -0
  130. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/km_sde_wrap.cxx +0 -0
  131. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/makefile +0 -0
  132. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/mpr_sde.hpp +0 -0
  133. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/mpr_sde.i +0 -0
  134. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/mpr_sde.py +0 -0
  135. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/mpr_sde_wrap.cxx +0 -0
  136. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/utility.hpp +0 -0
  137. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/vep.hpp +0 -0
  138. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/vep.i +0 -0
  139. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/vep.py +0 -0
  140. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/vep_wrap.cxx +0 -0
  141. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/wc_ode.hpp +0 -0
  142. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/wc_ode.i +0 -0
  143. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/wc_ode.py +0 -0
  144. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/_src/wc_ode_wrap.cxx +0 -0
  145. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/damp_oscillator.py +0 -0
  146. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/km.py +0 -0
  147. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/mpr.py +0 -0
  148. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/vep.py +0 -0
  149. {vbi-0.1.3 → vbi-0.2}/vbi/models/cpp/wc.py +0 -0
  150. {vbi-0.1.3 → vbi-0.2}/vbi/models/cupy/__init__.py +0 -0
  151. {vbi-0.1.3 → vbi-0.2}/vbi/models/cupy/ghb.py +0 -0
  152. {vbi-0.1.3 → vbi-0.2}/vbi/models/cupy/mpr_modified_bold.py +0 -0
  153. {vbi-0.1.3 → vbi-0.2}/vbi/models/numba/damp_oscillator.py +0 -0
  154. {vbi-0.1.3 → vbi-0.2}/vbi/models/numba/ghb.py +0 -0
  155. {vbi-0.1.3/vbi/models/numba → vbi-0.2/vbi/models/pytorch}/__init__.py +0 -0
  156. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/default_parameters.npz +0 -0
  157. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/ROI_sim.mat +0 -0
  158. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fc_test.csv +0 -0
  159. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fc_train.csv +0 -0
  160. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fc_vali.csv +0 -0
  161. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fcd_test.mat +0 -0
  162. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fcd_test_high_window.mat +0 -0
  163. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fcd_test_low_window.mat +0 -0
  164. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fcd_train.mat +0 -0
  165. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/fcd_vali.mat +0 -0
  166. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/myelin.csv +0 -0
  167. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/rsfc_gradient.csv +0 -0
  168. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/run_label_testset.mat +0 -0
  169. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/sc_test.csv +0 -0
  170. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/sc_train.csv +0 -0
  171. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/input/sc_vali.csv +0 -0
  172. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/data/obs_kong0.npz +0 -0
  173. {vbi-0.1.3 → vbi-0.2}/vbi/models/pytorch/ww_sde_kong.py +0 -0
  174. {vbi-0.1.3 → vbi-0.2}/vbi/models/tvbk/__init__.py +0 -0
  175. {vbi-0.1.3 → vbi-0.2}/vbi/models/tvbk/tvbk_wrapper.py +0 -0
  176. {vbi-0.1.3 → vbi-0.2}/vbi/models/tvbk/utils.py +0 -0
  177. {vbi-0.1.3/vbi/models/pytorch → vbi-0.2/vbi/papers}/__init__.py +0 -0
  178. {vbi-0.1.3 → vbi-0.2}/vbi/papers/pavlides_pcb_2015/pavlides.py +0 -0
  179. {vbi-0.1.3/vbi/papers → vbi-0.2/vbi/tests}/__init__.py +0 -0
  180. {vbi-0.1.3 → vbi-0.2}/vbi/tests/_test_mpr_nb.py +0 -0
  181. {vbi-0.1.3 → vbi-0.2}/vbi/tests/test_features.py +0 -0
  182. {vbi-0.1.3 → vbi-0.2}/vbi/tests/test_ghb_cupy.py +0 -0
  183. {vbi-0.1.3 → vbi-0.2}/vbi/tests/test_mpr_cupy.py +0 -0
  184. {vbi-0.1.3 → vbi-0.2}/vbi/tests/test_mpr_numba.py +0 -0
  185. {vbi-0.1.3 → vbi-0.2}/vbi/tests/test_suite.py +0 -0
  186. {vbi-0.1.3 → vbi-0.2}/vbi/utils.py +0 -0
  187. {vbi-0.1.3 → vbi-0.2}/vbi.egg-info/dependency_links.txt +0 -0
  188. {vbi-0.1.3 → vbi-0.2}/vbi.egg-info/requires.txt +0 -0
  189. {vbi-0.1.3 → vbi-0.2}/vbi.egg-info/top_level.txt +0 -0
  190. {vbi-0.1.3 → vbi-0.2}/vbi_log.png +0 -0
vbi-0.2/Dockerfile ADDED
@@ -0,0 +1,51 @@
1
+ FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu20.04
2
+
3
+ # Set environment to avoid interactive prompts
4
+ ENV DEBIAN_FRONTEND=noninteractive
5
+
6
+ # Install system dependencies
7
+ RUN apt-get update && apt-get install -y \
8
+ python3.10 \
9
+ python3-pip \
10
+ build-essential \
11
+ gcc \
12
+ g++ \
13
+ libatlas-base-dev \
14
+ libopenblas-dev \
15
+ libhdf5-dev \
16
+ swig \
17
+ tzdata \
18
+ && ln -s /usr/bin/python3 /usr/bin/python \
19
+ && rm -rf /var/lib/apt/lists/*
20
+
21
+ # Set timezone (e.g., UTC) to avoid configuration prompts
22
+ RUN echo "Etc/UTC" > /etc/timezone && \
23
+ ln -fs /usr/share/zoneinfo/Etc/UTC /etc/localtime && \
24
+ dpkg-reconfigure -f noninteractive tzdata
25
+
26
+ WORKDIR /app
27
+
28
+ RUN pip install --upgrade pip
29
+
30
+ RUN pip install --no-cache-dir \
31
+ hatchling \
32
+ setuptools>=45 \
33
+ wheel \
34
+ swig>=4.0
35
+
36
+ COPY . .
37
+
38
+ RUN pip install . --no-cache-dir
39
+ RUN pip install cupy-cuda11x
40
+
41
+ # Install Jupyter Notebook and related packages
42
+ RUN pip install --no-cache-dir \
43
+ notebook \
44
+ ipykernel \
45
+ ipython
46
+
47
+ EXPOSE 8888
48
+
49
+ # Set the default command (modify as needed)
50
+ # CMD ["python", "-c", "from vbi.utils import test_imports; test_imports()"]
51
+ CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"]
@@ -1,14 +1,13 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vbi
3
- Version: 0.1.3
3
+ Version: 0.2
4
4
  Summary: Virtual brain inference.
5
5
  Author-email: Abolfazl Ziaeemehr <a.ziaeemehr@gmail.com>, Meysam Hashemi <meysam.hashemi@gmail.com>, Marmaduke Woodman <marmaduke.woodman@gmail.com>
6
- License: MIT
6
+ License-Expression: Apache-2.0
7
7
  Project-URL: homepage, https://ziaeemehr.github.io/vbi_paper/
8
8
  Project-URL: repository, https://github.com/Ziaeemehr/vbi_paper
9
9
  Classifier: Programming Language :: Python :: 3
10
10
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
11
- Classifier: License :: OSI Approved :: Apache Software License
12
11
  Classifier: Operating System :: OS Independent
13
12
  Requires-Python: >=3.8
14
13
  Description-Content-Type: text/markdown
@@ -75,11 +74,17 @@ Dynamic: license-file
75
74
  ```bash
76
75
  conda env create --name vbi python=3.10
77
76
  conda activate vbi
77
+ # from pip: Recommended
78
+ pip install vbi
79
+ # from source: More recent update
78
80
  git clone https://github.com/ins-amu/vbi.git
79
81
  cd vbi
80
82
  pip install .
81
83
 
82
84
  # pip install -e .[all,dev,docs]
85
+
86
+ # To skip C++ compilation, use the following environment variable and install from source:
87
+ SKIP_CPP=1 pip install -e .
83
88
  ```
84
89
 
85
90
  ## Using Docker
@@ -143,14 +148,28 @@ We welcome contributions to the VBI project! If you have suggestions, bug report
143
148
  ## Citation
144
149
 
145
150
  ```bibtex
146
- @article{VBI,
147
- author = {Ziaeemehr, Abolfazl and Woodman, Marmaduke and Domide, Lia and Petkoski, Spase and Jirsa, Viktor and Hashemi, Meysam},
148
- title = {Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models},
149
- journal = {bioRxiv},
150
- year = {2025},
151
- doi = {10.1101/2025.01.21.633922},
152
- url = {https://doi.org/10.1101/2025.01.21.633922},
153
- abstract = {Network neuroscience has proven essential for understanding the principles and mechanisms underlying complex brain (dys)function and cognition. In this context, whole-brain network modeling--also known as virtual brain modeling--combines computational models of brain dynamics (placed at each network node) with individual brain imaging data (to coordinate and connect the nodes), advancing our understanding of the complex dynamics of the brain and its neurobiological underpinnings. However, there remains a critical need for automated model inversion tools to estimate control (bifurcation) parameters at large scales and across neuroimaging modalities, given their varying spatio-temporal resolutions. This study aims to address this gap by introducing a flexible and integrative toolkit for efficient Bayesian inference on virtual brain models, called Virtual Brain Inference (VBI). This open-source toolkit provides fast simulations, taxonomy of feature extraction, efficient data storage and loading, and probabilistic machine learning algorithms, enabling biophysically interpretable inference from non-invasive and invasive recordings. Through in-silico testing, we demonstrate the accuracy and reliability of inference for commonly used whole-brain network models and their associated neuroimaging data. VBI shows potential to improve hypothesis evaluation in network neuroscience through uncertainty quantification, and contribute to advances in precision medicine by enhancing the predictive power of virtual brain models.}
151
+ @article{VBI,
152
+ title={Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models},
153
+ author={Ziaeemehr, Abolfazl and Woodman, Marmaduke and Domide, Lia and Petkoski, Spase and Jirsa, Viktor and Hashemi, Meysam},
154
+ DOI={10.7554/elife.106194.1},
155
+ url={http://dx.doi.org/10.7554/eLife.106194.1},
156
+ publisher={eLife Sciences Publications, Ltd},
157
+ year={2025},
158
+ abstract = {Network neuroscience has proven essential for understanding the principles and mechanisms
159
+ underlying complex brain (dys)function and cognition. In this context, whole-brain network modeling–
160
+ also known as virtual brain modeling–combines computational models of brain dynamics (placed at each network node)
161
+ with individual brain imaging data (to coordinate and connect the nodes), advancing our understanding of
162
+ the complex dynamics of the brain and its neurobiological underpinnings. However, there remains a critical
163
+ need for automated model inversion tools to estimate control (bifurcation) parameters at large scales
164
+ associated with neuroimaging modalities, given their varying spatio-temporal resolutions.
165
+ This study aims to address this gap by introducing a flexible and integrative toolkit for efficient Bayesian inference
166
+ on virtual brain models, called Virtual Brain Inference (VBI). This open-source toolkit provides fast simulations,
167
+ taxonomy of feature extraction, efficient data storage and loading, and probabilistic machine learning algorithms,
168
+ enabling biophysically interpretable inference from non-invasive and invasive recordings.
169
+ Through in-silico testing, we demonstrate the accuracy and reliability of inference for commonly used
170
+ whole-brain network models and their associated neuroimaging data. VBI shows potential to improve hypothesis
171
+ evaluation in network neuroscience through uncertainty quantification, and contribute to advances in precision
172
+ medicine by enhancing the predictive power of virtual brain models.}
154
173
  }
155
174
  ```
156
175
 
@@ -20,11 +20,17 @@
20
20
  ```bash
21
21
  conda env create --name vbi python=3.10
22
22
  conda activate vbi
23
+ # from pip: Recommended
24
+ pip install vbi
25
+ # from source: More recent update
23
26
  git clone https://github.com/ins-amu/vbi.git
24
27
  cd vbi
25
28
  pip install .
26
29
 
27
30
  # pip install -e .[all,dev,docs]
31
+
32
+ # To skip C++ compilation, use the following environment variable and install from source:
33
+ SKIP_CPP=1 pip install -e .
28
34
  ```
29
35
 
30
36
  ## Using Docker
@@ -88,14 +94,28 @@ We welcome contributions to the VBI project! If you have suggestions, bug report
88
94
  ## Citation
89
95
 
90
96
  ```bibtex
91
- @article{VBI,
92
- author = {Ziaeemehr, Abolfazl and Woodman, Marmaduke and Domide, Lia and Petkoski, Spase and Jirsa, Viktor and Hashemi, Meysam},
93
- title = {Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models},
94
- journal = {bioRxiv},
95
- year = {2025},
96
- doi = {10.1101/2025.01.21.633922},
97
- url = {https://doi.org/10.1101/2025.01.21.633922},
98
- abstract = {Network neuroscience has proven essential for understanding the principles and mechanisms underlying complex brain (dys)function and cognition. In this context, whole-brain network modeling--also known as virtual brain modeling--combines computational models of brain dynamics (placed at each network node) with individual brain imaging data (to coordinate and connect the nodes), advancing our understanding of the complex dynamics of the brain and its neurobiological underpinnings. However, there remains a critical need for automated model inversion tools to estimate control (bifurcation) parameters at large scales and across neuroimaging modalities, given their varying spatio-temporal resolutions. This study aims to address this gap by introducing a flexible and integrative toolkit for efficient Bayesian inference on virtual brain models, called Virtual Brain Inference (VBI). This open-source toolkit provides fast simulations, taxonomy of feature extraction, efficient data storage and loading, and probabilistic machine learning algorithms, enabling biophysically interpretable inference from non-invasive and invasive recordings. Through in-silico testing, we demonstrate the accuracy and reliability of inference for commonly used whole-brain network models and their associated neuroimaging data. VBI shows potential to improve hypothesis evaluation in network neuroscience through uncertainty quantification, and contribute to advances in precision medicine by enhancing the predictive power of virtual brain models.}
97
+ @article{VBI,
98
+ title={Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models},
99
+ author={Ziaeemehr, Abolfazl and Woodman, Marmaduke and Domide, Lia and Petkoski, Spase and Jirsa, Viktor and Hashemi, Meysam},
100
+ DOI={10.7554/elife.106194.1},
101
+ url={http://dx.doi.org/10.7554/eLife.106194.1},
102
+ publisher={eLife Sciences Publications, Ltd},
103
+ year={2025},
104
+ abstract = {Network neuroscience has proven essential for understanding the principles and mechanisms
105
+ underlying complex brain (dys)function and cognition. In this context, whole-brain network modeling–
106
+ also known as virtual brain modeling–combines computational models of brain dynamics (placed at each network node)
107
+ with individual brain imaging data (to coordinate and connect the nodes), advancing our understanding of
108
+ the complex dynamics of the brain and its neurobiological underpinnings. However, there remains a critical
109
+ need for automated model inversion tools to estimate control (bifurcation) parameters at large scales
110
+ associated with neuroimaging modalities, given their varying spatio-temporal resolutions.
111
+ This study aims to address this gap by introducing a flexible and integrative toolkit for efficient Bayesian inference
112
+ on virtual brain models, called Virtual Brain Inference (VBI). This open-source toolkit provides fast simulations,
113
+ taxonomy of feature extraction, efficient data storage and loading, and probabilistic machine learning algorithms,
114
+ enabling biophysically interpretable inference from non-invasive and invasive recordings.
115
+ Through in-silico testing, we demonstrate the accuracy and reliability of inference for commonly used
116
+ whole-brain network models and their associated neuroimaging data. VBI shows potential to improve hypothesis
117
+ evaluation in network neuroscience through uncertainty quantification, and contribute to advances in precision
118
+ medicine by enhancing the predictive power of virtual brain models.}
99
119
  }
100
120
  ```
101
121
 
@@ -4,7 +4,12 @@
4
4
  "cell_type": "markdown",
5
5
  "metadata": {},
6
6
  "source": [
7
- "# MPR model in C++ "
7
+ "# MPR model in C++ \n",
8
+ "\n",
9
+ "# [Montbrio SDE model, C++](https://github.com/Ziaeemehr/vbi_paper/blob/main/docs/examples/mpr_sde_cpp.ipynb)\n",
10
+ "\n",
11
+ "\n",
12
+ "<a href=\"https://colab.research.google.com/github/Ziaeemehr/vbi_paper/blob/main/docs/examples/mpr_sde_cpp.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
8
13
  ]
9
14
  },
10
15
  {