vasprocar 1.1.19.136__tar.gz → 1.1.19.138__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vasprocar might be problematic. Click here for more details.
- {vasprocar-1.1.19.136/vasprocar.egg-info → vasprocar-1.1.19.138}/PKG-INFO +1 -1
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/setup.py +1 -1
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/__main__.py +1 -1
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/_info_b.py +3 -1
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/spin_texture_contour_video.py +1 -1
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138/vasprocar.egg-info}/PKG-INFO +1 -1
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar.egg-info/SOURCES.txt +0 -2
- vasprocar-1.1.19.136/vasprocar/src/plot/plot_spin_texture_contour_video_Backup_0.py +0 -417
- vasprocar-1.1.19.136/vasprocar/src/plot/plot_spin_texture_contour_video_Backup_1.py +0 -391
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/LICENSE.txt +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/README.md +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/setup.cfg +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/__init__.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/_info.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/_info_b.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/_label.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/_nscf.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/_var_kpoints.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/angular_momentum_plot/plot_projecao_angular_momentum.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/angular_momentum_plot/plot_projecao_angular_momentum_grace.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/contribuicao.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/dos_pdos_ldos.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/dos_plot/Grace/plot_dos_pdos_ldos.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/dos_plot/Grace/plot_dos_pdos_ldos_[polarizado].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/dos_plot/Grace/plot_dos_pdos_ldos_[polarizado_delta].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/dos_plot/plot_dos_pdos_ldos.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/dos_plot/plot_dos_pdos_ldos_[polarizado].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/kpoints_2D_3D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_QE/projecao_angular_momentum.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/_info.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/_label.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/_nscf.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/_var_kpoints.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/chgcar.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/contcar_info.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/contribuicao.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/dielectric_function.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/dos_pdos_ldos.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/dos_pdos_ldos_[polarizado].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/kpoints_2D_3D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/parchg.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/poscar_replace.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/postar_combination.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/potencial.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_VASP/wave_function.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_dft.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_dft2kp.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_loop.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_settings.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/_update.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/bandas_2D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/bandas_3D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/bandas_4D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/correction_file.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/etc/BibTeX.dat +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/etc/DOI.png +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/etc/Greek_alphabet.jpg +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/fermi_surface.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.bands +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.chgcar +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.dos +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.fermi_surface +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.location +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.locpot +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.orbitals +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.spin +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/input.vasprocar.spin_video +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/inputs.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/inputs/inputs_files.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/level_countour.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/orbital_texture.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/orbital_texture_vector.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_bandas_2D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_chgcar.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_dielectric_function.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_dos_pdos_ldos.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_dos_pdos_ldos_[polarizado].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_dos_pdos_ldos_[polarizado_delta].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_parchg.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_potencial.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_projecao_localizacao.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_projecao_orbitais.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_projecao_psi.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_projecao_spin.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/Grace/plot_wave_function.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/_plot_settings.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_bandas_2D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_bandas_3D_matplotlib.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_bandas_3D_plotly.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_bandas_4D_plotly.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_chgcar.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_dielectric_function.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_dos_pdos_ldos.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_dos_pdos_ldos_[polarizado].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_fermi_surface.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_level_countour.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_orbital_texture.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_orbital_texture_vector.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_parchg.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_potencial.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_projecao_localizacao.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_projecao_orbitais.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_projecao_psi.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_projecao_spin.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_spin_texture_2D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_spin_texture_3D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_spin_texture_4D.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_spin_texture_4D_[iso].py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_spin_texture_contour.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_spin_texture_contour_video.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/plot/plot_wave_function.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/projecao_localizacao.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/projecao_orbitais.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/projecao_psi.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/projecao_spin.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/spin_texture.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar/src/spin_texture_contour.py +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar.egg-info/dependency_links.txt +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar.egg-info/entry_points.txt +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar.egg-info/requires.txt +0 -0
- {vasprocar-1.1.19.136 → vasprocar-1.1.19.138}/vasprocar.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: vasprocar
|
|
3
|
-
Version: 1.1.19.
|
|
3
|
+
Version: 1.1.19.138
|
|
4
4
|
Summary: VASProcar is an open-source package written in the Python 3 programming language, which aims to provide an intuitive tool for the post-processing of the output files produced by the DFT VASP/QE codes, through an interactive user interface.
|
|
5
5
|
Home-page: https://doi.org/10.5281/zenodo.6343960
|
|
6
6
|
Download-URL: https://doi.org/10.5281/zenodo.6343960
|
|
@@ -6,7 +6,7 @@ from typing import Optional
|
|
|
6
6
|
|
|
7
7
|
setup(
|
|
8
8
|
name = "vasprocar",
|
|
9
|
-
version = "1.1.19.
|
|
9
|
+
version = "1.1.19.138",
|
|
10
10
|
entry_points={'console_scripts': ['vasprocar = vasprocar:main']},
|
|
11
11
|
description = "VASProcar is an open-source package written in the Python 3 programming language, which aims to provide an intuitive tool for the post-processing of the output files produced by the DFT VASP/QE codes, through an interactive user interface.",
|
|
12
12
|
author = "Augusto de Lelis Araujo and Renan da Paixao Maciel",
|
|
@@ -14,7 +14,7 @@ dir_vasprocar = os.path.dirname(os.path.realpath(__file__))
|
|
|
14
14
|
print(f'{dir_vasprocar}')
|
|
15
15
|
#------------------------
|
|
16
16
|
|
|
17
|
-
version = '1.1.19.
|
|
17
|
+
version = '1.1.19.138'
|
|
18
18
|
VASProcar_name = 'VASProcar version ' + version
|
|
19
19
|
|
|
20
20
|
url_1 = 'https://pypi.org/project/vasprocar'
|
|
@@ -90,7 +90,9 @@ try:
|
|
|
90
90
|
except:
|
|
91
91
|
0 == 0
|
|
92
92
|
|
|
93
|
-
for
|
|
93
|
+
loop_nprocar = len([file for file in os.listdir(dir_files) if file.startswith("PROCAR.")])
|
|
94
|
+
|
|
95
|
+
for i in range(1, (loop_nprocar +1)):
|
|
94
96
|
try:
|
|
95
97
|
f = open(dir_files + '/PROCAR.'+str(i))
|
|
96
98
|
f.close()
|
|
@@ -304,7 +304,7 @@ if ((soma_1 == 2 or soma_2 == 2) and len(inputs) == 0):
|
|
|
304
304
|
Dimensao = 4
|
|
305
305
|
#----------------------------------
|
|
306
306
|
|
|
307
|
-
if ((soma_1 == 2 or soma_2 == 2)
|
|
307
|
+
if ((soma_1 == 2 or soma_2 == 2)):
|
|
308
308
|
#-----------------
|
|
309
309
|
if (Dimensao < 4):
|
|
310
310
|
if (dk[3] == 1 and dk[4] == 1): Plano_k = 1 # kxky-plan
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: vasprocar
|
|
3
|
-
Version: 1.1.19.
|
|
3
|
+
Version: 1.1.19.138
|
|
4
4
|
Summary: VASProcar is an open-source package written in the Python 3 programming language, which aims to provide an intuitive tool for the post-processing of the output files produced by the DFT VASP/QE codes, through an interactive user interface.
|
|
5
5
|
Home-page: https://doi.org/10.5281/zenodo.6343960
|
|
6
6
|
Download-URL: https://doi.org/10.5281/zenodo.6343960
|
|
@@ -102,8 +102,6 @@ vasprocar/src/plot/plot_spin_texture_4D.py
|
|
|
102
102
|
vasprocar/src/plot/plot_spin_texture_4D_[iso].py
|
|
103
103
|
vasprocar/src/plot/plot_spin_texture_contour.py
|
|
104
104
|
vasprocar/src/plot/plot_spin_texture_contour_video.py
|
|
105
|
-
vasprocar/src/plot/plot_spin_texture_contour_video_Backup_0.py
|
|
106
|
-
vasprocar/src/plot/plot_spin_texture_contour_video_Backup_1.py
|
|
107
105
|
vasprocar/src/plot/plot_wave_function.py
|
|
108
106
|
vasprocar/src/plot/Grace/plot_bandas_2D.py
|
|
109
107
|
vasprocar/src/plot/Grace/plot_chgcar.py
|
|
@@ -1,417 +0,0 @@
|
|
|
1
|
-
|
|
2
|
-
import os
|
|
3
|
-
import numpy as np
|
|
4
|
-
import matplotlib as mpl
|
|
5
|
-
from matplotlib import cm
|
|
6
|
-
from matplotlib import pyplot as plt
|
|
7
|
-
import matplotlib.ticker as ticker
|
|
8
|
-
from mpl_toolkits.mplot3d.axes3d import Axes3D
|
|
9
|
-
from matplotlib.ticker import LinearLocator, FormatStrFormatter
|
|
10
|
-
import matplotlib.colors as colors
|
|
11
|
-
from scipy.interpolate import griddata
|
|
12
|
-
|
|
13
|
-
print(" ")
|
|
14
|
-
print("========== 2D Plot of Spin Projection (Level Contours) ==========")
|
|
15
|
-
|
|
16
|
-
if (tipo_contour < 2):
|
|
17
|
-
levels_n = [0.0]*n_contour
|
|
18
|
-
|
|
19
|
-
#--------------------------------------------------------------------------
|
|
20
|
-
# Variables that define the thickness and length of vectors in the plot ---
|
|
21
|
-
#--------------------------------------------------------------------------
|
|
22
|
-
if ((fator > -1.0 and fator < 1.0) or fator == -1.0):
|
|
23
|
-
fator == 1.0
|
|
24
|
-
|
|
25
|
-
if (fator > 0.0):
|
|
26
|
-
fator = 1/fator
|
|
27
|
-
|
|
28
|
-
if (fator < 0.0):
|
|
29
|
-
fator = (fator**2)**0.5
|
|
30
|
-
|
|
31
|
-
espessura = 0.005 # Use espessura = 100 if you only want to plot the triangular head of the arrow and eliminate the tail,
|
|
32
|
-
comprimento = 2.0*fator # which makes it easier to adjust the size/volume of the vectors by adjusting the comprimento variable.
|
|
33
|
-
#----------------------
|
|
34
|
-
|
|
35
|
-
#------------------------------------------------------------------------
|
|
36
|
-
# Test to know which directories must be correctly informed -------------
|
|
37
|
-
#------------------------------------------------------------------------
|
|
38
|
-
if os.path.isdir('src'):
|
|
39
|
-
0 == 0
|
|
40
|
-
dir_output = dir_files + '/output/Spin_Texture/'
|
|
41
|
-
else:
|
|
42
|
-
dir_files = ''
|
|
43
|
-
dir_output = ''
|
|
44
|
-
#-----------------
|
|
45
|
-
|
|
46
|
-
#---------------------------------------------------------------------------------------
|
|
47
|
-
# Checking if the "figures" subfolder exists, if it doesn't exist it will be created ---
|
|
48
|
-
#---------------------------------------------------------------------------------------
|
|
49
|
-
if os.path.isdir(dir_output + 'figures'):
|
|
50
|
-
0 == 0
|
|
51
|
-
else:
|
|
52
|
-
os.mkdir(dir_output + 'figures')
|
|
53
|
-
#----------------------------------
|
|
54
|
-
|
|
55
|
-
#======================================================================
|
|
56
|
-
#======================================================================
|
|
57
|
-
# File Structure for Plot via Matplotlib ==============================
|
|
58
|
-
#======================================================================
|
|
59
|
-
#======================================================================
|
|
60
|
-
|
|
61
|
-
spin = np.loadtxt(dir_output + 'Spin_Texture.dat')
|
|
62
|
-
spin.shape
|
|
63
|
-
|
|
64
|
-
print(" ")
|
|
65
|
-
print(".........................")
|
|
66
|
-
print("..... Wait a moment .....")
|
|
67
|
-
print(".........................")
|
|
68
|
-
print(". It might take a while .")
|
|
69
|
-
print(".........................")
|
|
70
|
-
|
|
71
|
-
#----------------------------------------------------------------------
|
|
72
|
-
|
|
73
|
-
if (esc_fermi == 0): dE_fermi = 0.0
|
|
74
|
-
if (esc_fermi == 1): dE_fermi = (Efermi)*(-1)
|
|
75
|
-
|
|
76
|
-
#----------------------------------------------------------------------
|
|
77
|
-
|
|
78
|
-
if (Plano_k == 1): # Plane (kx,ky) or (k1,k2)
|
|
79
|
-
eixo1 = spin[:,0]
|
|
80
|
-
eixo2 = spin[:,1]
|
|
81
|
-
|
|
82
|
-
if (Plano_k == 2): # Plane (kx,kz) or (k1,k3)
|
|
83
|
-
eixo1 = spin[:,0]
|
|
84
|
-
eixo2 = spin[:,2]
|
|
85
|
-
|
|
86
|
-
if (Plano_k == 3): # Plane (ky,kz) or (k2,k3)
|
|
87
|
-
eixo1 = spin[:,1]
|
|
88
|
-
eixo2 = spin[:,2]
|
|
89
|
-
|
|
90
|
-
#---------------------------
|
|
91
|
-
b = band_i
|
|
92
|
-
colum = (3 -1) + (b -1)*4 +2
|
|
93
|
-
energia = spin[:,colum-1] + dE_fermi
|
|
94
|
-
#-----------------------------------
|
|
95
|
-
Spin_Sx = spin[:,(4 + b*4)]
|
|
96
|
-
Spin_Sy = spin[:,(5 + b*4)]
|
|
97
|
-
Spin_Sz = spin[:,(6 + b*4)]
|
|
98
|
-
|
|
99
|
-
pulo = (pulo + 1)
|
|
100
|
-
levels = [0]*1
|
|
101
|
-
|
|
102
|
-
#----------------------------------------------------------------------
|
|
103
|
-
|
|
104
|
-
if (tipo_contour == 0):
|
|
105
|
-
energ_i = min(energia)
|
|
106
|
-
energ_f = max(energia)
|
|
107
|
-
for i in range(n_contour + 2):
|
|
108
|
-
if (i != 0 and i != (n_contour + 1)):
|
|
109
|
-
levels_n[i-1] = energ_i + ((energ_f - energ_i)/(n_contour + 1))*(i-1)
|
|
110
|
-
|
|
111
|
-
if (tipo_contour == 1):
|
|
112
|
-
for i in range(n_contour):
|
|
113
|
-
levels_n[i] = energ_i + ((energ_f - energ_i)/(n_contour - 1))*(i)
|
|
114
|
-
|
|
115
|
-
#----------------------------------------------------------------------
|
|
116
|
-
|
|
117
|
-
if (Plano_k == 1):
|
|
118
|
-
s1 = 'Sx'; s2 = 'Sy'; s3 = 'Sz'
|
|
119
|
-
sa = r'${S}_{x}$'; sb = r'${S}_{y}$'; sc = r'${S}_{z}$'
|
|
120
|
-
if (Plano_k == 2):
|
|
121
|
-
s1 = 'Sx'; s2 = 'Sz'; s3 = 'Sy'
|
|
122
|
-
sa = r'${S}_{x}$'; sb = r'${S}_{z}$'; sc = r'${S}_{y}$'
|
|
123
|
-
if (Plano_k == 3):
|
|
124
|
-
s1 = 'Sy'; s2 = 'Sz'; s3 = 'Sx'
|
|
125
|
-
sa = r'${S}_{y}$'; sb = r'${S}_{z}$'; sc = r'${S}_{x}$'
|
|
126
|
-
|
|
127
|
-
#----------------------------------------------------------------------
|
|
128
|
-
|
|
129
|
-
if (Dimensao < 4 and Plano_k == 1):
|
|
130
|
-
ca = r'${k}_{x}$'; cb = r'${k}_{y}$'
|
|
131
|
-
if (Dimensao < 4 and Plano_k == 2):
|
|
132
|
-
ca = r'${k}_{x}$'; cb = r'${k}_{z}$'
|
|
133
|
-
if (Dimensao < 4 and Plano_k == 3):
|
|
134
|
-
ca = r'${k}_{y}$'; cb = r'${k}_{z}$'
|
|
135
|
-
|
|
136
|
-
#--------------------------------------
|
|
137
|
-
|
|
138
|
-
if (Dimensao == 4 and Plano_k == 1):
|
|
139
|
-
ca = r'${k}_{1}$'; cb = r'${k}_{2}$'
|
|
140
|
-
if (Dimensao == 4 and Plano_k == 2):
|
|
141
|
-
ca = r'${k}_{1}$'; cb = r'${k}_{3}$'
|
|
142
|
-
if (Dimensao == 4 and Plano_k == 3):
|
|
143
|
-
ca = r'${k}_{2}$'; cb = r'${k}_{3}$'
|
|
144
|
-
|
|
145
|
-
#--------------------------------------
|
|
146
|
-
|
|
147
|
-
if (Dimensao == 1): cc = r' $(2{\pi}/{a})$'
|
|
148
|
-
if (Dimensao == 2): cc = r' $({\AA}^{-1})$'
|
|
149
|
-
if (Dimensao == 3): cc = r' $({nm}^{-1})$'
|
|
150
|
-
if (Dimensao == 4): cc = ' '
|
|
151
|
-
|
|
152
|
-
# Create meshgrid for x,y ------------------------------------------------
|
|
153
|
-
|
|
154
|
-
xi = np.linspace(min(eixo1), max(eixo1), n_d)
|
|
155
|
-
yi = np.linspace(min(eixo2), max(eixo2), n_d)
|
|
156
|
-
x_grid, y_grid = np.meshgrid(xi,yi)
|
|
157
|
-
|
|
158
|
-
e_grid = griddata((eixo1,eixo2), energia, (x_grid,y_grid), method = 'cubic')
|
|
159
|
-
|
|
160
|
-
#=========================================================================
|
|
161
|
-
# 2D Plot of Spin Projection on Level Contours: ==========================
|
|
162
|
-
#=========================================================================
|
|
163
|
-
|
|
164
|
-
for i in range (n_contour):
|
|
165
|
-
|
|
166
|
-
map_gray = (mpl.colors.ListedColormap(['darkgray', 'darkgray']))
|
|
167
|
-
|
|
168
|
-
fig = plt.figure()
|
|
169
|
-
ax = fig.add_subplot(111)
|
|
170
|
-
|
|
171
|
-
#-----------------------------------------------------------------------
|
|
172
|
-
|
|
173
|
-
if (tipo_spin == 1):
|
|
174
|
-
c1 = sa + ' | ' + ca + cc
|
|
175
|
-
c2 = cb + cc
|
|
176
|
-
L1 = sa + r'${\uparrow}$'
|
|
177
|
-
L2 = sa + r'${\downarrow}$'
|
|
178
|
-
rotulo = s1
|
|
179
|
-
|
|
180
|
-
if (tipo_spin == 2):
|
|
181
|
-
c1 = ca + cc
|
|
182
|
-
c2 = sb + ' | ' + cb + cc
|
|
183
|
-
L1 = sb + r'${\uparrow}$'
|
|
184
|
-
L2 = sb + r'${\downarrow}$'
|
|
185
|
-
rotulo = s2
|
|
186
|
-
|
|
187
|
-
if (tipo_spin == 3):
|
|
188
|
-
c1 = sc + ' | ' + ca + cc
|
|
189
|
-
c2 = cb + cc
|
|
190
|
-
L1 = sc + r'${\uparrow}$'
|
|
191
|
-
L2 = sc + r'${\downarrow}$'
|
|
192
|
-
rotulo = s3
|
|
193
|
-
|
|
194
|
-
if (tipo_spin == 4):
|
|
195
|
-
c1 = sa + ' | ' + ca + cc
|
|
196
|
-
c2 = sb + ' | ' + cb + cc
|
|
197
|
-
rotulo = s1 + s2
|
|
198
|
-
|
|
199
|
-
if (tipo_spin == 5):
|
|
200
|
-
rotulo = s1 + s3
|
|
201
|
-
c1 = sa + ' | ' + ca + cc
|
|
202
|
-
c2 = sc + ' | ' + cb + cc
|
|
203
|
-
|
|
204
|
-
if (tipo_spin == 6):
|
|
205
|
-
rotulo = s2 + s3
|
|
206
|
-
c1 = sc + ' | ' + ca + cc
|
|
207
|
-
c2 = sb + ' | ' + cb + cc
|
|
208
|
-
|
|
209
|
-
if ((Plano_k == 1 and tipo_spin == 4) or (Plano_k == 2 and tipo_spin == 5) or (Plano_k == 3 and tipo_spin == 5)):
|
|
210
|
-
L1 = r'${S}_{x}{\uparrow} + {S}_{y}{\uparrow}$'
|
|
211
|
-
L2 = r'${S}_{x|y}{\uparrow}$'
|
|
212
|
-
L3 = r'${S}_{x|y}{\uparrow} + {S}_{y|x}{\downarrow}$'
|
|
213
|
-
L4 = r'${S}_{x|y}{\downarrow}$'
|
|
214
|
-
L5 = r'${S}_{x}{\downarrow} + {S}_{y}{\downarrow}$'
|
|
215
|
-
|
|
216
|
-
if ((Plano_k == 1 and tipo_spin == 5) or (Plano_k == 2 and tipo_spin == 4) or (Plano_k == 3 and tipo_spin == 6)):
|
|
217
|
-
L1 = r'${S}_{x}{\uparrow} + {S}_{z}{\uparrow}$'
|
|
218
|
-
L2 = r'${S}_{x|z}{\uparrow}$'
|
|
219
|
-
L3 = r'${S}_{x|z}{\uparrow} + {S}_{z|x}{\downarrow}$'
|
|
220
|
-
L4 = r'${S}_{x|z}{\downarrow}$'
|
|
221
|
-
L5 = r'${S}_{x}{\downarrow} + {S}_{z}{\downarrow}$'
|
|
222
|
-
|
|
223
|
-
if ((Plano_k == 1 and tipo_spin == 6) or (Plano_k == 2 and tipo_spin == 6) or (Plano_k == 3 and tipo_spin == 4)):
|
|
224
|
-
L1 = r'${S}_{y}{\uparrow} + {S}_{z}{\uparrow}$'
|
|
225
|
-
L2 = r'${S}_{y|z}{\uparrow}$'
|
|
226
|
-
L3 = r'${S}_{y|z}{\uparrow} + {S}_{z|y}{\downarrow}$'
|
|
227
|
-
L4 = r'${S}_{y|z}{\downarrow}$'
|
|
228
|
-
L5 = r'${S}_{y}{\downarrow} + {S}_{z}{\downarrow}$'
|
|
229
|
-
|
|
230
|
-
#-----------------------------------------------------------------------
|
|
231
|
-
|
|
232
|
-
# plt.contourf(x_grid, y_grid, e_grid, levels_n, cmap = "bwr", alpha = 0.05, antialiased = True)
|
|
233
|
-
|
|
234
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
235
|
-
levels[0] = levels_n[i]
|
|
236
|
-
cs = plt.contour(x_grid, y_grid, e_grid, levels, linestyles = '-', cmap = map_gray, linewidths = 0.5, alpha = 1.0, antialiased = True)
|
|
237
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
238
|
-
points = []
|
|
239
|
-
paths = cs.collections[0].get_paths()
|
|
240
|
-
verts = [xx.vertices for xx in paths]
|
|
241
|
-
try:
|
|
242
|
-
points = np.concatenate(verts)
|
|
243
|
-
...
|
|
244
|
-
except Exception as e:
|
|
245
|
-
print(f"error detected: {e}")
|
|
246
|
-
|
|
247
|
-
#--------------------
|
|
248
|
-
if (len(points) > 0):
|
|
249
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
250
|
-
new_Sx = griddata((eixo1,eixo2), Spin_Sx, (points[::pulo,0], points[::pulo,1]))
|
|
251
|
-
new_Sy = griddata((eixo1,eixo2), Spin_Sy, (points[::pulo,0], points[::pulo,1]))
|
|
252
|
-
new_Sz = griddata((eixo1,eixo2), Spin_Sz, (points[::pulo,0], points[::pulo,1]))
|
|
253
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
254
|
-
|
|
255
|
-
if (Plano_k == 1): # Plane (kx,ky) or (k1,k2)
|
|
256
|
-
Spin_S1 = new_Sx
|
|
257
|
-
Spin_S2 = new_Sy
|
|
258
|
-
Spin_S3 = new_Sz
|
|
259
|
-
|
|
260
|
-
if (Plano_k == 2): # Plane (kx,kz) or (k1,k3)
|
|
261
|
-
Spin_S1 = new_Sx
|
|
262
|
-
Spin_S2 = new_Sz
|
|
263
|
-
Spin_S3 = new_Sy
|
|
264
|
-
|
|
265
|
-
if (Plano_k == 3): # Plane (ky,kz) or (k2,k3)
|
|
266
|
-
Spin_S1 = new_Sy
|
|
267
|
-
Spin_S2 = new_Sz
|
|
268
|
-
Spin_S3 = new_Sx
|
|
269
|
-
|
|
270
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
271
|
-
|
|
272
|
-
passo = len(new_Sx)
|
|
273
|
-
nulo = [0.0]*passo
|
|
274
|
-
angle = [0]*passo
|
|
275
|
-
|
|
276
|
-
for k in range(passo):
|
|
277
|
-
#----------------------------------------
|
|
278
|
-
if (tipo_spin == 1):
|
|
279
|
-
v_spin = [Spin_S1[k], 0.0]
|
|
280
|
-
|
|
281
|
-
if (tipo_spin == 2):
|
|
282
|
-
v_spin = [0.0, Spin_S2[k]]
|
|
283
|
-
|
|
284
|
-
if (tipo_spin == 3):
|
|
285
|
-
v_spin = [Spin_S3[k], 0.0]
|
|
286
|
-
|
|
287
|
-
if (tipo_spin == 4):
|
|
288
|
-
v_spin = [Spin_S1[k], Spin_S2[k]]
|
|
289
|
-
|
|
290
|
-
if (tipo_spin == 5):
|
|
291
|
-
v_spin = [Spin_S1[k], Spin_S3[k]]
|
|
292
|
-
|
|
293
|
-
if (tipo_spin == 6):
|
|
294
|
-
v_spin = [Spin_S3[k], Spin_S2[k]]
|
|
295
|
-
|
|
296
|
-
#---------------------------------------------------------------------------------------------------
|
|
297
|
-
# Obtaining the rotation angle (counter clockwise) of the Spin vector with respect to the x-axis ---
|
|
298
|
-
#---------------------------------------------------------------------------------------------------
|
|
299
|
-
u = v_spin / np.linalg.norm(v_spin)
|
|
300
|
-
v = [1.0, 0.0] # Reference vector for the angle. Must be kept fixed.
|
|
301
|
-
dot_product = np.dot(u, v)
|
|
302
|
-
angle[k] = np.arccos(dot_product) / np.pi * 180
|
|
303
|
-
if (u[1] < 0.0):
|
|
304
|
-
angle[k] = 360 - angle[k]
|
|
305
|
-
|
|
306
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
307
|
-
# map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","white","red","white","blue","white","blue","white","red"])
|
|
308
|
-
# map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","magenta","red","magenta","blue","magenta","blue","magenta","red"])
|
|
309
|
-
# map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","pink","red","magenta","blue","cyan","blue","magenta","red"])
|
|
310
|
-
map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","pink","pink","pink","red","magenta","magenta","magenta","blue",
|
|
311
|
-
"cyan","cyan","cyan","blue","magenta","magenta","magenta","red"])
|
|
312
|
-
norma = colors.Normalize(0, 360)
|
|
313
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
314
|
-
if (tipo_spin == 1):
|
|
315
|
-
cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, nulo, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
|
|
316
|
-
alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
|
|
317
|
-
|
|
318
|
-
if (tipo_spin == 2):
|
|
319
|
-
cp = ax.quiver(points[::pulo,0], points[::pulo,1], nulo, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
|
|
320
|
-
alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
|
|
321
|
-
|
|
322
|
-
if (tipo_spin == 3):
|
|
323
|
-
cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, nulo, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
|
|
324
|
-
alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
|
|
325
|
-
|
|
326
|
-
if (tipo_spin == 4):
|
|
327
|
-
cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
|
|
328
|
-
alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
|
|
329
|
-
|
|
330
|
-
if (tipo_spin == 5):
|
|
331
|
-
cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S3, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
|
|
332
|
-
alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
|
|
333
|
-
|
|
334
|
-
if (tipo_spin == 6):
|
|
335
|
-
cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
|
|
336
|
-
alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
|
|
337
|
-
|
|
338
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
339
|
-
# plt.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle,
|
|
340
|
-
# scale_units = "xy", angles = "xy", pivot = 'tail', cmap = map_red_blue, norm = norma, linewidths = 0.5, edgecolor = 'black', alpha = transp)
|
|
341
|
-
#---------------------------------------------------------------------------------------------------------------------------------------
|
|
342
|
-
|
|
343
|
-
if (tipo_spin < 4):
|
|
344
|
-
cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, boundaries = [0, 180, 360], ticks = [90, 270])
|
|
345
|
-
cbar.ax.set_yticklabels([L1, L2])
|
|
346
|
-
|
|
347
|
-
if (tipo_spin > 3):
|
|
348
|
-
cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, values = [45, 90, 135, 180, 225], ticks = [45, 90, 135, 180, 225])
|
|
349
|
-
cbar.ax.set_yticklabels([L1, L2, L3, L4, L5])
|
|
350
|
-
|
|
351
|
-
# ax.clabel(cs, inline = False, colors = 'black', fontsize = 8)
|
|
352
|
-
|
|
353
|
-
temp_level = f'{levels_n[i]:_.4f}'
|
|
354
|
-
|
|
355
|
-
if (levels_n[i] <= 0.0): c_energ = temp_level
|
|
356
|
-
if (levels_n[i] > 0.0): c_energ = '+' + temp_level
|
|
357
|
-
|
|
358
|
-
c_band = str(band_i)
|
|
359
|
-
|
|
360
|
-
if (esc_fermi == 0): plt.title('Band ' + str(band_i) + ': $E$ = ' + c_energ + ' eV')
|
|
361
|
-
if (esc_fermi == 1): plt.title('Band ' + str(band_i) + ': $E-E_{f}$ = ' + c_energ + ' eV')
|
|
362
|
-
|
|
363
|
-
#----------------------------------------------------------------------
|
|
364
|
-
|
|
365
|
-
ax.set_xlabel(c1)
|
|
366
|
-
ax.set_ylabel(c2)
|
|
367
|
-
ax.set_box_aspect(1.0/1)
|
|
368
|
-
|
|
369
|
-
#----------------------------------------------------------------------
|
|
370
|
-
|
|
371
|
-
m = (i + 1)
|
|
372
|
-
if (m < 10): number = '[000' + str(m) + ']'
|
|
373
|
-
if (m >= 10 and m < 100): number = '[00' + str(m) + ']'
|
|
374
|
-
if (m >= 100 and m < 1000): number = '[0' + str(m) + ']'
|
|
375
|
-
if (m >= 1000): number = '[' + str(m) + ']'
|
|
376
|
-
|
|
377
|
-
if (save_png == 1): plt.savefig(dir_output + 'figures/Spin_Texture_video_' + number + '_[' + c_energ + '].png', dpi = 300, bbox_inches='tight', pad_inches=0)
|
|
378
|
-
if (save_pdf == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].pdf', dpi = 600, bbox_inches='tight', pad_inches=0)
|
|
379
|
-
if (save_svg == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].svg', dpi = 600, bbox_inches='tight', pad_inches=0)
|
|
380
|
-
if (save_eps == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].eps', dpi = 600, bbox_inches='tight', pad_inches=0)
|
|
381
|
-
|
|
382
|
-
fig = plt.gcf()
|
|
383
|
-
fig.set_size_inches(8,6)
|
|
384
|
-
# plt.show()
|
|
385
|
-
plt.close()
|
|
386
|
-
|
|
387
|
-
print(" ")
|
|
388
|
-
print("=== Creating a video (.mp4) of the 2D Spin Texture (Level Contours) ===")
|
|
389
|
-
print(" ")
|
|
390
|
-
|
|
391
|
-
#======================================================================
|
|
392
|
-
# Creating a video with the generated images (moviepy): ===============
|
|
393
|
-
#======================================================================
|
|
394
|
-
|
|
395
|
-
import moviepy.video.io.ImageSequenceClip
|
|
396
|
-
|
|
397
|
-
if (dir_output != ''):
|
|
398
|
-
image_output = dir_output + 'figures'
|
|
399
|
-
if (dir_output == ''):
|
|
400
|
-
image_output = os.getcwd() + '/figures'
|
|
401
|
-
|
|
402
|
-
image_files = [os.path.join(image_output,img)
|
|
403
|
-
for img in sorted(os.listdir(image_output))
|
|
404
|
-
if img.endswith('.png')]
|
|
405
|
-
|
|
406
|
-
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(image_files, fps = n_fig)
|
|
407
|
-
|
|
408
|
-
clip.write_videofile(dir_output + 'STexture_video.mp4')
|
|
409
|
-
|
|
410
|
-
#---------------------------------------------------------------------------
|
|
411
|
-
if (dir_output == ''):
|
|
412
|
-
print(" ")
|
|
413
|
-
print("========================== Concluded! ==========================")
|
|
414
|
-
#---------------------------------------------------------------------------
|
|
415
|
-
|
|
416
|
-
# VASProcar Copyright (C) 2023
|
|
417
|
-
# GNU GPL-3.0 license
|