vasprocar 1.1.19.102__tar.gz → 1.1.19.104__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vasprocar might be problematic. Click here for more details.

Files changed (118) hide show
  1. {vasprocar-1.1.19.102/vasprocar.egg-info → vasprocar-1.1.19.104}/PKG-INFO +8 -1
  2. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/setup.py +1 -1
  3. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/__main__.py +1 -1
  4. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/_nscf.py +21 -17
  5. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_dos_pdos_ldos_[polarizado].py +2 -2
  6. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_spin_texture_contour.py +94 -87
  7. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_spin_texture_contour_video.py +117 -109
  8. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104/vasprocar.egg-info}/PKG-INFO +8 -1
  9. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/LICENSE.txt +0 -0
  10. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/README.md +0 -0
  11. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/setup.cfg +0 -0
  12. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/__init__.py +0 -0
  13. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/_info.py +0 -0
  14. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/_info_b.py +0 -0
  15. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/_label.py +0 -0
  16. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/_nscf.py +0 -0
  17. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/_var_kpoints.py +0 -0
  18. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/angular_momentum_plot/plot_projecao_angular_momentum.py +0 -0
  19. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/angular_momentum_plot/plot_projecao_angular_momentum_grace.py +0 -0
  20. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/contribuicao.py +0 -0
  21. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/dos_pdos_ldos.py +0 -0
  22. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/dos_plot/Grace/plot_dos_pdos_ldos.py +0 -0
  23. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/dos_plot/Grace/plot_dos_pdos_ldos_[polarizado].py +0 -0
  24. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/dos_plot/Grace/plot_dos_pdos_ldos_[polarizado_delta].py +0 -0
  25. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/dos_plot/plot_dos_pdos_ldos.py +0 -0
  26. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/dos_plot/plot_dos_pdos_ldos_[polarizado].py +0 -0
  27. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/kpoints_2D_3D.py +0 -0
  28. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_QE/projecao_angular_momentum.py +0 -0
  29. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/_info.py +0 -0
  30. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/_info_b.py +0 -0
  31. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/_label.py +0 -0
  32. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/_var_kpoints.py +0 -0
  33. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/chgcar.py +0 -0
  34. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/contcar_info.py +0 -0
  35. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/contribuicao.py +0 -0
  36. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/dielectric_function.py +0 -0
  37. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/dos_pdos_ldos.py +0 -0
  38. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/dos_pdos_ldos_[polarizado].py +0 -0
  39. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/kpoints_2D_3D.py +0 -0
  40. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/parchg.py +0 -0
  41. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/poscar_replace.py +0 -0
  42. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/postar_combination.py +0 -0
  43. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/potencial.py +0 -0
  44. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_VASP/wave_function.py +0 -0
  45. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_dft.py +0 -0
  46. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_dft2kp.py +0 -0
  47. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_loop.py +0 -0
  48. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_settings.py +0 -0
  49. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/_update.py +0 -0
  50. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/bandas_2D.py +0 -0
  51. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/bandas_3D.py +0 -0
  52. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/bandas_4D.py +0 -0
  53. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/correction_file.py +0 -0
  54. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/etc/BibTeX.dat +0 -0
  55. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/etc/DOI.png +0 -0
  56. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/etc/Greek_alphabet.jpg +0 -0
  57. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/fermi_surface.py +0 -0
  58. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.bands +0 -0
  59. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.chgcar +0 -0
  60. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.dos +0 -0
  61. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.location +0 -0
  62. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.locpot +0 -0
  63. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.orbitals +0 -0
  64. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.spin +0 -0
  65. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/input.vasprocar.spin_video +0 -0
  66. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/inputs.py +0 -0
  67. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/inputs/inputs_files.py +0 -0
  68. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/level_countour.py +0 -0
  69. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/orbital_texture.py +0 -0
  70. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/orbital_texture_vector.py +0 -0
  71. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_bandas_2D.py +0 -0
  72. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_chgcar.py +0 -0
  73. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_dielectric_function.py +0 -0
  74. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_dos_pdos_ldos.py +0 -0
  75. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_dos_pdos_ldos_[polarizado].py +0 -0
  76. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_dos_pdos_ldos_[polarizado_delta].py +0 -0
  77. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_parchg.py +0 -0
  78. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_potencial.py +0 -0
  79. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_projecao_localizacao.py +0 -0
  80. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_projecao_orbitais.py +0 -0
  81. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_projecao_psi.py +0 -0
  82. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_projecao_spin.py +0 -0
  83. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/Grace/plot_wave_function.py +0 -0
  84. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/_plot_settings.py +0 -0
  85. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_bandas_2D.py +0 -0
  86. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_bandas_3D_matplotlib.py +0 -0
  87. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_bandas_3D_plotly.py +0 -0
  88. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_bandas_4D_plotly.py +0 -0
  89. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_chgcar.py +0 -0
  90. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_dielectric_function.py +0 -0
  91. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_dos_pdos_ldos.py +0 -0
  92. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_fermi_surface.py +0 -0
  93. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_level_countour.py +0 -0
  94. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_orbital_texture.py +0 -0
  95. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_orbital_texture_vector.py +0 -0
  96. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_parchg.py +0 -0
  97. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_potencial.py +0 -0
  98. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_projecao_localizacao.py +0 -0
  99. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_projecao_orbitais.py +0 -0
  100. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_projecao_psi.py +0 -0
  101. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_projecao_spin.py +0 -0
  102. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_spin_texture_2D.py +0 -0
  103. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_spin_texture_3D.py +0 -0
  104. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_spin_texture_4D.py +0 -0
  105. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_spin_texture_4D_[iso].py +0 -0
  106. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/plot/plot_wave_function.py +0 -0
  107. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/projecao_localizacao.py +0 -0
  108. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/projecao_orbitais.py +0 -0
  109. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/projecao_psi.py +0 -0
  110. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/projecao_spin.py +0 -0
  111. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/spin_texture.py +0 -0
  112. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/spin_texture_contour.py +0 -0
  113. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar/src/spin_texture_contour_video.py +0 -0
  114. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar.egg-info/SOURCES.txt +0 -0
  115. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar.egg-info/dependency_links.txt +0 -0
  116. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar.egg-info/entry_points.txt +0 -0
  117. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar.egg-info/requires.txt +0 -0
  118. {vasprocar-1.1.19.102 → vasprocar-1.1.19.104}/vasprocar.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vasprocar
3
- Version: 1.1.19.102
3
+ Version: 1.1.19.104
4
4
  Summary: VASProcar is an open-source package written in the Python 3 programming language, which aims to provide an intuitive tool for the post-processing of the output files produced by the DFT VASP/QE codes, through an interactive user interface.
5
5
  Home-page: https://doi.org/10.5281/zenodo.6343960
6
6
  Download-URL: https://doi.org/10.5281/zenodo.6343960
@@ -9,6 +9,13 @@ Author-email: augusto-lelis@outlook.com, renan.maciel@physics.uu.se
9
9
  License: GNU GPLv3
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE.txt
12
+ Requires-Dist: numpy>=1.24.1
13
+ Requires-Dist: scipy>=1.10.0
14
+ Requires-Dist: matplotlib>=3.7.0
15
+ Requires-Dist: plotly>=5.13.0
16
+ Requires-Dist: moviepy>=1.0.2
17
+ Requires-Dist: kaleido>=0.2.1
18
+ Requires-Dist: requests>=2.31.0
12
19
 
13
20
  # VASProcar Copyright (C) 2023 - GNU GPL-3.0 license
14
21
 
@@ -6,7 +6,7 @@ from typing import Optional
6
6
 
7
7
  setup(
8
8
  name = "vasprocar",
9
- version = "1.1.19.102",
9
+ version = "1.1.19.104",
10
10
  entry_points={'console_scripts': ['vasprocar = vasprocar:main']},
11
11
  description = "VASProcar is an open-source package written in the Python 3 programming language, which aims to provide an intuitive tool for the post-processing of the output files produced by the DFT VASP/QE codes, through an interactive user interface.",
12
12
  author = "Augusto de Lelis Araujo and Renan da Paixao Maciel",
@@ -14,7 +14,7 @@ dir_vasprocar = os.path.dirname(os.path.realpath(__file__))
14
14
  print(f'{dir_vasprocar}')
15
15
  #------------------------
16
16
 
17
- version = '1.1.19.102'
17
+ version = '1.1.19.104'
18
18
  VASProcar_name = 'VASProcar version ' + version
19
19
 
20
20
  url_1 = 'https://pypi.org/project/vasprocar'
@@ -12,17 +12,21 @@ inform = open(dir_files + '/output/informacoes.txt', "a")
12
12
  file_bands = open(dir_files + '/output/Bandas.dat', "w")
13
13
  #-------------------------------------------------------------------------
14
14
  if (read_orb == 1):
15
- file_orb = open(dir_files + '/output/Orbitais.dat', "a")
15
+ file_orb = open(dir_files + '/output/Orbitais.dat', "w")
16
+ file_orb.close()
16
17
  #-------------------------------------------------------------------------
17
18
  if (read_spin == 1):
18
- file_spin = open(dir_files + '/output/Spin.dat', "a")
19
+ file_spin = open(dir_files + '/output/Spin.dat', "w")
20
+ file_spin.close()
19
21
  #-------------------------------------------------------------------------
20
22
  if (read_psi == 1):
21
- file_psi = open(dir_files + '/output/Psi/Psi.dat', "a")
23
+ file_psi = open(dir_files + '/output/Psi/Psi.dat', "w")
24
+ file_psi.close()
22
25
  psi = [0.0]*(6+1)
23
26
  #-------------------------------------------------------------------------
24
27
  if (read_reg == 1):
25
- file_reg = open(dir_files + '/output/Localizacao/Localizacao.dat', 'a')
28
+ file_reg = open(dir_files + '/output/Localizacao/Localizacao.dat', 'w')
29
+ file_reg.close()
26
30
  reg = [0.0]*(6+1)
27
31
  #-------------------------------------------------------------------------
28
32
 
@@ -112,6 +116,13 @@ for i in range (1,(loop+1)):
112
116
 
113
117
  for wp in range(1, (n_procar+1)):
114
118
 
119
+ #----------------------------------------------------------------------------
120
+ if (read_orb == 1): file_orb = open(dir_files + '/output/Orbitais.dat', "a")
121
+ if (read_spin == 1): file_spin = open(dir_files + '/output/Spin.dat', "a")
122
+ if (read_psi == 1): file_psi = open(dir_files + '/output/Psi/Psi.dat', "a")
123
+ if (read_reg == 1): file_reg = open(dir_files + '/output/Localizacao/Localizacao.dat', 'a')
124
+ #--------------------------------------------------------------------------------------------
125
+
115
126
  try: f = open(dir_files + '/PROCAR'); f.close(); teste = 'sim'
116
127
  except: teste = 'nao'
117
128
 
@@ -590,19 +601,12 @@ for wp in range(1, (n_procar+1)):
590
601
 
591
602
  #-------------
592
603
  procar.close()
593
- #------------------
594
- if (read_orb == 1):
595
- file_orb.close()
596
- #-------------------
597
- if (read_spin == 1):
598
- file_spin.close()
599
- #-------------------
600
- if (read_psi == 1):
601
- file_psi.close()
602
- #------------------
603
- if (read_reg == 1):
604
- file_reg.close()
605
- #-------------------
604
+ #------------------------------------
605
+ if (read_orb == 1): file_orb.close()
606
+ if (read_spin == 1): file_spin.close()
607
+ if (read_psi == 1): file_psi.close()
608
+ if (read_reg == 1): file_reg.close()
609
+ #------------------------------------
606
610
 
607
611
  ##########################################################################################
608
612
  ### End of the PROCAR files Loop #########################################################
@@ -324,7 +324,7 @@ for l in range (1,(loop+1)): # Loop for analysis of projections
324
324
  #====================================================================================================================
325
325
 
326
326
  plt.xlim((dos_min, dos_max))
327
- plt.ylim((energ_min + dE_fermi, energ_max + dE_fermi))
327
+ plt.ylim((E_min + dE_fermi, E_max + dE_fermi))
328
328
 
329
329
  plt.xlabel("Density of States")
330
330
 
@@ -513,7 +513,7 @@ for l in range (1,(loop+1)): # Loop for analysis of projections
513
513
  #====================================================================================================================
514
514
 
515
515
  plt.xlim((dos_min, dos_max))
516
- plt.ylim((energ_min + dE_fermi , energ_max + dE_fermi))
516
+ plt.ylim((E_min + dE_fermi, E_max + dE_fermi))
517
517
 
518
518
  plt.xlabel("Magnetization (DOS_Up - DOS_Down)")
519
519
 
@@ -249,107 +249,114 @@ for i in range (1,(6+1)):
249
249
  levels[0] = levels_n[j]
250
250
  cs = plt.contour(x_grid, y_grid, e_grid, levels, linestyles = '-', cmap = map_gray, linewidths = 0.5, alpha = 1.0, antialiased = True)
251
251
  #---------------------------------------------------------------------------------------------------------------------------------------
252
+ points = []
252
253
  paths = cs.collections[0].get_paths()
253
254
  verts = [xx.vertices for xx in paths]
254
- points = np.concatenate(verts)
255
- #---------------------------------------------------------------------------------------------------------------------------------------
256
- new_Sx = griddata((eixo1,eixo2), Spin_Sx, (points[::pulo,0], points[::pulo,1]))
257
- new_Sy = griddata((eixo1,eixo2), Spin_Sy, (points[::pulo,0], points[::pulo,1]))
258
- new_Sz = griddata((eixo1,eixo2), Spin_Sz, (points[::pulo,0], points[::pulo,1]))
259
- #---------------------------------------------------------------------------------------------------------------------------------------
260
-
261
- if (Plano_k == 1): # Plane (kx,ky) or (k1,k2)
262
- Spin_S1 = new_Sx
263
- Spin_S2 = new_Sy
264
- Spin_S3 = new_Sz
255
+ try:
256
+ points = np.concatenate(verts)
257
+ ...
258
+ except Exception as e:
259
+ 0 == 0
260
+
261
+ if (len(points) > 0):
262
+ #---------------------------------------------------------------------------------------------------------------------------------------
263
+ new_Sx = griddata((eixo1,eixo2), Spin_Sx, (points[::pulo,0], points[::pulo,1]))
264
+ new_Sy = griddata((eixo1,eixo2), Spin_Sy, (points[::pulo,0], points[::pulo,1]))
265
+ new_Sz = griddata((eixo1,eixo2), Spin_Sz, (points[::pulo,0], points[::pulo,1]))
266
+ #---------------------------------------------------------------------------------------------------------------------------------------
267
+
268
+ if (Plano_k == 1): # Plane (kx,ky) or (k1,k2)
269
+ Spin_S1 = new_Sx
270
+ Spin_S2 = new_Sy
271
+ Spin_S3 = new_Sz
265
272
 
266
- if (Plano_k == 2): # Plane (kx,kz) or (k1,k3)
267
- Spin_S1 = new_Sx
268
- Spin_S2 = new_Sz
269
- Spin_S3 = new_Sy
273
+ if (Plano_k == 2): # Plane (kx,kz) or (k1,k3)
274
+ Spin_S1 = new_Sx
275
+ Spin_S2 = new_Sz
276
+ Spin_S3 = new_Sy
270
277
 
271
- if (Plano_k == 3): # Plane (ky,kz) or (k2,k3)
272
- Spin_S1 = new_Sy
273
- Spin_S2 = new_Sz
274
- Spin_S3 = new_Sx
278
+ if (Plano_k == 3): # Plane (ky,kz) or (k2,k3)
279
+ Spin_S1 = new_Sy
280
+ Spin_S2 = new_Sz
281
+ Spin_S3 = new_Sx
275
282
 
276
- #---------------------------------------------------------------------------------------------------------------------------------------
283
+ #---------------------------------------------------------------------------------------------------------------------------------------
277
284
 
278
- passo = len(new_Sx)
279
- nulo = [0.0]*passo
280
- angle = [0]*passo
285
+ passo = len(new_Sx)
286
+ nulo = [0.0]*passo
287
+ angle = [0]*passo
281
288
 
282
- for k in range(passo):
283
- #----------------------------------------
284
- if (i == 1):
285
- v_spin = [Spin_S1[k], 0.0]
289
+ for k in range(passo):
290
+ #----------------------------------------
291
+ if (i == 1):
292
+ v_spin = [Spin_S1[k], 0.0]
286
293
 
287
- if (i == 2):
288
- v_spin = [0.0, Spin_S2[k]]
294
+ if (i == 2):
295
+ v_spin = [0.0, Spin_S2[k]]
289
296
 
290
- if (i == 3):
291
- v_spin = [Spin_S3[k], 0.0]
297
+ if (i == 3):
298
+ v_spin = [Spin_S3[k], 0.0]
292
299
 
293
- if (i == 4):
294
- v_spin = [Spin_S1[k], Spin_S2[k]]
295
-
296
- if (i == 5):
297
- v_spin = [Spin_S1[k], Spin_S3[k]]
298
-
299
- if (i == 6):
300
- v_spin = [Spin_S3[k], Spin_S2[k]]
301
-
302
- #---------------------------------------------------------------------------------------------------
303
- # Obtaining the rotation angle (counter clockwise) of the Spin vector with respect to the x-axis ---
304
- #---------------------------------------------------------------------------------------------------
305
- u = v_spin / np.linalg.norm(v_spin)
306
- v = [1.0, 0.0] # Reference vector for the angle. Must be kept fixed.
307
- dot_product = np.dot(u, v)
308
- angle[k] = np.arccos(dot_product) / np.pi * 180
309
- if (u[1] < 0.0):
310
- angle[k] = 360 - angle[k]
311
-
312
- #-------------------------------
313
- norma = colors.Normalize(0, 360)
314
- #-------------------------------
315
-
316
- if (i == 1):
317
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, nulo, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
318
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
300
+ if (i == 4):
301
+ v_spin = [Spin_S1[k], Spin_S2[k]]
302
+
303
+ if (i == 5):
304
+ v_spin = [Spin_S1[k], Spin_S3[k]]
305
+
306
+ if (i == 6):
307
+ v_spin = [Spin_S3[k], Spin_S2[k]]
308
+
309
+ #---------------------------------------------------------------------------------------------------
310
+ # Obtaining the rotation angle (counter clockwise) of the Spin vector with respect to the x-axis ---
311
+ #---------------------------------------------------------------------------------------------------
312
+ u = v_spin / np.linalg.norm(v_spin)
313
+ v = [1.0, 0.0] # Reference vector for the angle. Must be kept fixed.
314
+ dot_product = np.dot(u, v)
315
+ angle[k] = np.arccos(dot_product) / np.pi * 180
316
+ if (u[1] < 0.0):
317
+ angle[k] = 360 - angle[k]
318
+
319
+ #-------------------------------
320
+ norma = colors.Normalize(0, 360)
321
+ #-------------------------------
322
+
323
+ if (i == 1):
324
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, nulo, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
325
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
319
326
 
320
- if (i == 2):
321
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], nulo, Spin_S2, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
322
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
327
+ if (i == 2):
328
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], nulo, Spin_S2, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
329
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
323
330
 
324
- if (i == 3):
325
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, nulo, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
326
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
331
+ if (i == 3):
332
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, nulo, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
333
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
327
334
 
328
- if (i == 4):
329
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
330
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
335
+ if (i == 4):
336
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
337
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
331
338
 
332
- # if (i == 4):
333
- # #--------------------------------------
334
- # norma_sz = colors.Normalize(-0.5, +0.5)
335
- # map_sz = colors.LinearSegmentedColormap.from_list("", ["blue","blue","blue","blue","blue","blue","blue","blue","blue","blue","white",
336
- # "red","red","red","red","red","red","red","red","red","red"])
337
- # #------------------------------------------------------------------------------
338
- # cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, Spin_S3, cmap = map_sz, norm = norma_sz, linewidths = 0.25, edgecolor = 'black',
339
- # alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
340
-
341
- if (i == 5):
342
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S3, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
343
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
344
-
345
- if (i == 6):
346
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, Spin_S2, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
347
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
348
-
349
- #---------------------------------------------------------------------------------------------------------------------------------------
350
- # plt.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle,
351
- # scale_units = "xy", angles = "xy", pivot = 'tail', cmap = map_red_blue, norm = norma, linewidths = 0.5, edgecolor = 'black', alpha = transp)
352
- #---------------------------------------------------------------------------------------------------------------------------------------
339
+ # if (i == 4):
340
+ # #--------------------------------------
341
+ # norma_sz = colors.Normalize(-0.5, +0.5)
342
+ # map_sz = colors.LinearSegmentedColormap.from_list("", ["blue","blue","blue","blue","blue","blue","blue","blue","blue","blue","white",
343
+ # "red","red","red","red","red","red","red","red","red","red"])
344
+ # #------------------------------------------------------------------------------
345
+ # cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, Spin_S3, cmap = map_sz, norm = norma_sz, linewidths = 0.25, edgecolor = 'black',
346
+ # alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
347
+
348
+ if (i == 5):
349
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S3, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
350
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
351
+
352
+ if (i == 6):
353
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, Spin_S2, angle, cmap = map_color, norm = norma, linewidths = 0.25, edgecolor = 'black',
354
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
355
+
356
+ #---------------------------------------------------------------------------------------------------------------------------------------
357
+ # plt.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle,
358
+ # scale_units = "xy", angles = "xy", pivot = 'tail', cmap = map_red_blue, norm = norma, linewidths = 0.5, edgecolor = 'black', alpha = transp)
359
+ #---------------------------------------------------------------------------------------------------------------------------------------
353
360
 
354
361
  if (j == 1 and b == 1 and i < 4):
355
362
  cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, boundaries = [0, 180, 360], ticks = [90, 270])
@@ -231,145 +231,153 @@ for i in range (n_contour):
231
231
  levels[0] = levels_n[i]
232
232
  cs = plt.contour(x_grid, y_grid, e_grid, levels, linestyles = '-', cmap = map_gray, linewidths = 0.5, alpha = 1.0, antialiased = True)
233
233
  #---------------------------------------------------------------------------------------------------------------------------------------
234
+ points = []
234
235
  paths = cs.collections[0].get_paths()
235
236
  verts = [xx.vertices for xx in paths]
236
- points = np.concatenate(verts)
237
- #---------------------------------------------------------------------------------------------------------------------------------------
238
- new_Sx = griddata((eixo1,eixo2), Spin_Sx, (points[::pulo,0], points[::pulo,1]))
239
- new_Sy = griddata((eixo1,eixo2), Spin_Sy, (points[::pulo,0], points[::pulo,1]))
240
- new_Sz = griddata((eixo1,eixo2), Spin_Sz, (points[::pulo,0], points[::pulo,1]))
241
- #---------------------------------------------------------------------------------------------------------------------------------------
242
-
243
- if (Plano_k == 1): # Plane (kx,ky) or (k1,k2)
244
- Spin_S1 = new_Sx
245
- Spin_S2 = new_Sy
246
- Spin_S3 = new_Sz
237
+ try:
238
+ points = np.concatenate(verts)
239
+ ...
240
+ except Exception as e:
241
+ print(f"error detected: {e}")
242
+
243
+ #--------------------
244
+ if (len(points) > 0):
245
+ #---------------------------------------------------------------------------------------------------------------------------------------
246
+ new_Sx = griddata((eixo1,eixo2), Spin_Sx, (points[::pulo,0], points[::pulo,1]))
247
+ new_Sy = griddata((eixo1,eixo2), Spin_Sy, (points[::pulo,0], points[::pulo,1]))
248
+ new_Sz = griddata((eixo1,eixo2), Spin_Sz, (points[::pulo,0], points[::pulo,1]))
249
+ #---------------------------------------------------------------------------------------------------------------------------------------
250
+
251
+ if (Plano_k == 1): # Plane (kx,ky) or (k1,k2)
252
+ Spin_S1 = new_Sx
253
+ Spin_S2 = new_Sy
254
+ Spin_S3 = new_Sz
247
255
 
248
- if (Plano_k == 2): # Plane (kx,kz) or (k1,k3)
249
- Spin_S1 = new_Sx
250
- Spin_S2 = new_Sz
251
- Spin_S3 = new_Sy
256
+ if (Plano_k == 2): # Plane (kx,kz) or (k1,k3)
257
+ Spin_S1 = new_Sx
258
+ Spin_S2 = new_Sz
259
+ Spin_S3 = new_Sy
252
260
 
253
- if (Plano_k == 3): # Plane (ky,kz) or (k2,k3)
254
- Spin_S1 = new_Sy
255
- Spin_S2 = new_Sz
256
- Spin_S3 = new_Sx
261
+ if (Plano_k == 3): # Plane (ky,kz) or (k2,k3)
262
+ Spin_S1 = new_Sy
263
+ Spin_S2 = new_Sz
264
+ Spin_S3 = new_Sx
257
265
 
258
- #---------------------------------------------------------------------------------------------------------------------------------------
266
+ #---------------------------------------------------------------------------------------------------------------------------------------
259
267
 
260
- passo = len(new_Sx)
261
- nulo = [0.0]*passo
262
- angle = [0]*passo
268
+ passo = len(new_Sx)
269
+ nulo = [0.0]*passo
270
+ angle = [0]*passo
263
271
 
264
- for k in range(passo):
265
- #----------------------------------------
266
- if (tipo_spin == 1):
267
- v_spin = [Spin_S1[k], 0.0]
272
+ for k in range(passo):
273
+ #----------------------------------------
274
+ if (tipo_spin == 1):
275
+ v_spin = [Spin_S1[k], 0.0]
268
276
 
269
- if (tipo_spin == 2):
270
- v_spin = [0.0, Spin_S2[k]]
277
+ if (tipo_spin == 2):
278
+ v_spin = [0.0, Spin_S2[k]]
271
279
 
272
- if (tipo_spin == 3):
273
- v_spin = [Spin_S3[k], 0.0]
280
+ if (tipo_spin == 3):
281
+ v_spin = [Spin_S3[k], 0.0]
274
282
 
275
- if (tipo_spin == 4):
276
- v_spin = [Spin_S1[k], Spin_S2[k]]
277
-
278
- if (tipo_spin == 5):
279
- v_spin = [Spin_S1[k], Spin_S3[k]]
280
-
281
- if (tipo_spin == 6):
282
- v_spin = [Spin_S3[k], Spin_S2[k]]
283
-
284
- #---------------------------------------------------------------------------------------------------
285
- # Obtaining the rotation angle (counter clockwise) of the Spin vector with respect to the x-axis ---
286
- #---------------------------------------------------------------------------------------------------
287
- u = v_spin / np.linalg.norm(v_spin)
288
- v = [1.0, 0.0] # Reference vector for the angle. Must be kept fixed.
289
- dot_product = np.dot(u, v)
290
- angle[k] = np.arccos(dot_product) / np.pi * 180
291
- if (u[1] < 0.0):
292
- angle[k] = 360 - angle[k]
293
-
294
- #---------------------------------------------------------------------------------------------------------------------------------------
295
- # map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","white","red","white","blue","white","blue","white","red"])
296
- # map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","magenta","red","magenta","blue","magenta","blue","magenta","red"])
297
- # map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","pink","red","magenta","blue","cyan","blue","magenta","red"])
298
- map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","pink","pink","pink","red","magenta","magenta","magenta","blue",
283
+ if (tipo_spin == 4):
284
+ v_spin = [Spin_S1[k], Spin_S2[k]]
285
+
286
+ if (tipo_spin == 5):
287
+ v_spin = [Spin_S1[k], Spin_S3[k]]
288
+
289
+ if (tipo_spin == 6):
290
+ v_spin = [Spin_S3[k], Spin_S2[k]]
291
+
292
+ #---------------------------------------------------------------------------------------------------
293
+ # Obtaining the rotation angle (counter clockwise) of the Spin vector with respect to the x-axis ---
294
+ #---------------------------------------------------------------------------------------------------
295
+ u = v_spin / np.linalg.norm(v_spin)
296
+ v = [1.0, 0.0] # Reference vector for the angle. Must be kept fixed.
297
+ dot_product = np.dot(u, v)
298
+ angle[k] = np.arccos(dot_product) / np.pi * 180
299
+ if (u[1] < 0.0):
300
+ angle[k] = 360 - angle[k]
301
+
302
+ #---------------------------------------------------------------------------------------------------------------------------------------
303
+ # map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","white","red","white","blue","white","blue","white","red"])
304
+ # map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","magenta","red","magenta","blue","magenta","blue","magenta","red"])
305
+ # map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","pink","red","magenta","blue","cyan","blue","magenta","red"])
306
+ map_red_blue = colors.LinearSegmentedColormap.from_list("", ["red","pink","pink","pink","red","magenta","magenta","magenta","blue",
299
307
  "cyan","cyan","cyan","blue","magenta","magenta","magenta","red"])
300
- norma = colors.Normalize(0, 360)
301
- #---------------------------------------------------------------------------------------------------------------------------------------
302
- if (tipo_spin == 1):
303
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, nulo, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
304
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
308
+ norma = colors.Normalize(0, 360)
309
+ #---------------------------------------------------------------------------------------------------------------------------------------
310
+ if (tipo_spin == 1):
311
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, nulo, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
312
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
305
313
 
306
- if (tipo_spin == 2):
307
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], nulo, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
308
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
314
+ if (tipo_spin == 2):
315
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], nulo, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
316
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
309
317
 
310
- if (tipo_spin == 3):
311
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, nulo, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
312
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
318
+ if (tipo_spin == 3):
319
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, nulo, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
320
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
313
321
 
314
- if (tipo_spin == 4):
315
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
316
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
322
+ if (tipo_spin == 4):
323
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
324
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
317
325
 
318
- if (tipo_spin == 5):
319
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S3, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
320
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
326
+ if (tipo_spin == 5):
327
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S3, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
328
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
321
329
 
322
- if (tipo_spin == 6):
323
- cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
324
- alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
330
+ if (tipo_spin == 6):
331
+ cp = ax.quiver(points[::pulo,0], points[::pulo,1], Spin_S3, Spin_S2, angle, cmap = map_red_blue, norm = norma, linewidths = 0.25, edgecolor = 'black',
332
+ alpha = transp, width = espessura, scale = comprimento, scale_units = 'inches', pivot = 'tail', minlength = 0.0)
325
333
 
326
- #---------------------------------------------------------------------------------------------------------------------------------------
327
- # plt.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle,
328
- # scale_units = "xy", angles = "xy", pivot = 'tail', cmap = map_red_blue, norm = norma, linewidths = 0.5, edgecolor = 'black', alpha = transp)
329
- #---------------------------------------------------------------------------------------------------------------------------------------
334
+ #---------------------------------------------------------------------------------------------------------------------------------------
335
+ # plt.quiver(points[::pulo,0], points[::pulo,1], Spin_S1, Spin_S2, angle,
336
+ # scale_units = "xy", angles = "xy", pivot = 'tail', cmap = map_red_blue, norm = norma, linewidths = 0.5, edgecolor = 'black', alpha = transp)
337
+ #---------------------------------------------------------------------------------------------------------------------------------------
330
338
 
331
- if (tipo_spin < 4):
332
- cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, boundaries = [0, 180, 360], ticks = [90, 270])
333
- cbar.ax.set_yticklabels([L1, L2])
339
+ if (tipo_spin < 4):
340
+ cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, boundaries = [0, 180, 360], ticks = [90, 270])
341
+ cbar.ax.set_yticklabels([L1, L2])
334
342
 
335
- if (tipo_spin > 3):
336
- cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, values = [45, 90, 135, 180, 225], ticks = [45, 90, 135, 180, 225])
337
- cbar.ax.set_yticklabels([L1, L2, L3, L4, L5])
343
+ if (tipo_spin > 3):
344
+ cbar = fig.colorbar(cp, orientation = 'vertical', shrink = 1.0, values = [45, 90, 135, 180, 225], ticks = [45, 90, 135, 180, 225])
345
+ cbar.ax.set_yticklabels([L1, L2, L3, L4, L5])
338
346
 
339
- # ax.clabel(cs, inline = False, colors = 'black', fontsize = 8)
347
+ # ax.clabel(cs, inline = False, colors = 'black', fontsize = 8)
340
348
 
341
- temp_level = f'{levels_n[i]:_.4f}'
349
+ temp_level = f'{levels_n[i]:_.4f}'
342
350
 
343
- if (levels_n[i] <= 0.0): c_energ = temp_level
344
- if (levels_n[i] > 0.0): c_energ = '+' + temp_level
351
+ if (levels_n[i] <= 0.0): c_energ = temp_level
352
+ if (levels_n[i] > 0.0): c_energ = '+' + temp_level
345
353
 
346
- c_band = str(Banda)
354
+ c_band = str(Banda)
347
355
 
348
- if (esc_fermi == 0): plt.title('Band ' + str(Banda) + ': $E$ = ' + c_energ + ' eV')
349
- if (esc_fermi == 1): plt.title('Band ' + str(Banda) + ': $E-E_{f}$ = ' + c_energ + ' eV')
356
+ if (esc_fermi == 0): plt.title('Band ' + str(Banda) + ': $E$ = ' + c_energ + ' eV')
357
+ if (esc_fermi == 1): plt.title('Band ' + str(Banda) + ': $E-E_{f}$ = ' + c_energ + ' eV')
350
358
 
351
- #----------------------------------------------------------------------
359
+ #----------------------------------------------------------------------
352
360
 
353
- ax.set_xlabel(c1)
354
- ax.set_ylabel(c2)
355
- ax.set_box_aspect(1.0/1)
361
+ ax.set_xlabel(c1)
362
+ ax.set_ylabel(c2)
363
+ ax.set_box_aspect(1.0/1)
356
364
 
357
- #----------------------------------------------------------------------
365
+ #----------------------------------------------------------------------
358
366
 
359
- m = (i + 1)
360
- if (m < 10): number = '[000' + str(m) + ']'
361
- if (m >= 10 and m < 100): number = '[00' + str(m) + ']'
362
- if (m >= 100 and m < 1000): number = '[0' + str(m) + ']'
363
- if (m >= 1000): number = '[' + str(m) + ']'
367
+ m = (i + 1)
368
+ if (m < 10): number = '[000' + str(m) + ']'
369
+ if (m >= 10 and m < 100): number = '[00' + str(m) + ']'
370
+ if (m >= 100 and m < 1000): number = '[0' + str(m) + ']'
371
+ if (m >= 1000): number = '[' + str(m) + ']'
364
372
 
365
- if (save_png == 1): plt.savefig(dir_output + 'figures/Spin_Texture_video_' + number + '_[' + c_energ + '].png', dpi = 300, bbox_inches='tight', pad_inches=0)
366
- if (save_pdf == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].pdf', dpi = 600, bbox_inches='tight', pad_inches=0)
367
- if (save_svg == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].svg', dpi = 600, bbox_inches='tight', pad_inches=0)
368
- if (save_eps == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].eps', dpi = 600, bbox_inches='tight', pad_inches=0)
373
+ if (save_png == 1): plt.savefig(dir_output + 'figures/Spin_Texture_video_' + number + '_[' + c_energ + '].png', dpi = 300, bbox_inches='tight', pad_inches=0)
374
+ if (save_pdf == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].pdf', dpi = 600, bbox_inches='tight', pad_inches=0)
375
+ if (save_svg == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].svg', dpi = 600, bbox_inches='tight', pad_inches=0)
376
+ if (save_eps == 1): plt.savefig(dir_output + 'Spin_Texture_video_' + number + '_[' + c_energ + '].eps', dpi = 600, bbox_inches='tight', pad_inches=0)
369
377
 
370
- fig = plt.gcf()
371
- fig.set_size_inches(8,6)
372
- # plt.show()
378
+ fig = plt.gcf()
379
+ fig.set_size_inches(8,6)
380
+ # plt.show()
373
381
  plt.close()
374
382
 
375
383
  print(" ")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vasprocar
3
- Version: 1.1.19.102
3
+ Version: 1.1.19.104
4
4
  Summary: VASProcar is an open-source package written in the Python 3 programming language, which aims to provide an intuitive tool for the post-processing of the output files produced by the DFT VASP/QE codes, through an interactive user interface.
5
5
  Home-page: https://doi.org/10.5281/zenodo.6343960
6
6
  Download-URL: https://doi.org/10.5281/zenodo.6343960
@@ -9,6 +9,13 @@ Author-email: augusto-lelis@outlook.com, renan.maciel@physics.uu.se
9
9
  License: GNU GPLv3
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE.txt
12
+ Requires-Dist: numpy>=1.24.1
13
+ Requires-Dist: scipy>=1.10.0
14
+ Requires-Dist: matplotlib>=3.7.0
15
+ Requires-Dist: plotly>=5.13.0
16
+ Requires-Dist: moviepy>=1.0.2
17
+ Requires-Dist: kaleido>=0.2.1
18
+ Requires-Dist: requests>=2.31.0
12
19
 
13
20
  # VASProcar Copyright (C) 2023 - GNU GPL-3.0 license
14
21
 
File without changes
File without changes