valor-lite 0.33.12__tar.gz → 0.33.14__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of valor-lite might be problematic. Click here for more details.
- {valor_lite-0.33.12/valor_lite.egg-info → valor_lite-0.33.14}/PKG-INFO +1 -1
- {valor_lite-0.33.12 → valor_lite-0.33.14}/benchmarks/benchmark_classification.py +1 -1
- {valor_lite-0.33.12 → valor_lite-0.33.14}/examples/object-detection.ipynb +95 -91
- valor_lite-0.33.14/examples/tabular_classification.ipynb +633 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_accuracy.py +30 -22
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_confusion_matrix.py +44 -15
- valor_lite-0.33.14/tests/classification/test_counts.py +1318 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_evaluator.py +4 -3
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_f1.py +122 -38
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_filtering.py +60 -60
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_precision.py +122 -38
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_recall.py +55 -38
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_rocauc.py +17 -15
- valor_lite-0.33.14/tests/object_detection/test_accuracy.py +483 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_average_precision.py +31 -33
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_average_recall.py +25 -21
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_confusion_matrix.py +43 -11
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_counts.py +8 -16
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_evaluator.py +9 -3
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_pr_curve.py +5 -4
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_precision.py +8 -16
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_recall.py +8 -16
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_accuracy.py +10 -7
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_confusion_matrix.py +4 -4
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_evaluator.py +4 -4
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_f1.py +16 -16
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_iou.py +29 -30
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_precision.py +16 -16
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_recall.py +16 -16
- valor_lite-0.33.14/valor_lite/classification/__init__.py +17 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/classification/computation.py +2 -2
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/classification/manager.py +32 -244
- valor_lite-0.33.14/valor_lite/classification/metric.py +385 -0
- valor_lite-0.33.14/valor_lite/classification/utilities.py +222 -0
- valor_lite-0.33.14/valor_lite/object_detection/__init__.py +28 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/object_detection/computation.py +41 -37
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/object_detection/manager.py +38 -492
- valor_lite-0.33.14/valor_lite/object_detection/metric.py +735 -0
- valor_lite-0.33.14/valor_lite/object_detection/utilities.py +505 -0
- valor_lite-0.33.14/valor_lite/schemas.py +17 -0
- valor_lite-0.33.14/valor_lite/semantic_segmentation/__init__.py +12 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/semantic_segmentation/computation.py +1 -1
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/semantic_segmentation/manager.py +13 -116
- valor_lite-0.33.14/valor_lite/semantic_segmentation/metric.py +255 -0
- valor_lite-0.33.14/valor_lite/semantic_segmentation/utilities.py +104 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14/valor_lite.egg-info}/PKG-INFO +1 -1
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite.egg-info/SOURCES.txt +4 -0
- valor_lite-0.33.12/examples/tabular_classification.ipynb +0 -618
- valor_lite-0.33.12/tests/classification/test_counts.py +0 -761
- valor_lite-0.33.12/valor_lite/classification/__init__.py +0 -30
- valor_lite-0.33.12/valor_lite/classification/metric.py +0 -426
- valor_lite-0.33.12/valor_lite/object_detection/__init__.py +0 -59
- valor_lite-0.33.12/valor_lite/object_detection/metric.py +0 -795
- valor_lite-0.33.12/valor_lite/schemas.py +0 -15
- valor_lite-0.33.12/valor_lite/semantic_segmentation/__init__.py +0 -27
- valor_lite-0.33.12/valor_lite/semantic_segmentation/metric.py +0 -278
- {valor_lite-0.33.12 → valor_lite-0.33.14}/LICENSE +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/README.md +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/benchmarks/.gitignore +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/benchmarks/benchmark_objdet.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/examples/.gitignore +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/pyproject.toml +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/setup.cfg +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/conftest.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_dataloader.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_schemas.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/classification/test_stability.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/conftest.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_dataloader.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_filtering.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_iou.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_schemas.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/object_detection/test_stability.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/conftest.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_annotation.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_dataloader.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_filtering.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/semantic_segmentation/test_stability.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/tests/text_generation/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/LICENSE +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/classification/annotation.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/object_detection/annotation.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/semantic_segmentation/annotation.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite/text_generation/__init__.py +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite.egg-info/dependency_links.txt +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite.egg-info/requires.txt +0 -0
- {valor_lite-0.33.12 → valor_lite-0.33.14}/valor_lite.egg-info/top_level.txt +0 -0
|
@@ -211,7 +211,7 @@ def run_benchmarking_analysis(
|
|
|
211
211
|
)
|
|
212
212
|
|
|
213
213
|
# evaluate
|
|
214
|
-
eval_time, _ = time_it(evaluator.
|
|
214
|
+
eval_time, _ = time_it(evaluator.compute_precision_recall_rocauc)()
|
|
215
215
|
if eval_time > evaluation_timeout and evaluation_timeout != -1:
|
|
216
216
|
raise TimeoutError(
|
|
217
217
|
f"Base evaluation timed out with {evaluator.n_datums} datums."
|
|
@@ -234,7 +234,7 @@
|
|
|
234
234
|
"name": "stderr",
|
|
235
235
|
"output_type": "stream",
|
|
236
236
|
"text": [
|
|
237
|
-
"100%|██████████| 5000/5000 [00:
|
|
237
|
+
"100%|██████████| 5000/5000 [00:00<00:00, 8122.07it/s]\n"
|
|
238
238
|
]
|
|
239
239
|
}
|
|
240
240
|
],
|
|
@@ -321,86 +321,86 @@
|
|
|
321
321
|
{
|
|
322
322
|
"data": {
|
|
323
323
|
"text/plain": [
|
|
324
|
-
"[AP
|
|
325
|
-
" AP
|
|
326
|
-
" AP
|
|
327
|
-
" AP
|
|
328
|
-
" AP
|
|
329
|
-
" AP
|
|
330
|
-
" AP
|
|
331
|
-
" AP
|
|
332
|
-
" AP
|
|
333
|
-
" AP
|
|
334
|
-
" AP
|
|
335
|
-
" AP
|
|
336
|
-
" AP
|
|
337
|
-
" AP
|
|
338
|
-
" AP
|
|
339
|
-
" AP
|
|
340
|
-
" AP
|
|
341
|
-
" AP
|
|
342
|
-
" AP
|
|
343
|
-
" AP
|
|
344
|
-
" AP
|
|
345
|
-
" AP
|
|
346
|
-
" AP
|
|
347
|
-
" AP
|
|
348
|
-
" AP
|
|
349
|
-
" AP
|
|
350
|
-
" AP
|
|
351
|
-
" AP
|
|
352
|
-
" AP
|
|
353
|
-
" AP
|
|
354
|
-
" AP
|
|
355
|
-
" AP
|
|
356
|
-
" AP
|
|
357
|
-
" AP
|
|
358
|
-
" AP
|
|
359
|
-
" AP
|
|
360
|
-
" AP
|
|
361
|
-
" AP
|
|
362
|
-
" AP
|
|
363
|
-
" AP
|
|
364
|
-
" AP
|
|
365
|
-
" AP
|
|
366
|
-
" AP
|
|
367
|
-
" AP
|
|
368
|
-
" AP
|
|
369
|
-
" AP
|
|
370
|
-
" AP
|
|
371
|
-
" AP
|
|
372
|
-
" AP
|
|
373
|
-
" AP
|
|
374
|
-
" AP
|
|
375
|
-
" AP
|
|
376
|
-
" AP
|
|
377
|
-
" AP
|
|
378
|
-
" AP
|
|
379
|
-
" AP
|
|
380
|
-
" AP
|
|
381
|
-
" AP
|
|
382
|
-
" AP
|
|
383
|
-
" AP
|
|
384
|
-
" AP
|
|
385
|
-
" AP
|
|
386
|
-
" AP
|
|
387
|
-
" AP
|
|
388
|
-
" AP
|
|
389
|
-
" AP
|
|
390
|
-
" AP
|
|
391
|
-
" AP
|
|
392
|
-
" AP
|
|
393
|
-
" AP
|
|
394
|
-
" AP
|
|
395
|
-
" AP
|
|
396
|
-
" AP
|
|
397
|
-
" AP
|
|
398
|
-
" AP
|
|
399
|
-
" AP
|
|
400
|
-
" AP
|
|
401
|
-
" AP
|
|
402
|
-
" AP
|
|
403
|
-
" AP
|
|
324
|
+
"[Metric(type='AP', value=0.03931711480949181, parameters={'iou_threshold': 0.25, 'label': 'person'}),\n",
|
|
325
|
+
" Metric(type='AP', value=0.00574667500702136, parameters={'iou_threshold': 0.25, 'label': 'chair'}),\n",
|
|
326
|
+
" Metric(type='AP', value=0.012869301715994604, parameters={'iou_threshold': 0.25, 'label': 'potted plant'}),\n",
|
|
327
|
+
" Metric(type='AP', value=0.12468056653228336, parameters={'iou_threshold': 0.25, 'label': 'dining table'}),\n",
|
|
328
|
+
" Metric(type='AP', value=0.025555256805287804, parameters={'iou_threshold': 0.25, 'label': 'tv'}),\n",
|
|
329
|
+
" Metric(type='AP', value=0.0873892652423137, parameters={'iou_threshold': 0.25, 'label': 'microwave'}),\n",
|
|
330
|
+
" Metric(type='AP', value=0.07156154587928347, parameters={'iou_threshold': 0.25, 'label': 'refrigerator'}),\n",
|
|
331
|
+
" Metric(type='AP', value=0.0, parameters={'iou_threshold': 0.25, 'label': 'book'}),\n",
|
|
332
|
+
" Metric(type='AP', value=0.017410438586802798, parameters={'iou_threshold': 0.25, 'label': 'clock'}),\n",
|
|
333
|
+
" Metric(type='AP', value=0.01582175783225678, parameters={'iou_threshold': 0.25, 'label': 'vase'}),\n",
|
|
334
|
+
" Metric(type='AP', value=0.231753782860388, parameters={'iou_threshold': 0.25, 'label': 'bear'}),\n",
|
|
335
|
+
" Metric(type='AP', value=0.23569425610798753, parameters={'iou_threshold': 0.25, 'label': 'bed'}),\n",
|
|
336
|
+
" Metric(type='AP', value=0.000695619913279384, parameters={'iou_threshold': 0.25, 'label': 'bottle'}),\n",
|
|
337
|
+
" Metric(type='AP', value=0.002421632122336015, parameters={'iou_threshold': 0.25, 'label': 'car'}),\n",
|
|
338
|
+
" Metric(type='AP', value=0.059802019119639865, parameters={'iou_threshold': 0.25, 'label': 'truck'}),\n",
|
|
339
|
+
" Metric(type='AP', value=0.12696681676449215, parameters={'iou_threshold': 0.25, 'label': 'stop sign'}),\n",
|
|
340
|
+
" Metric(type='AP', value=0.14102282165570407, parameters={'iou_threshold': 0.25, 'label': 'teddy bear'}),\n",
|
|
341
|
+
" Metric(type='AP', value=0.0007519739315703722, parameters={'iou_threshold': 0.25, 'label': 'skis'}),\n",
|
|
342
|
+
" Metric(type='AP', value=0.027301028578575685, parameters={'iou_threshold': 0.25, 'label': 'oven'}),\n",
|
|
343
|
+
" Metric(type='AP', value=0.0007072135785007071, parameters={'iou_threshold': 0.25, 'label': 'sports ball'}),\n",
|
|
344
|
+
" Metric(type='AP', value=0.014991066775850518, parameters={'iou_threshold': 0.25, 'label': 'baseball glove'}),\n",
|
|
345
|
+
" Metric(type='AP', value=0.012910114540865852, parameters={'iou_threshold': 0.25, 'label': 'tennis racket'}),\n",
|
|
346
|
+
" Metric(type='AP', value=0.002605523710265763, parameters={'iou_threshold': 0.25, 'label': 'backpack'}),\n",
|
|
347
|
+
" Metric(type='AP', value=0.0012280297797221582, parameters={'iou_threshold': 0.25, 'label': 'handbag'}),\n",
|
|
348
|
+
" Metric(type='AP', value=0.014437478085599116, parameters={'iou_threshold': 0.25, 'label': 'boat'}),\n",
|
|
349
|
+
" Metric(type='AP', value=0.02472893969494828, parameters={'iou_threshold': 0.25, 'label': 'bird'}),\n",
|
|
350
|
+
" Metric(type='AP', value=0.0173023682386164, parameters={'iou_threshold': 0.25, 'label': 'cell phone'}),\n",
|
|
351
|
+
" Metric(type='AP', value=0.21514217763688503, parameters={'iou_threshold': 0.25, 'label': 'train'}),\n",
|
|
352
|
+
" Metric(type='AP', value=0.039401614478727934, parameters={'iou_threshold': 0.25, 'label': 'bowl'}),\n",
|
|
353
|
+
" Metric(type='AP', value=0.09553809158302397, parameters={'iou_threshold': 0.25, 'label': 'sandwich'}),\n",
|
|
354
|
+
" Metric(type='AP', value=0.008772195312241687, parameters={'iou_threshold': 0.25, 'label': 'cup'}),\n",
|
|
355
|
+
" Metric(type='AP', value=0.003529433618784017, parameters={'iou_threshold': 0.25, 'label': 'surfboard'}),\n",
|
|
356
|
+
" Metric(type='AP', value=0.057312433796814985, parameters={'iou_threshold': 0.25, 'label': 'laptop'}),\n",
|
|
357
|
+
" Metric(type='AP', value=0.003592328379843429, parameters={'iou_threshold': 0.25, 'label': 'mouse'}),\n",
|
|
358
|
+
" Metric(type='AP', value=0.007705426769738388, parameters={'iou_threshold': 0.25, 'label': 'keyboard'}),\n",
|
|
359
|
+
" Metric(type='AP', value=0.0015763816845228704, parameters={'iou_threshold': 0.25, 'label': 'traffic light'}),\n",
|
|
360
|
+
" Metric(type='AP', value=0.14803132929413712, parameters={'iou_threshold': 0.25, 'label': 'bus'}),\n",
|
|
361
|
+
" Metric(type='AP', value=0.2706385426934155, parameters={'iou_threshold': 0.25, 'label': 'cat'}),\n",
|
|
362
|
+
" Metric(type='AP', value=0.06197253140976744, parameters={'iou_threshold': 0.25, 'label': 'airplane'}),\n",
|
|
363
|
+
" Metric(type='AP', value=0.11098807002863581, parameters={'iou_threshold': 0.25, 'label': 'zebra'}),\n",
|
|
364
|
+
" Metric(type='AP', value=0.000456968773800457, parameters={'iou_threshold': 0.25, 'label': 'tie'}),\n",
|
|
365
|
+
" Metric(type='AP', value=0.01789546873590162, parameters={'iou_threshold': 0.25, 'label': 'apple'}),\n",
|
|
366
|
+
" Metric(type='AP', value=0.00497941318169436, parameters={'iou_threshold': 0.25, 'label': 'baseball bat'}),\n",
|
|
367
|
+
" Metric(type='AP', value=0.008054041938151662, parameters={'iou_threshold': 0.25, 'label': 'wine glass'}),\n",
|
|
368
|
+
" Metric(type='AP', value=0.0013656538067599864, parameters={'iou_threshold': 0.25, 'label': 'knife'}),\n",
|
|
369
|
+
" Metric(type='AP', value=0.034283643667397244, parameters={'iou_threshold': 0.25, 'label': 'cake'}),\n",
|
|
370
|
+
" Metric(type='AP', value=0.0010068803490518544, parameters={'iou_threshold': 0.25, 'label': 'spoon'}),\n",
|
|
371
|
+
" Metric(type='AP', value=0.005547968589962444, parameters={'iou_threshold': 0.25, 'label': 'snowboard'}),\n",
|
|
372
|
+
" Metric(type='AP', value=0.03775782935785413, parameters={'iou_threshold': 0.25, 'label': 'banana'}),\n",
|
|
373
|
+
" Metric(type='AP', value=0.06007451642097835, parameters={'iou_threshold': 0.25, 'label': 'donut'}),\n",
|
|
374
|
+
" Metric(type='AP', value=0.04456774994898758, parameters={'iou_threshold': 0.25, 'label': 'toilet'}),\n",
|
|
375
|
+
" Metric(type='AP', value=0.006179001878088361, parameters={'iou_threshold': 0.25, 'label': 'sink'}),\n",
|
|
376
|
+
" Metric(type='AP', value=0.03680123352285498, parameters={'iou_threshold': 0.25, 'label': 'broccoli'}),\n",
|
|
377
|
+
" Metric(type='AP', value=0.014936047541778902, parameters={'iou_threshold': 0.25, 'label': 'skateboard'}),\n",
|
|
378
|
+
" Metric(type='AP', value=0.022694552738821507, parameters={'iou_threshold': 0.25, 'label': 'bench'}),\n",
|
|
379
|
+
" Metric(type='AP', value=0.002867675716650755, parameters={'iou_threshold': 0.25, 'label': 'fork'}),\n",
|
|
380
|
+
" Metric(type='AP', value=0.0080174142984774, parameters={'iou_threshold': 0.25, 'label': 'carrot'}),\n",
|
|
381
|
+
" Metric(type='AP', value=0.04041483896880335, parameters={'iou_threshold': 0.25, 'label': 'couch'}),\n",
|
|
382
|
+
" Metric(type='AP', value=0.0007135848720007136, parameters={'iou_threshold': 0.25, 'label': 'remote'}),\n",
|
|
383
|
+
" Metric(type='AP', value=0.02584120622988414, parameters={'iou_threshold': 0.25, 'label': 'bicycle'}),\n",
|
|
384
|
+
" Metric(type='AP', value=0.06534653465346534, parameters={'iou_threshold': 0.25, 'label': 'scissors'}),\n",
|
|
385
|
+
" Metric(type='AP', value=0.046674509472276055, parameters={'iou_threshold': 0.25, 'label': 'orange'}),\n",
|
|
386
|
+
" Metric(type='AP', value=0.023613502704789624, parameters={'iou_threshold': 0.25, 'label': 'sheep'}),\n",
|
|
387
|
+
" Metric(type='AP', value=0.14258072068496863, parameters={'iou_threshold': 0.25, 'label': 'elephant'}),\n",
|
|
388
|
+
" Metric(type='AP', value=0.013407926158469507, parameters={'iou_threshold': 0.25, 'label': 'frisbee'}),\n",
|
|
389
|
+
" Metric(type='AP', value=0.04803841606991949, parameters={'iou_threshold': 0.25, 'label': 'umbrella'}),\n",
|
|
390
|
+
" Metric(type='AP', value=0.10212714134235075, parameters={'iou_threshold': 0.25, 'label': 'horse'}),\n",
|
|
391
|
+
" Metric(type='AP', value=0.09399604539879332, parameters={'iou_threshold': 0.25, 'label': 'motorcycle'}),\n",
|
|
392
|
+
" Metric(type='AP', value=0.1316711323706997, parameters={'iou_threshold': 0.25, 'label': 'dog'}),\n",
|
|
393
|
+
" Metric(type='AP', value=0.016052361400942596, parameters={'iou_threshold': 0.25, 'label': 'kite'}),\n",
|
|
394
|
+
" Metric(type='AP', value=0.13853737273699804, parameters={'iou_threshold': 0.25, 'label': 'pizza'}),\n",
|
|
395
|
+
" Metric(type='AP', value=0.03162000973589944, parameters={'iou_threshold': 0.25, 'label': 'cow'}),\n",
|
|
396
|
+
" Metric(type='AP', value=0.0702284791057795, parameters={'iou_threshold': 0.25, 'label': 'fire hydrant'}),\n",
|
|
397
|
+
" Metric(type='AP', value=0.04231869341571282, parameters={'iou_threshold': 0.25, 'label': 'suitcase'}),\n",
|
|
398
|
+
" Metric(type='AP', value=0.16491634254279497, parameters={'iou_threshold': 0.25, 'label': 'giraffe'}),\n",
|
|
399
|
+
" Metric(type='AP', value=0.048692537906881606, parameters={'iou_threshold': 0.25, 'label': 'hot dog'}),\n",
|
|
400
|
+
" Metric(type='AP', value=0.02254763291455196, parameters={'iou_threshold': 0.25, 'label': 'parking meter'}),\n",
|
|
401
|
+
" Metric(type='AP', value=0.0, parameters={'iou_threshold': 0.25, 'label': 'toothbrush'}),\n",
|
|
402
|
+
" Metric(type='AP', value=0.0, parameters={'iou_threshold': 0.25, 'label': 'toaster'}),\n",
|
|
403
|
+
" Metric(type='AP', value=0.0, parameters={'iou_threshold': 0.25, 'label': 'hair drier'})]"
|
|
404
404
|
]
|
|
405
405
|
},
|
|
406
406
|
"execution_count": 7,
|
|
@@ -430,7 +430,7 @@
|
|
|
430
430
|
{
|
|
431
431
|
"data": {
|
|
432
432
|
"text/plain": [
|
|
433
|
-
"[mAP
|
|
433
|
+
"[Metric(type='mAP', value=0.049578458401377326, parameters={'iou_threshold': 0.25})]"
|
|
434
434
|
]
|
|
435
435
|
},
|
|
436
436
|
"execution_count": 8,
|
|
@@ -473,7 +473,11 @@
|
|
|
473
473
|
"plt.figure()\n",
|
|
474
474
|
"recall = [x / 100 for x in range(0,101)]\n",
|
|
475
475
|
"for curve in metrics[MetricType.PrecisionRecallCurve]:\n",
|
|
476
|
-
" plt.plot(
|
|
476
|
+
" plt.plot(\n",
|
|
477
|
+
" recall, \n",
|
|
478
|
+
" curve.value[\"precisions\"],\n",
|
|
479
|
+
" label=curve.parameters[\"label\"],\n",
|
|
480
|
+
" )\n",
|
|
477
481
|
"plt.title(\"Precision-Recall Curve\")\n",
|
|
478
482
|
"plt.legend(prop={'size': 6})\n",
|
|
479
483
|
"plt.show()"
|
|
@@ -481,7 +485,7 @@
|
|
|
481
485
|
},
|
|
482
486
|
{
|
|
483
487
|
"cell_type": "code",
|
|
484
|
-
"execution_count":
|
|
488
|
+
"execution_count": 10,
|
|
485
489
|
"id": "c4877536",
|
|
486
490
|
"metadata": {},
|
|
487
491
|
"outputs": [
|
|
@@ -503,7 +507,7 @@
|
|
|
503
507
|
"plt.figure()\n",
|
|
504
508
|
"recall = [x / 100 for x in range(0,101)]\n",
|
|
505
509
|
"for curve in metrics[MetricType.PrecisionRecallCurve]:\n",
|
|
506
|
-
" plt.plot(recall, curve.scores, label=curve.label)\n",
|
|
510
|
+
" plt.plot(recall, curve.value[\"scores\"], label=curve.parameters[\"label\"])\n",
|
|
507
511
|
"plt.title(\"Score-Recall Curve\")\n",
|
|
508
512
|
"plt.legend(prop={'size': 6})\n",
|
|
509
513
|
"plt.show()"
|
|
@@ -554,7 +558,7 @@
|
|
|
554
558
|
")[MetricType.ConfusionMatrix]\n",
|
|
555
559
|
"metric = matrices[0]\n",
|
|
556
560
|
"\n",
|
|
557
|
-
"metric.confusion_matrix[\"person\"][\"person\"][\"examples\"]"
|
|
561
|
+
"metric.value[\"confusion_matrix\"][\"person\"][\"person\"][\"examples\"]"
|
|
558
562
|
]
|
|
559
563
|
},
|
|
560
564
|
{
|
|
@@ -941,10 +945,10 @@
|
|
|
941
945
|
"source": [
|
|
942
946
|
"cm = {\n",
|
|
943
947
|
" gt: {\n",
|
|
944
|
-
" pd: metric.confusion_matrix[gt][pd][\"count\"]\n",
|
|
945
|
-
" for pd in metric.confusion_matrix[gt]\n",
|
|
948
|
+
" pd: metric.value[\"confusion_matrix\"][gt][pd][\"count\"]\n",
|
|
949
|
+
" for pd in metric.value[\"confusion_matrix\"][gt]\n",
|
|
946
950
|
" }\n",
|
|
947
|
-
" for gt in metric.confusion_matrix\n",
|
|
951
|
+
" for gt in metric.value[\"confusion_matrix\"]\n",
|
|
948
952
|
"}\n",
|
|
949
953
|
"pd.DataFrame(cm)"
|
|
950
954
|
]
|
|
@@ -1760,7 +1764,7 @@
|
|
|
1760
1764
|
}
|
|
1761
1765
|
],
|
|
1762
1766
|
"source": [
|
|
1763
|
-
"metric.hallucinations"
|
|
1767
|
+
"metric.value[\"hallucinations\"]"
|
|
1764
1768
|
]
|
|
1765
1769
|
},
|
|
1766
1770
|
{
|
|
@@ -2991,7 +2995,7 @@
|
|
|
2991
2995
|
}
|
|
2992
2996
|
],
|
|
2993
2997
|
"source": [
|
|
2994
|
-
"metric.missing_predictions"
|
|
2998
|
+
"metric.value[\"missing_predictions\"]"
|
|
2995
2999
|
]
|
|
2996
3000
|
}
|
|
2997
3001
|
],
|