valor-lite 0.32.2a2__tar.gz → 0.33.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of valor-lite might be problematic. Click here for more details.
- {valor_lite-0.32.2a2/valor_lite.egg-info → valor_lite-0.33.1}/PKG-INFO +1 -1
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/benchmarks/benchmark_objdet.py +9 -9
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/conftest.py +326 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_average_precision.py +246 -68
- valor_lite-0.33.1/tests/detection/test_average_recall.py +434 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_counts.py +55 -55
- valor_lite-0.33.1/tests/detection/test_detailed_counts.py +1830 -0
- valor_lite-0.33.1/tests/detection/test_evaluator.py +98 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_filtering.py +33 -15
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_pr_curve.py +15 -15
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_precision.py +65 -65
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_recall.py +55 -55
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/detection/__init__.py +4 -6
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/detection/computation.py +104 -46
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/detection/manager.py +126 -93
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/detection/metric.py +77 -77
- {valor_lite-0.32.2a2 → valor_lite-0.33.1/valor_lite.egg-info}/PKG-INFO +1 -1
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite.egg-info/SOURCES.txt +1 -1
- valor_lite-0.32.2a2/tests/detection/test_average_recall.py +0 -246
- valor_lite-0.32.2a2/tests/detection/test_detailed_pr_curve.py +0 -882
- valor_lite-0.32.2a2/tests/detection/test_evaluator.py +0 -31
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/LICENSE +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/README.md +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/benchmarks/.gitignore +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/examples/.gitignore +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/examples/coco-yolo.ipynb +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/pyproject.toml +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/setup.cfg +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/__init__.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_dataloader.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_iou.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_schemas.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/tests/detection/test_stability.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/__init__.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/detection/annotation.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite/schemas.py +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite.egg-info/dependency_links.txt +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite.egg-info/requires.txt +0 -0
- {valor_lite-0.32.2a2 → valor_lite-0.33.1}/valor_lite.egg-info/top_level.txt +0 -0
|
@@ -164,7 +164,7 @@ class Benchmark:
|
|
|
164
164
|
"total": f"{round(self.ingestion + self.precomputation, 2)} seconds",
|
|
165
165
|
},
|
|
166
166
|
"base_evaluation": f"{round(self.evaluation, 2)} seconds",
|
|
167
|
-
"
|
|
167
|
+
"detailed_evaluation": [
|
|
168
168
|
{
|
|
169
169
|
"n_points": 10,
|
|
170
170
|
"n_examples": curve[0],
|
|
@@ -258,14 +258,14 @@ def run_benchmarking_analysis(
|
|
|
258
258
|
f"Base precomputation timed out with limit of {limit}."
|
|
259
259
|
)
|
|
260
260
|
|
|
261
|
-
# test detailed
|
|
262
|
-
|
|
263
|
-
evaluator.
|
|
261
|
+
# test detailed counts with no samples
|
|
262
|
+
detailed_counts_time_no_samples, _ = time_it(
|
|
263
|
+
evaluator.compute_detailed_counts
|
|
264
264
|
)()
|
|
265
265
|
|
|
266
|
-
# test detailed
|
|
267
|
-
|
|
268
|
-
evaluator.
|
|
266
|
+
# test detailed counts with 3 samples
|
|
267
|
+
detailed_counts_time_three_samples, _ = time_it(
|
|
268
|
+
evaluator.compute_detailed_counts
|
|
269
269
|
)(n_samples=3)
|
|
270
270
|
|
|
271
271
|
# evaluate
|
|
@@ -291,8 +291,8 @@ def run_benchmarking_analysis(
|
|
|
291
291
|
precomputation=finalization_time,
|
|
292
292
|
evaluation=eval_time,
|
|
293
293
|
detailed_curves=[
|
|
294
|
-
(0,
|
|
295
|
-
(3,
|
|
294
|
+
(0, detailed_counts_time_no_samples),
|
|
295
|
+
(3, detailed_counts_time_three_samples),
|
|
296
296
|
],
|
|
297
297
|
).result()
|
|
298
298
|
)
|
|
@@ -502,3 +502,329 @@ def false_negatives_two_images_one_only_with_different_class_high_confidence_of_
|
|
|
502
502
|
],
|
|
503
503
|
),
|
|
504
504
|
]
|
|
505
|
+
|
|
506
|
+
|
|
507
|
+
@pytest.fixture
|
|
508
|
+
def detections_fp_hallucination_edge_case() -> list[Detection]:
|
|
509
|
+
return [
|
|
510
|
+
Detection(
|
|
511
|
+
uid="uid1",
|
|
512
|
+
groundtruths=[
|
|
513
|
+
BoundingBox(
|
|
514
|
+
xmin=0,
|
|
515
|
+
xmax=5,
|
|
516
|
+
ymin=0,
|
|
517
|
+
ymax=5,
|
|
518
|
+
labels=[("k1", "v1")],
|
|
519
|
+
)
|
|
520
|
+
],
|
|
521
|
+
predictions=[
|
|
522
|
+
BoundingBox(
|
|
523
|
+
xmin=0,
|
|
524
|
+
xmax=5,
|
|
525
|
+
ymin=0,
|
|
526
|
+
ymax=5,
|
|
527
|
+
labels=[("k1", "v1")],
|
|
528
|
+
scores=[0.8],
|
|
529
|
+
)
|
|
530
|
+
],
|
|
531
|
+
),
|
|
532
|
+
Detection(
|
|
533
|
+
uid="uid2",
|
|
534
|
+
groundtruths=[
|
|
535
|
+
BoundingBox(
|
|
536
|
+
xmin=0,
|
|
537
|
+
xmax=5,
|
|
538
|
+
ymin=0,
|
|
539
|
+
ymax=5,
|
|
540
|
+
labels=[("k1", "v1")],
|
|
541
|
+
)
|
|
542
|
+
],
|
|
543
|
+
predictions=[
|
|
544
|
+
BoundingBox(
|
|
545
|
+
xmin=10,
|
|
546
|
+
xmax=20,
|
|
547
|
+
ymin=10,
|
|
548
|
+
ymax=20,
|
|
549
|
+
labels=[("k1", "v1")],
|
|
550
|
+
scores=[0.8],
|
|
551
|
+
)
|
|
552
|
+
],
|
|
553
|
+
),
|
|
554
|
+
]
|
|
555
|
+
|
|
556
|
+
|
|
557
|
+
@pytest.fixture
|
|
558
|
+
def detections_tp_deassignment_edge_case() -> list[Detection]:
|
|
559
|
+
return [
|
|
560
|
+
Detection(
|
|
561
|
+
uid="uid0",
|
|
562
|
+
groundtruths=[
|
|
563
|
+
BoundingBox(
|
|
564
|
+
xmin=10,
|
|
565
|
+
xmax=20,
|
|
566
|
+
ymin=10,
|
|
567
|
+
ymax=20,
|
|
568
|
+
labels=[("k1", "v1")],
|
|
569
|
+
),
|
|
570
|
+
BoundingBox(
|
|
571
|
+
xmin=10,
|
|
572
|
+
xmax=15,
|
|
573
|
+
ymin=20,
|
|
574
|
+
ymax=25,
|
|
575
|
+
labels=[("k1", "v1")],
|
|
576
|
+
),
|
|
577
|
+
],
|
|
578
|
+
predictions=[
|
|
579
|
+
BoundingBox(
|
|
580
|
+
xmin=10,
|
|
581
|
+
xmax=20,
|
|
582
|
+
ymin=10,
|
|
583
|
+
ymax=20,
|
|
584
|
+
labels=[("k1", "v1")],
|
|
585
|
+
scores=[0.78],
|
|
586
|
+
),
|
|
587
|
+
BoundingBox(
|
|
588
|
+
xmin=10,
|
|
589
|
+
xmax=20,
|
|
590
|
+
ymin=12,
|
|
591
|
+
ymax=22,
|
|
592
|
+
labels=[("k1", "v1")],
|
|
593
|
+
scores=[0.96],
|
|
594
|
+
),
|
|
595
|
+
BoundingBox(
|
|
596
|
+
xmin=10,
|
|
597
|
+
xmax=20,
|
|
598
|
+
ymin=12,
|
|
599
|
+
ymax=22,
|
|
600
|
+
labels=[("k1", "v1")],
|
|
601
|
+
scores=[0.96],
|
|
602
|
+
),
|
|
603
|
+
BoundingBox(
|
|
604
|
+
xmin=101,
|
|
605
|
+
xmax=102,
|
|
606
|
+
ymin=101,
|
|
607
|
+
ymax=102,
|
|
608
|
+
labels=[("k1", "v1")],
|
|
609
|
+
scores=[0.87],
|
|
610
|
+
),
|
|
611
|
+
],
|
|
612
|
+
),
|
|
613
|
+
]
|
|
614
|
+
|
|
615
|
+
|
|
616
|
+
@pytest.fixture
|
|
617
|
+
def detection_ranked_pair_ordering() -> Detection:
|
|
618
|
+
|
|
619
|
+
gts = {
|
|
620
|
+
"boxes": [
|
|
621
|
+
(2, 10, 2, 10),
|
|
622
|
+
(2, 10, 2, 10),
|
|
623
|
+
(2, 10, 2, 10),
|
|
624
|
+
],
|
|
625
|
+
"label_values": ["label1", "label2", "label3"],
|
|
626
|
+
}
|
|
627
|
+
|
|
628
|
+
# labels 1 and 2 have IOU==1, labels 3 and 4 have IOU==0
|
|
629
|
+
preds = {
|
|
630
|
+
"boxes": [
|
|
631
|
+
(2, 10, 2, 10),
|
|
632
|
+
(2, 10, 2, 10),
|
|
633
|
+
(0, 1, 0, 1),
|
|
634
|
+
(0, 1, 0, 1),
|
|
635
|
+
],
|
|
636
|
+
"label_values": ["label1", "label2", "label3", "label4"],
|
|
637
|
+
"scores": [
|
|
638
|
+
0.3,
|
|
639
|
+
0.93,
|
|
640
|
+
0.92,
|
|
641
|
+
0.94,
|
|
642
|
+
],
|
|
643
|
+
}
|
|
644
|
+
|
|
645
|
+
groundtruths = [
|
|
646
|
+
BoundingBox(
|
|
647
|
+
xmin=xmin,
|
|
648
|
+
xmax=xmax,
|
|
649
|
+
ymin=ymin,
|
|
650
|
+
ymax=ymax,
|
|
651
|
+
labels=[("class", label_value)],
|
|
652
|
+
)
|
|
653
|
+
for (xmin, xmax, ymin, ymax), label_value in zip(
|
|
654
|
+
gts["boxes"], gts["label_values"]
|
|
655
|
+
)
|
|
656
|
+
]
|
|
657
|
+
|
|
658
|
+
predictions = [
|
|
659
|
+
BoundingBox(
|
|
660
|
+
xmin=xmin,
|
|
661
|
+
xmax=xmax,
|
|
662
|
+
ymin=ymin,
|
|
663
|
+
ymax=ymax,
|
|
664
|
+
labels=[("class", label_value)],
|
|
665
|
+
scores=[score],
|
|
666
|
+
)
|
|
667
|
+
for (xmin, xmax, ymin, ymax), label_value, score in zip(
|
|
668
|
+
preds["boxes"], preds["label_values"], preds["scores"]
|
|
669
|
+
)
|
|
670
|
+
]
|
|
671
|
+
|
|
672
|
+
return Detection(
|
|
673
|
+
uid="uid1", groundtruths=groundtruths, predictions=predictions
|
|
674
|
+
)
|
|
675
|
+
|
|
676
|
+
|
|
677
|
+
@pytest.fixture
|
|
678
|
+
def detections_no_groundtruths() -> list[Detection]:
|
|
679
|
+
return [
|
|
680
|
+
Detection(
|
|
681
|
+
uid="uid",
|
|
682
|
+
groundtruths=[],
|
|
683
|
+
predictions=[
|
|
684
|
+
BoundingBox(
|
|
685
|
+
xmin=0,
|
|
686
|
+
xmax=10,
|
|
687
|
+
ymin=0,
|
|
688
|
+
ymax=10,
|
|
689
|
+
labels=[("k1", "v1")],
|
|
690
|
+
scores=[1.0],
|
|
691
|
+
),
|
|
692
|
+
BoundingBox(
|
|
693
|
+
xmin=0,
|
|
694
|
+
xmax=10,
|
|
695
|
+
ymin=0,
|
|
696
|
+
ymax=10,
|
|
697
|
+
labels=[("k2", "v2")],
|
|
698
|
+
scores=[1.0],
|
|
699
|
+
),
|
|
700
|
+
],
|
|
701
|
+
),
|
|
702
|
+
Detection(
|
|
703
|
+
uid="uid",
|
|
704
|
+
groundtruths=[],
|
|
705
|
+
predictions=[
|
|
706
|
+
BoundingBox(
|
|
707
|
+
xmin=0,
|
|
708
|
+
xmax=10,
|
|
709
|
+
ymin=0,
|
|
710
|
+
ymax=10,
|
|
711
|
+
labels=[("k1", "v1")],
|
|
712
|
+
scores=[1.0],
|
|
713
|
+
),
|
|
714
|
+
],
|
|
715
|
+
),
|
|
716
|
+
]
|
|
717
|
+
|
|
718
|
+
|
|
719
|
+
@pytest.fixture
|
|
720
|
+
def detections_no_predictions() -> list[Detection]:
|
|
721
|
+
return [
|
|
722
|
+
Detection(
|
|
723
|
+
uid="uid",
|
|
724
|
+
groundtruths=[
|
|
725
|
+
BoundingBox(
|
|
726
|
+
xmin=0, xmax=10, ymin=0, ymax=10, labels=[("k1", "v1")]
|
|
727
|
+
),
|
|
728
|
+
BoundingBox(
|
|
729
|
+
xmin=0, xmax=10, ymin=0, ymax=10, labels=[("k2", "v2")]
|
|
730
|
+
),
|
|
731
|
+
],
|
|
732
|
+
predictions=[],
|
|
733
|
+
),
|
|
734
|
+
Detection(
|
|
735
|
+
uid="uid",
|
|
736
|
+
groundtruths=[
|
|
737
|
+
BoundingBox(
|
|
738
|
+
xmin=0, xmax=10, ymin=0, ymax=10, labels=[("k1", "v1")]
|
|
739
|
+
),
|
|
740
|
+
],
|
|
741
|
+
predictions=[],
|
|
742
|
+
),
|
|
743
|
+
]
|
|
744
|
+
|
|
745
|
+
|
|
746
|
+
@pytest.fixture
|
|
747
|
+
def detections_for_detailed_counting(
|
|
748
|
+
rect1: tuple[float, float, float, float],
|
|
749
|
+
rect2: tuple[float, float, float, float],
|
|
750
|
+
rect3: tuple[float, float, float, float],
|
|
751
|
+
rect4: tuple[float, float, float, float],
|
|
752
|
+
rect5: tuple[float, float, float, float],
|
|
753
|
+
) -> list[Detection]:
|
|
754
|
+
|
|
755
|
+
return [
|
|
756
|
+
Detection(
|
|
757
|
+
uid="uid1",
|
|
758
|
+
groundtruths=[
|
|
759
|
+
BoundingBox(
|
|
760
|
+
xmin=rect1[0],
|
|
761
|
+
xmax=rect1[1],
|
|
762
|
+
ymin=rect1[2],
|
|
763
|
+
ymax=rect1[3],
|
|
764
|
+
labels=[("k1", "v1")],
|
|
765
|
+
),
|
|
766
|
+
BoundingBox(
|
|
767
|
+
xmin=rect2[0],
|
|
768
|
+
xmax=rect2[1],
|
|
769
|
+
ymin=rect2[2],
|
|
770
|
+
ymax=rect2[3],
|
|
771
|
+
labels=[("k1", "missed_detection")],
|
|
772
|
+
),
|
|
773
|
+
BoundingBox(
|
|
774
|
+
xmin=rect3[0],
|
|
775
|
+
xmax=rect3[1],
|
|
776
|
+
ymin=rect3[2],
|
|
777
|
+
ymax=rect3[3],
|
|
778
|
+
labels=[("k1", "v2")],
|
|
779
|
+
),
|
|
780
|
+
],
|
|
781
|
+
predictions=[
|
|
782
|
+
BoundingBox(
|
|
783
|
+
xmin=rect1[0],
|
|
784
|
+
xmax=rect1[1],
|
|
785
|
+
ymin=rect1[2],
|
|
786
|
+
ymax=rect1[3],
|
|
787
|
+
labels=[("k1", "v1")],
|
|
788
|
+
scores=[0.5],
|
|
789
|
+
),
|
|
790
|
+
BoundingBox(
|
|
791
|
+
xmin=rect5[0],
|
|
792
|
+
xmax=rect5[1],
|
|
793
|
+
ymin=rect5[2],
|
|
794
|
+
ymax=rect5[3],
|
|
795
|
+
labels=[("k1", "not_v2")],
|
|
796
|
+
scores=[0.3],
|
|
797
|
+
),
|
|
798
|
+
BoundingBox(
|
|
799
|
+
xmin=rect4[0],
|
|
800
|
+
xmax=rect4[1],
|
|
801
|
+
ymin=rect4[2],
|
|
802
|
+
ymax=rect4[3],
|
|
803
|
+
labels=[("k1", "hallucination")],
|
|
804
|
+
scores=[0.1],
|
|
805
|
+
),
|
|
806
|
+
],
|
|
807
|
+
),
|
|
808
|
+
Detection(
|
|
809
|
+
uid="uid2",
|
|
810
|
+
groundtruths=[
|
|
811
|
+
BoundingBox(
|
|
812
|
+
xmin=rect1[0],
|
|
813
|
+
xmax=rect1[1],
|
|
814
|
+
ymin=rect1[2],
|
|
815
|
+
ymax=rect1[3],
|
|
816
|
+
labels=[("k1", "low_iou")],
|
|
817
|
+
),
|
|
818
|
+
],
|
|
819
|
+
predictions=[
|
|
820
|
+
BoundingBox(
|
|
821
|
+
xmin=rect2[0],
|
|
822
|
+
xmax=rect2[1],
|
|
823
|
+
ymin=rect2[2],
|
|
824
|
+
ymax=rect2[3],
|
|
825
|
+
labels=[("k1", "low_iou")],
|
|
826
|
+
scores=[0.5],
|
|
827
|
+
),
|
|
828
|
+
],
|
|
829
|
+
),
|
|
830
|
+
]
|