valor-lite 0.32.2a2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- valor_lite-0.32.2a2/LICENSE +21 -0
- valor_lite-0.32.2a2/PKG-INFO +40 -0
- valor_lite-0.32.2a2/README.md +1 -0
- valor_lite-0.32.2a2/benchmarks/.gitignore +2 -0
- valor_lite-0.32.2a2/benchmarks/benchmark_objdet.py +330 -0
- valor_lite-0.32.2a2/examples/.gitignore +1 -0
- valor_lite-0.32.2a2/examples/coco-yolo.ipynb +442 -0
- valor_lite-0.32.2a2/pyproject.toml +38 -0
- valor_lite-0.32.2a2/setup.cfg +4 -0
- valor_lite-0.32.2a2/tests/detection/__init__.py +0 -0
- valor_lite-0.32.2a2/tests/detection/conftest.py +504 -0
- valor_lite-0.32.2a2/tests/detection/test_average_precision.py +623 -0
- valor_lite-0.32.2a2/tests/detection/test_average_recall.py +246 -0
- valor_lite-0.32.2a2/tests/detection/test_counts.py +457 -0
- valor_lite-0.32.2a2/tests/detection/test_dataloader.py +34 -0
- valor_lite-0.32.2a2/tests/detection/test_detailed_pr_curve.py +882 -0
- valor_lite-0.32.2a2/tests/detection/test_evaluator.py +31 -0
- valor_lite-0.32.2a2/tests/detection/test_filtering.py +401 -0
- valor_lite-0.32.2a2/tests/detection/test_iou.py +30 -0
- valor_lite-0.32.2a2/tests/detection/test_pr_curve.py +177 -0
- valor_lite-0.32.2a2/tests/detection/test_precision.py +389 -0
- valor_lite-0.32.2a2/tests/detection/test_recall.py +389 -0
- valor_lite-0.32.2a2/tests/detection/test_schemas.py +105 -0
- valor_lite-0.32.2a2/tests/detection/test_stability.py +87 -0
- valor_lite-0.32.2a2/valor_lite/__init__.py +0 -0
- valor_lite-0.32.2a2/valor_lite/detection/__init__.py +56 -0
- valor_lite-0.32.2a2/valor_lite/detection/annotation.py +54 -0
- valor_lite-0.32.2a2/valor_lite/detection/computation.py +506 -0
- valor_lite-0.32.2a2/valor_lite/detection/manager.py +845 -0
- valor_lite-0.32.2a2/valor_lite/detection/metric.py +357 -0
- valor_lite-0.32.2a2/valor_lite/schemas.py +15 -0
- valor_lite-0.32.2a2/valor_lite.egg-info/PKG-INFO +40 -0
- valor_lite-0.32.2a2/valor_lite.egg-info/SOURCES.txt +34 -0
- valor_lite-0.32.2a2/valor_lite.egg-info/dependency_links.txt +1 -0
- valor_lite-0.32.2a2/valor_lite.egg-info/requires.txt +11 -0
- valor_lite-0.32.2a2/valor_lite.egg-info/top_level.txt +1 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2023 Striveworks
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: valor-lite
|
|
3
|
+
Version: 0.32.2a2
|
|
4
|
+
Summary: Compute valor metrics directly in your client.
|
|
5
|
+
License: MIT License
|
|
6
|
+
|
|
7
|
+
Copyright (c) 2023 Striveworks
|
|
8
|
+
|
|
9
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
10
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
11
|
+
in the Software without restriction, including without limitation the rights
|
|
12
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
13
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
14
|
+
furnished to do so, subject to the following conditions:
|
|
15
|
+
|
|
16
|
+
The above copyright notice and this permission notice shall be included in all
|
|
17
|
+
copies or substantial portions of the Software.
|
|
18
|
+
|
|
19
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
20
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
21
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
22
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
23
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
24
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
25
|
+
SOFTWARE.
|
|
26
|
+
|
|
27
|
+
Project-URL: homepage, https://www.striveworks.com
|
|
28
|
+
Requires-Python: >=3.10
|
|
29
|
+
Description-Content-Type: text/markdown
|
|
30
|
+
License-File: LICENSE
|
|
31
|
+
Requires-Dist: Pillow>=9.1.0
|
|
32
|
+
Requires-Dist: importlib_metadata; python_version < "3.8"
|
|
33
|
+
Requires-Dist: tqdm
|
|
34
|
+
Requires-Dist: requests
|
|
35
|
+
Requires-Dist: numpy
|
|
36
|
+
Provides-Extra: test
|
|
37
|
+
Requires-Dist: pytest; extra == "test"
|
|
38
|
+
Requires-Dist: coverage; extra == "test"
|
|
39
|
+
|
|
40
|
+
# valor-lite: Compute classification, object detection, and segmentation metrics locally.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# valor-lite: Compute classification, object detection, and segmentation metrics locally.
|
|
@@ -0,0 +1,330 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import os
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from datetime import datetime
|
|
5
|
+
from enum import Enum
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
from time import time
|
|
8
|
+
|
|
9
|
+
import requests
|
|
10
|
+
from tqdm import tqdm
|
|
11
|
+
from valor_lite.detection import DataLoader
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class AnnotationType(str, Enum):
|
|
15
|
+
NONE = "none"
|
|
16
|
+
BOX = "box"
|
|
17
|
+
POLYGON = "polygon"
|
|
18
|
+
MULTIPOLYGON = "multipolygon"
|
|
19
|
+
RASTER = "raster"
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def time_it(fn):
|
|
23
|
+
def wrapper(*args, **kwargs):
|
|
24
|
+
start = time()
|
|
25
|
+
results = fn(*args, **kwargs)
|
|
26
|
+
return (time() - start, results)
|
|
27
|
+
|
|
28
|
+
return wrapper
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def download_data_if_not_exists(
|
|
32
|
+
file_name: str,
|
|
33
|
+
file_path: Path,
|
|
34
|
+
url: str,
|
|
35
|
+
):
|
|
36
|
+
"""Download the data from a public bucket if it doesn't exist locally."""
|
|
37
|
+
|
|
38
|
+
if not os.path.exists(file_path):
|
|
39
|
+
response = requests.get(url, stream=True)
|
|
40
|
+
if response.status_code == 200:
|
|
41
|
+
total_size = int(response.headers.get("content-length", 0))
|
|
42
|
+
with open(file_path, "wb") as f:
|
|
43
|
+
with tqdm(
|
|
44
|
+
total=total_size,
|
|
45
|
+
unit="B",
|
|
46
|
+
unit_scale=True,
|
|
47
|
+
unit_divisor=1024,
|
|
48
|
+
desc=file_name,
|
|
49
|
+
) as pbar:
|
|
50
|
+
for chunk in response.iter_content(chunk_size=1024):
|
|
51
|
+
if chunk:
|
|
52
|
+
f.write(chunk)
|
|
53
|
+
pbar.update(1024)
|
|
54
|
+
else:
|
|
55
|
+
raise RuntimeError(response)
|
|
56
|
+
else:
|
|
57
|
+
print(f"{file_name} already exists locally.")
|
|
58
|
+
|
|
59
|
+
# sort file by datum uid
|
|
60
|
+
with open(file_path, "r") as f:
|
|
61
|
+
lines = [x for x in f]
|
|
62
|
+
with open(file_path, "w") as f:
|
|
63
|
+
for line in sorted(
|
|
64
|
+
lines, key=lambda x: int(json.loads(x)["datum"]["uid"])
|
|
65
|
+
):
|
|
66
|
+
f.write(line)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def write_results_to_file(write_path: Path, results: list[dict]):
|
|
70
|
+
"""Write results to manager_results.json"""
|
|
71
|
+
current_datetime = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
|
|
72
|
+
if os.path.isfile(write_path):
|
|
73
|
+
with open(write_path, "r") as file:
|
|
74
|
+
file.seek(0)
|
|
75
|
+
data = json.load(file)
|
|
76
|
+
else:
|
|
77
|
+
data = {}
|
|
78
|
+
|
|
79
|
+
data[current_datetime] = results
|
|
80
|
+
|
|
81
|
+
with open(write_path, "w+") as file:
|
|
82
|
+
json.dump(data, file, indent=4)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
@time_it
|
|
86
|
+
def ingest(
|
|
87
|
+
manager: DataLoader,
|
|
88
|
+
gt_path: Path,
|
|
89
|
+
pd_path: Path,
|
|
90
|
+
limit: int,
|
|
91
|
+
chunk_size: int,
|
|
92
|
+
):
|
|
93
|
+
accumulated_time = 0.0
|
|
94
|
+
with open(gt_path, "r") as gf:
|
|
95
|
+
with open(pd_path, "r") as pf:
|
|
96
|
+
|
|
97
|
+
count = 0
|
|
98
|
+
groundtruths = []
|
|
99
|
+
predictions = []
|
|
100
|
+
for gline, pline in zip(gf, pf):
|
|
101
|
+
|
|
102
|
+
# groundtruth
|
|
103
|
+
gt_dict = json.loads(gline)
|
|
104
|
+
groundtruths.append(gt_dict)
|
|
105
|
+
|
|
106
|
+
# prediction
|
|
107
|
+
pd_dict = json.loads(pline)
|
|
108
|
+
predictions.append(pd_dict)
|
|
109
|
+
|
|
110
|
+
count += 1
|
|
111
|
+
if count >= limit and limit > 0:
|
|
112
|
+
break
|
|
113
|
+
elif len(groundtruths) < chunk_size or chunk_size == -1:
|
|
114
|
+
continue
|
|
115
|
+
|
|
116
|
+
timer, _ = time_it(manager.add_data_from_valor_dict)(
|
|
117
|
+
zip(groundtruths, predictions), True
|
|
118
|
+
)
|
|
119
|
+
accumulated_time += timer
|
|
120
|
+
groundtruths = []
|
|
121
|
+
predictions = []
|
|
122
|
+
|
|
123
|
+
if groundtruths:
|
|
124
|
+
timer, _ = time_it(manager.add_data_from_valor_dict)(
|
|
125
|
+
zip(groundtruths, predictions), True
|
|
126
|
+
)
|
|
127
|
+
accumulated_time += timer
|
|
128
|
+
|
|
129
|
+
return accumulated_time
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
@dataclass
|
|
133
|
+
class Benchmark:
|
|
134
|
+
limit: int
|
|
135
|
+
n_datums: int
|
|
136
|
+
n_groundtruths: int
|
|
137
|
+
n_predictions: int
|
|
138
|
+
n_labels: int
|
|
139
|
+
gt_type: AnnotationType
|
|
140
|
+
pd_type: AnnotationType
|
|
141
|
+
chunk_size: int
|
|
142
|
+
ingestion: float
|
|
143
|
+
preprocessing: float
|
|
144
|
+
precomputation: float
|
|
145
|
+
evaluation: float
|
|
146
|
+
detailed_curves: list[tuple[int, float]]
|
|
147
|
+
|
|
148
|
+
def result(self) -> dict:
|
|
149
|
+
return {
|
|
150
|
+
"limit": self.limit,
|
|
151
|
+
"n_datums": self.n_datums,
|
|
152
|
+
"n_groundtruths": self.n_groundtruths,
|
|
153
|
+
"n_predictions": self.n_predictions,
|
|
154
|
+
"n_labels": self.n_labels,
|
|
155
|
+
"dtype": {
|
|
156
|
+
"groundtruth": self.gt_type.value,
|
|
157
|
+
"prediction": self.pd_type.value,
|
|
158
|
+
},
|
|
159
|
+
"chunk_size": self.chunk_size,
|
|
160
|
+
"ingestion": {
|
|
161
|
+
"loading_from_file": f"{round(self.ingestion - self.preprocessing, 2)} seconds",
|
|
162
|
+
"numpy_conversion + IoU": f"{round(self.preprocessing, 2)} seconds",
|
|
163
|
+
"ranking_pairs": f"{round(self.precomputation, 2)} seconds",
|
|
164
|
+
"total": f"{round(self.ingestion + self.precomputation, 2)} seconds",
|
|
165
|
+
},
|
|
166
|
+
"base_evaluation": f"{round(self.evaluation, 2)} seconds",
|
|
167
|
+
"detailed_pr_curve": [
|
|
168
|
+
{
|
|
169
|
+
"n_points": 10,
|
|
170
|
+
"n_examples": curve[0],
|
|
171
|
+
"computation": f"{round(curve[1], 2)} seconds",
|
|
172
|
+
}
|
|
173
|
+
for curve in self.detailed_curves
|
|
174
|
+
],
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def run_benchmarking_analysis(
|
|
179
|
+
limits_to_test: list[int],
|
|
180
|
+
combinations: list[tuple[AnnotationType, AnnotationType]] | None = None,
|
|
181
|
+
results_file: str = "manager_results.json",
|
|
182
|
+
chunk_size: int = -1,
|
|
183
|
+
compute_pr: bool = True,
|
|
184
|
+
compute_detailed: bool = True,
|
|
185
|
+
ingestion_timeout=30,
|
|
186
|
+
evaluation_timeout=30,
|
|
187
|
+
):
|
|
188
|
+
"""Time various function calls and export the results."""
|
|
189
|
+
current_directory = Path(__file__).parent
|
|
190
|
+
write_path = current_directory / Path(results_file)
|
|
191
|
+
|
|
192
|
+
gt_box_filename = "gt_objdet_coco_bbox.jsonl"
|
|
193
|
+
gt_polygon_filename = "gt_objdet_coco_polygon.jsonl"
|
|
194
|
+
gt_multipolygon_filename = "gt_objdet_coco_raster_multipolygon.jsonl"
|
|
195
|
+
gt_raster_filename = "gt_objdet_coco_raster_bitmask.jsonl"
|
|
196
|
+
pd_box_filename = "pd_objdet_yolo_bbox.jsonl"
|
|
197
|
+
pd_polygon_filename = "pd_objdet_yolo_polygon.jsonl"
|
|
198
|
+
pd_multipolygon_filename = "pd_objdet_yolo_multipolygon.jsonl"
|
|
199
|
+
pd_raster_filename = "pd_objdet_yolo_raster.jsonl"
|
|
200
|
+
|
|
201
|
+
groundtruth_caches = {
|
|
202
|
+
AnnotationType.BOX: gt_box_filename,
|
|
203
|
+
AnnotationType.POLYGON: gt_polygon_filename,
|
|
204
|
+
AnnotationType.MULTIPOLYGON: gt_multipolygon_filename,
|
|
205
|
+
AnnotationType.RASTER: gt_raster_filename,
|
|
206
|
+
}
|
|
207
|
+
prediction_caches = {
|
|
208
|
+
AnnotationType.BOX: pd_box_filename,
|
|
209
|
+
AnnotationType.POLYGON: pd_polygon_filename,
|
|
210
|
+
AnnotationType.MULTIPOLYGON: pd_multipolygon_filename,
|
|
211
|
+
AnnotationType.RASTER: pd_raster_filename,
|
|
212
|
+
}
|
|
213
|
+
|
|
214
|
+
# default is to perform all combinations
|
|
215
|
+
if combinations is None:
|
|
216
|
+
combinations = [
|
|
217
|
+
(gt_type, pd_type)
|
|
218
|
+
for gt_type in groundtruth_caches
|
|
219
|
+
for pd_type in prediction_caches
|
|
220
|
+
]
|
|
221
|
+
|
|
222
|
+
# cache data locally
|
|
223
|
+
filenames = [
|
|
224
|
+
*list(groundtruth_caches.values()),
|
|
225
|
+
*list(prediction_caches.values()),
|
|
226
|
+
]
|
|
227
|
+
for filename in filenames:
|
|
228
|
+
file_path = current_directory / Path(filename)
|
|
229
|
+
url = f"https://pub-fae71003f78140bdaedf32a7c8d331d2.r2.dev/{filename}"
|
|
230
|
+
download_data_if_not_exists(
|
|
231
|
+
file_name=filename, file_path=file_path, url=url
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
# iterate through datum limits
|
|
235
|
+
results = list()
|
|
236
|
+
for limit in limits_to_test:
|
|
237
|
+
for gt_type, pd_type in combinations:
|
|
238
|
+
|
|
239
|
+
gt_filename = groundtruth_caches[gt_type]
|
|
240
|
+
pd_filename = prediction_caches[pd_type]
|
|
241
|
+
|
|
242
|
+
# === Base Evaluation ===
|
|
243
|
+
manager = DataLoader()
|
|
244
|
+
|
|
245
|
+
# ingest + preprocess
|
|
246
|
+
(ingest_time, preprocessing_time,) = ingest(
|
|
247
|
+
manager=manager,
|
|
248
|
+
gt_path=current_directory / Path(gt_filename),
|
|
249
|
+
pd_path=current_directory / Path(pd_filename),
|
|
250
|
+
limit=limit,
|
|
251
|
+
chunk_size=chunk_size,
|
|
252
|
+
) # type: ignore - time_it wrapper
|
|
253
|
+
|
|
254
|
+
finalization_time, evaluator = time_it(manager.finalize)()
|
|
255
|
+
|
|
256
|
+
if ingest_time > ingestion_timeout and ingestion_timeout != -1:
|
|
257
|
+
raise TimeoutError(
|
|
258
|
+
f"Base precomputation timed out with limit of {limit}."
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
# test detailed pr curve with no samples
|
|
262
|
+
detailed_pr_curve_time_no_samples, _ = time_it(
|
|
263
|
+
evaluator.compute_detailed_pr_curve
|
|
264
|
+
)()
|
|
265
|
+
|
|
266
|
+
# test detailed pr curve with 3 samples
|
|
267
|
+
detailed_pr_curve_time_three_samples, _ = time_it(
|
|
268
|
+
evaluator.compute_detailed_pr_curve
|
|
269
|
+
)(n_samples=3)
|
|
270
|
+
|
|
271
|
+
# evaluate
|
|
272
|
+
eval_time, metrics = time_it(evaluator.evaluate)()
|
|
273
|
+
# print(metrics)
|
|
274
|
+
if eval_time > evaluation_timeout and evaluation_timeout != -1:
|
|
275
|
+
raise TimeoutError(
|
|
276
|
+
f"Base evaluation timed out with {evaluator.n_datums} datums."
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
results.append(
|
|
280
|
+
Benchmark(
|
|
281
|
+
limit=limit,
|
|
282
|
+
n_datums=evaluator.n_datums,
|
|
283
|
+
n_groundtruths=evaluator.n_groundtruths,
|
|
284
|
+
n_predictions=evaluator.n_predictions,
|
|
285
|
+
n_labels=evaluator.n_labels,
|
|
286
|
+
gt_type=gt_type,
|
|
287
|
+
pd_type=pd_type,
|
|
288
|
+
chunk_size=chunk_size,
|
|
289
|
+
ingestion=ingest_time,
|
|
290
|
+
preprocessing=preprocessing_time,
|
|
291
|
+
precomputation=finalization_time,
|
|
292
|
+
evaluation=eval_time,
|
|
293
|
+
detailed_curves=[
|
|
294
|
+
(0, detailed_pr_curve_time_no_samples),
|
|
295
|
+
(3, detailed_pr_curve_time_three_samples),
|
|
296
|
+
],
|
|
297
|
+
).result()
|
|
298
|
+
)
|
|
299
|
+
|
|
300
|
+
write_results_to_file(write_path=write_path, results=results)
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
if __name__ == "__main__":
|
|
304
|
+
|
|
305
|
+
# run bounding box benchmark
|
|
306
|
+
run_benchmarking_analysis(
|
|
307
|
+
combinations=[
|
|
308
|
+
(AnnotationType.BOX, AnnotationType.BOX),
|
|
309
|
+
],
|
|
310
|
+
limits_to_test=[5000, 5000],
|
|
311
|
+
compute_detailed=False,
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
# # run polygon benchmark
|
|
315
|
+
# run_benchmarking_analysis(
|
|
316
|
+
# combinations=[
|
|
317
|
+
# (AnnotationType.POLYGON, AnnotationType.POLYGON),
|
|
318
|
+
# ],
|
|
319
|
+
# limits_to_test=[5000, 5000],
|
|
320
|
+
# compute_detailed=False,
|
|
321
|
+
# )
|
|
322
|
+
|
|
323
|
+
# # run raster benchmark
|
|
324
|
+
# run_benchmarking_analysis(
|
|
325
|
+
# combinations=[
|
|
326
|
+
# (AnnotationType.RASTER, AnnotationType.RASTER),
|
|
327
|
+
# ],
|
|
328
|
+
# limits_to_test=[500, 500],
|
|
329
|
+
# compute_detailed=False,
|
|
330
|
+
# )
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
!*.ipynb
|