validatex 1.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. validatex-1.0.0/LICENSE +21 -0
  2. validatex-1.0.0/PKG-INFO +572 -0
  3. validatex-1.0.0/README.md +521 -0
  4. validatex-1.0.0/setup.cfg +4 -0
  5. validatex-1.0.0/setup.py +64 -0
  6. validatex-1.0.0/validatex/__init__.py +47 -0
  7. validatex-1.0.0/validatex/cli/__init__.py +1 -0
  8. validatex-1.0.0/validatex/cli/main.py +320 -0
  9. validatex-1.0.0/validatex/config/__init__.py +1 -0
  10. validatex-1.0.0/validatex/config/loader.py +102 -0
  11. validatex-1.0.0/validatex/core/__init__.py +14 -0
  12. validatex-1.0.0/validatex/core/expectation.py +167 -0
  13. validatex-1.0.0/validatex/core/result.py +500 -0
  14. validatex-1.0.0/validatex/core/suite.py +142 -0
  15. validatex-1.0.0/validatex/core/validator.py +87 -0
  16. validatex-1.0.0/validatex/datasources/__init__.py +15 -0
  17. validatex-1.0.0/validatex/datasources/base_source.py +40 -0
  18. validatex-1.0.0/validatex/datasources/csv_source.py +49 -0
  19. validatex-1.0.0/validatex/datasources/database_source.py +49 -0
  20. validatex-1.0.0/validatex/datasources/dataframe_source.py +29 -0
  21. validatex-1.0.0/validatex/datasources/parquet_source.py +41 -0
  22. validatex-1.0.0/validatex/expectations/__init__.py +6 -0
  23. validatex-1.0.0/validatex/expectations/aggregate_expectations.py +240 -0
  24. validatex-1.0.0/validatex/expectations/column_expectations.py +807 -0
  25. validatex-1.0.0/validatex/expectations/table_expectations.py +228 -0
  26. validatex-1.0.0/validatex/profiler/__init__.py +1 -0
  27. validatex-1.0.0/validatex/profiler/profiler.py +300 -0
  28. validatex-1.0.0/validatex/reporting/__init__.py +1 -0
  29. validatex-1.0.0/validatex/reporting/html_report.py +748 -0
  30. validatex-1.0.0/validatex/reporting/json_report.py +15 -0
  31. validatex-1.0.0/validatex.egg-info/PKG-INFO +572 -0
  32. validatex-1.0.0/validatex.egg-info/SOURCES.txt +34 -0
  33. validatex-1.0.0/validatex.egg-info/dependency_links.txt +1 -0
  34. validatex-1.0.0/validatex.egg-info/entry_points.txt +2 -0
  35. validatex-1.0.0/validatex.egg-info/requires.txt +24 -0
  36. validatex-1.0.0/validatex.egg-info/top_level.txt +1 -0
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Kaviarasan Mani
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,572 @@
1
+ Metadata-Version: 2.4
2
+ Name: validatex
3
+ Version: 1.0.0
4
+ Summary: A powerful data quality validation framework inspired by Great Expectations
5
+ Home-page: https://github.com/kaviarasanmani/ValidateX
6
+ Author: Kaviarasan Mani
7
+ Classifier: Development Status :: 4 - Beta
8
+ Classifier: Intended Audience :: Developers
9
+ Classifier: Intended Audience :: Science/Research
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.8
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Classifier: Topic :: Software Development :: Quality Assurance
17
+ Classifier: Topic :: Database
18
+ Requires-Python: >=3.8
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE
21
+ Requires-Dist: pandas>=1.3.0
22
+ Requires-Dist: pyyaml>=6.0
23
+ Requires-Dist: jinja2>=3.0
24
+ Requires-Dist: click>=8.0
25
+ Requires-Dist: rich>=12.0
26
+ Requires-Dist: colorama>=0.4.0
27
+ Provides-Extra: spark
28
+ Requires-Dist: pyspark>=3.0.0; extra == "spark"
29
+ Provides-Extra: database
30
+ Requires-Dist: sqlalchemy>=1.4.0; extra == "database"
31
+ Provides-Extra: all
32
+ Requires-Dist: pyspark>=3.0.0; extra == "all"
33
+ Requires-Dist: sqlalchemy>=1.4.0; extra == "all"
34
+ Provides-Extra: dev
35
+ Requires-Dist: pytest>=7.0; extra == "dev"
36
+ Requires-Dist: pytest-cov>=4.0; extra == "dev"
37
+ Requires-Dist: black>=22.0; extra == "dev"
38
+ Requires-Dist: flake8>=5.0; extra == "dev"
39
+ Requires-Dist: mypy>=1.0.0; extra == "dev"
40
+ Requires-Dist: ruff>=0.1.0; extra == "dev"
41
+ Dynamic: author
42
+ Dynamic: classifier
43
+ Dynamic: description
44
+ Dynamic: description-content-type
45
+ Dynamic: home-page
46
+ Dynamic: license-file
47
+ Dynamic: provides-extra
48
+ Dynamic: requires-dist
49
+ Dynamic: requires-python
50
+ Dynamic: summary
51
+
52
+ <p align="center">
53
+ <h1 align="center">๐Ÿš€ ValidateX</h1>
54
+ <p align="center">
55
+ <strong>A powerful, extensible data quality validation framework for Python.</strong>
56
+ </p>
57
+ <p align="center">
58
+ <!-- Build & Tests -->
59
+ <a href="https://github.com/kaviarasanmani/ValidateX/actions/workflows/tests.yml"><img src="https://img.shields.io/github/actions/workflow/status/kaviarasanmani/ValidateX/tests.yml?branch=main" alt="Build Status (Tests & CI)"></a>
60
+ <img src="https://img.shields.io/badge/coverage-96%25-brightgreen" alt="Code Coverage">
61
+ <img src="https://img.shields.io/badge/tests-66%20passed-brightgreen" alt="Test Passing Rate">
62
+ <!-- Package & Language -->
63
+ <a href="https://pypi.org/project/validatex/"><img src="https://img.shields.io/pypi/v/validatex.svg" alt="PyPI Latest Version"></a>
64
+ <img src="https://img.shields.io/badge/python-3.9+-blue?logo=python&logoColor=white" alt="Supported Python Versions">
65
+ <!-- License & Style -->
66
+ <img src="https://img.shields.io/badge/license-MIT-green" alt="MIT License">
67
+ <img src="https://img.shields.io/badge/code%20style-black-000000" alt="Code Style: black">
68
+ </p>
69
+ <p align="center">
70
+ <em>Badges represent (from left to right): CI/CD Build Status, Code Coverage, Test Count, Latest PyPI Release, Supported Python Versions, License, and Code Style.</em>
71
+ </p>
72
+ </p>
73
+
74
+ ValidateX provides a comprehensive suite of tools for validating, profiling, and monitoring data quality across **Pandas** and **PySpark** DataFrames. Inspired by Great Expectations, it offers a simpler, more focused approach with modern, production-ready HTML reports and an intuitive API.
75
+
76
+ ## ๐Ÿ“‘ Table of Contents
77
+ - [๐Ÿ–ผ๏ธ Report Preview](#๏ธ-report-preview)
78
+ - [๐Ÿค” Why ValidateX?](#-why-validatex)
79
+ - [๐ŸŽฏ Who Is This For?](#-who-is-this-for)
80
+ - [โœจ Features](#-features)
81
+ - [๐Ÿ“ฆ Installation](#-installation)
82
+ - [๐Ÿ Quick Start](#-quick-start)
83
+ - [๐Ÿค– Automate with CI/CD](#-automate-with-cicd)
84
+ - [๐ŸŽฏ Data Quality Score](#-data-quality-score)
85
+ - [๐Ÿ“‹ Available Expectations](#-available-expectations)
86
+ - [๐Ÿš€ Roadmap](#-roadmap)
87
+
88
+ ---
89
+
90
+ ## ๐Ÿ–ผ๏ธ Report Preview
91
+
92
+ <p align="center">
93
+ <img src="docs/screenshots/report_overview.png" alt="ValidateX Report โ€” Overview" width="100%">
94
+ </p>
95
+
96
+ <table>
97
+ <tr>
98
+ <td width="50%">
99
+ <img src="docs/screenshots/report_header.png" alt="Column Health Summary" width="100%">
100
+ <p align="center"><em>Column Health Summary with mini bar charts</em></p>
101
+ </td>
102
+ <td width="50%">
103
+ <img src="docs/screenshots/expectations_table.png" alt="Expectations Table" width="100%">
104
+ <p align="center"><em>Severity-tagged Expectations with human-readable output</em></p>
105
+ </td>
106
+ </tr>
107
+ </table>
108
+
109
+ ---
110
+
111
+ ## ๐Ÿค” Why ValidateX?
112
+
113
+ | Feature | **ValidateX** | **Great Expectations** |
114
+ |---|---|---|
115
+ | **Setup** | `pip install` โ†’ validate in 5 lines | Multi-step setup with contexts & stores |
116
+ | **API** | Fluent, chainable Python API | Heavy config system |
117
+ | **Severity levels** | โœ” (Critical, Warning, Info) | โŒ |
118
+ | **Quality score** | โœ” (Weighted 0โ€“100) | โŒ |
119
+ | **Auto-suggest expectations**| โœ” | โœ” |
120
+ | **Reports** | Modern dark-theme HTML with minicharts | Basic data docs |
121
+ | **Output Data Types** | Clean native Python types | NumPy types leak into JSON |
122
+ | **PySpark Support** | โœ” | โœ” |
123
+ | **Polars Support** | Soon | โœ” |
124
+ | **CI/CD friendly CLI** | โœ” | โŒ |
125
+ | **Downloads** | JSON / CSV / clipboard built into report | Separate export |
126
+ | **Learning curve** | Minutes | Hours to days |
127
+
128
+ ValidateX is not a replacement for Great Expectations โ€” it's a **focused alternative** for teams that want production-grade data validation without the overhead.
129
+
130
+ ---
131
+
132
+ ## ๐ŸŽฏ Who Is This For?
133
+
134
+ - **Startup data teams** โ€” Ship data quality checks in minutes, not days
135
+ - **ML engineers** โ€” Validate feature stores and training data before model runs
136
+ - **CI/CD pipelines** โ€” Gate deployments on data quality with a single CLI command
137
+ - **Analytics teams** โ€” Catch data issues before they reach dashboards
138
+ - **dbt users** โ€” Lightweight validation alongside your transformation layer
139
+ - **Data platform teams** โ€” Monitor data quality across dozens of tables
140
+
141
+ ---
142
+
143
+ ## โœจ Features
144
+
145
+ | Feature | Description |
146
+ |---------|-------------|
147
+ | **25+ Built-in Expectations** | Column-level, table-level, and aggregate validations |
148
+ | **Dual Engine Support** | Pandas and PySpark execution engines |
149
+ | **๐ŸŽฏ Data Quality Score** | Weighted score (0โ€“100) based on severity of checks |
150
+ | **๐Ÿ”ด๐ŸŸก๐Ÿ”ต Severity Levels** | Critical / Warning / Info classification for every expectation |
151
+ | **๐Ÿ“Š Column Health Summary** | At-a-glance per-column health with mini bar charts |
152
+ | **Modern HTML Reports** | Stunning, self-contained dark-theme reports with animations |
153
+ | **๐Ÿ“ฅ Download Buttons** | Export reports as JSON, CSV, or copy summary to clipboard |
154
+ | **๐Ÿ“ˆ Drift Detection** | Track changes between validation runs |
155
+ | **Data Profiling** | Auto-analyse datasets and suggest expectations |
156
+ | **YAML/JSON Config** | Define expectations declaratively |
157
+ | **CLI Interface** | Run validations from the command line |
158
+ | **Checkpoint System** | Tie data sources and suites together |
159
+ | **Extensible** | Create custom expectations with the registry pattern |
160
+ | **Clean Output** | All values are native Python types โ€” zero NumPy leakage |
161
+
162
+ ---
163
+
164
+ ## ๐Ÿ“ฆ Installation
165
+
166
+ ```bash
167
+ # Basic install
168
+ pip install -e .
169
+
170
+ # With PySpark support
171
+ pip install -e ".[spark]"
172
+
173
+ # With database support
174
+ pip install -e ".[database]"
175
+
176
+ # Full install
177
+ pip install -e ".[all]"
178
+
179
+ # Development
180
+ pip install -e ".[dev]"
181
+ ```
182
+
183
+ ---
184
+
185
+ ## ๐Ÿ Quick Start
186
+
187
+ ### Python API
188
+
189
+ ```python
190
+ import pandas as pd
191
+ import validatex as vx
192
+
193
+ # Create your data
194
+ df = pd.DataFrame({
195
+ "user_id": [1, 2, 3, 4, 5],
196
+ "name": ["Alice", "Bob", "Charlie", "Diana", "Eve"],
197
+ "age": [25, 30, 35, 28, 42],
198
+ "email": ["alice@test.com", "bob@test.com", "charlie@test.com",
199
+ "diana@test.com", "eve@test.com"],
200
+ "status": ["active", "active", "inactive", "active", "pending"],
201
+ })
202
+
203
+ # Build an expectation suite
204
+ suite = (
205
+ vx.ExpectationSuite("user_quality")
206
+ .add("expect_column_to_not_be_null", column="user_id")
207
+ .add("expect_column_values_to_be_unique", column="user_id")
208
+ .add("expect_column_values_to_be_between", column="age", min_value=0, max_value=150)
209
+ .add("expect_column_values_to_be_in_set",
210
+ column="status", value_set=["active", "inactive", "pending"])
211
+ .add("expect_column_values_to_match_regex",
212
+ column="email", regex=r"^[\w.]+@[\w]+\.\w+$")
213
+ )
214
+
215
+ # Validate
216
+ result = vx.validate(df, suite)
217
+
218
+ # Print summary (includes Quality Score)
219
+ print(result.summary())
220
+
221
+ # Generate reports
222
+ result.to_html("report.html")
223
+ result.to_json_file("report.json")
224
+ ```
225
+
226
+ ### CLI
227
+
228
+ ```bash
229
+ # Initialize a project
230
+ validatex init
231
+
232
+ # Profile a dataset
233
+ validatex profile --data data.csv --suggest --output auto_suite.yaml
234
+
235
+ # Run validation
236
+ validatex validate --data data.csv --suite suite.yaml --report report.html
237
+
238
+ # Run checkpoint
239
+ validatex run --checkpoint checkpoint.yaml
240
+
241
+ # List available expectations
242
+ validatex list-expectations
243
+ ```
244
+
245
+ ---
246
+
247
+ ## ๐Ÿค– Automate with CI/CD
248
+
249
+ ValidateX is designed to be lightweight and CI-friendly. You can easily integrate it into your GitHub Actions, GitLab CI, or Jenkins pipelines to gate deployments on data quality.
250
+
251
+ **Example: GitHub Actions**
252
+ ```yaml
253
+ name: Data Quality Validation
254
+ on: [push, pull_request]
255
+
256
+ jobs:
257
+ validate-data:
258
+ runs-on: ubuntu-latest
259
+ steps:
260
+ - uses: actions/checkout@v4
261
+
262
+ - name: Set up Python
263
+ uses: actions/setup-python@v5
264
+ with:
265
+ python-version: '3.11'
266
+
267
+ - name: Install ValidateX
268
+ run: pip install validatex
269
+
270
+ - name: Run Data Validation
271
+ run: |
272
+ validatex validate \
273
+ --data data/production_data.csv \
274
+ --suite tests/data_quality/suite.yaml \
275
+ --report dq_report.html
276
+
277
+ - name: Archive production artifacts
278
+ uses: actions/upload-artifact@v4
279
+ if: always()
280
+ with:
281
+ name: validatex-report
282
+ path: dq_report.html
283
+ ```
284
+
285
+ ---
286
+
287
+ ## ๐ŸŽฏ Data Quality Score
288
+
289
+ ValidateX computes a **weighted quality score** (0โ€“100) based on the severity of each expectation:
290
+
291
+ | Severity | Weight | Example Expectations |
292
+ |----------|--------|---------------------|
293
+ | ๐Ÿ”ด **Critical** | ร—3 | Null checks, uniqueness, column existence, row count |
294
+ | ๐ŸŸก **Warning** | ร—2 | Range checks, set membership, regex, type checks |
295
+ | ๐Ÿ”ต **Info** | ร—1 | Mean/stdev bounds, string lengths, distinct values |
296
+
297
+ **Formula:** `Score = 100 ร— (weighted_passed / weighted_total)`
298
+
299
+ A critical failure impacts the score 3ร— more than an info-level check. This gives decision-makers a **single number** to assess data health.
300
+
301
+ ```python
302
+ result = vx.validate(df, suite)
303
+ score = result.compute_quality_score()
304
+ print(f"Data Quality Score: {score}/100")
305
+ ```
306
+
307
+ ### Custom Severity
308
+
309
+ Override the default severity on any expectation via meta:
310
+
311
+ ```yaml
312
+ expectations:
313
+ - expectation_type: expect_column_mean_to_be_between
314
+ column: revenue
315
+ kwargs:
316
+ min_value: 1000
317
+ max_value: 50000
318
+ meta:
319
+ severity: critical # Override default "info" โ†’ "critical"
320
+ ```
321
+
322
+ ---
323
+
324
+ ## ๐Ÿ“Š Column Health Summary
325
+
326
+ The HTML report includes a **Column Health Summary** that aggregates all expectations per column:
327
+
328
+ | Column | Checks | Passed | Failed | Health | Null % | Unique % |
329
+ |--------|--------|--------|--------|--------|--------|----------|
330
+ | user_id | 3 | 3 | 0 | 100% โ–ˆโ–ˆโ–ˆ | 0.0% | 100.0% โ–ˆโ–ˆโ–ˆ |
331
+ | email | 4 | 4 | 0 | 100% โ–ˆโ–ˆโ–ˆ | 0.0% | 100.0% โ–ˆโ–ˆโ–ˆ |
332
+ | status | 1 | 1 | 0 | 100% โ–ˆโ–ˆโ–ˆ | โ€” | โ€” |
333
+
334
+ Each metric includes a **mini CSS bar chart** for instant visual scanning.
335
+
336
+ ```python
337
+ for col in result.column_health():
338
+ print(f"{col.column}: {col.health_score}% health, "
339
+ f"{col.passed}/{col.checks} passed")
340
+ ```
341
+
342
+ ---
343
+
344
+ ## ๐Ÿ“‹ Available Expectations
345
+
346
+ ### Column-Level (16)
347
+ | Expectation | Severity | Description |
348
+ |------------|----------|-------------|
349
+ | `expect_column_to_exist` | ๐Ÿ”ด Critical | Column exists in DataFrame |
350
+ | `expect_column_to_not_be_null` | ๐Ÿ”ด Critical | No null values |
351
+ | `expect_column_values_to_be_unique` | ๐Ÿ”ด Critical | All values unique |
352
+ | `expect_column_values_to_be_between` | ๐ŸŸก Warning | Values within range |
353
+ | `expect_column_values_to_be_in_set` | ๐ŸŸก Warning | Values in allowed set |
354
+ | `expect_column_values_to_not_be_in_set` | ๐ŸŸก Warning | Values not in forbidden set |
355
+ | `expect_column_values_to_match_regex` | ๐ŸŸก Warning | Values match regex pattern |
356
+ | `expect_column_values_to_be_of_type` | ๐ŸŸก Warning | Column dtype matches |
357
+ | `expect_column_values_to_be_dateutil_parseable` | ๐ŸŸก Warning | Values parseable as dates |
358
+ | `expect_column_value_lengths_to_be_between` | ๐Ÿ”ต Info | String lengths within range |
359
+ | `expect_column_max_to_be_between` | ๐Ÿ”ต Info | Column max within bounds |
360
+ | `expect_column_min_to_be_between` | ๐Ÿ”ต Info | Column min within bounds |
361
+ | `expect_column_mean_to_be_between` | ๐Ÿ”ต Info | Column mean within bounds |
362
+ | `expect_column_stdev_to_be_between` | ๐Ÿ”ต Info | Column std dev within bounds |
363
+ | `expect_column_distinct_values_to_be_in_set` | ๐Ÿ”ต Info | All distinct values in set |
364
+ | `expect_column_proportion_of_unique_values_to_be_between` | ๐Ÿ”ต Info | Uniqueness ratio in range |
365
+
366
+ ### Table-Level (5)
367
+ | Expectation | Severity | Description |
368
+ |------------|----------|-------------|
369
+ | `expect_table_row_count_to_equal` | ๐Ÿ”ด Critical | Exact row count |
370
+ | `expect_table_row_count_to_be_between` | ๐Ÿ”ด Critical | Row count in range |
371
+ | `expect_table_columns_to_match_ordered_list` | ๐Ÿ”ด Critical | Column order matches |
372
+ | `expect_table_columns_to_match_set` | ๐Ÿ”ด Critical | Column names match (unordered) |
373
+ | `expect_table_column_count_to_equal` | ๐Ÿ”ด Critical | Exact column count |
374
+
375
+ ### Aggregate / Cross-Column (4)
376
+ | Expectation | Severity | Description |
377
+ |------------|----------|-------------|
378
+ | `expect_column_pair_values_a_to_be_greater_than_b` | ๐ŸŸก Warning | Column A > Column B |
379
+ | `expect_column_pair_values_to_be_equal` | ๐ŸŸก Warning | Two columns equal |
380
+ | `expect_multicolumn_sum_to_equal` | ๐ŸŸก Warning | Row-wise sum equals target |
381
+ | `expect_compound_columns_to_be_unique` | ๐Ÿ”ด Critical | Compound key uniqueness |
382
+
383
+ ---
384
+
385
+ ## ๐Ÿ“Š Data Profiling
386
+
387
+ ```python
388
+ import pandas as pd
389
+ from validatex import DataProfiler
390
+
391
+ df = pd.read_csv("data.csv")
392
+ profiler = DataProfiler()
393
+
394
+ # Profile
395
+ profile = profiler.profile(df)
396
+ print(profile.summary())
397
+
398
+ # Auto-suggest expectations
399
+ suite = profiler.suggest_expectations(df, suite_name="auto_suite")
400
+ suite.save("auto_suite.yaml")
401
+ ```
402
+
403
+ ---
404
+
405
+ ## ๐Ÿ”ง YAML Suite Configuration
406
+
407
+ ```yaml
408
+ suite_name: my_data_quality
409
+ meta:
410
+ description: "Quality checks for production data"
411
+
412
+ expectations:
413
+ - expectation_type: expect_column_to_not_be_null
414
+ column: id
415
+ meta:
416
+ severity: critical
417
+
418
+ - expectation_type: expect_column_values_to_be_between
419
+ column: age
420
+ kwargs:
421
+ min_value: 0
422
+ max_value: 150
423
+
424
+ - expectation_type: expect_column_values_to_be_in_set
425
+ column: status
426
+ kwargs:
427
+ value_set: ["active", "inactive"]
428
+ ```
429
+
430
+ ---
431
+
432
+ ## ๐Ÿ—๏ธ Architecture
433
+
434
+ ```
435
+ validatex/
436
+ โ”œโ”€โ”€ core/
437
+ โ”‚ โ”œโ”€โ”€ expectation.py # Base class + registry
438
+ โ”‚ โ”œโ”€โ”€ result.py # ValidationResult, QualityScore, Severity, ColumnHealth
439
+ โ”‚ โ”œโ”€โ”€ suite.py # ExpectationSuite (fluent API)
440
+ โ”‚ โ””โ”€โ”€ validator.py # Validation orchestrator
441
+ โ”œโ”€โ”€ expectations/
442
+ โ”‚ โ”œโ”€โ”€ column_expectations.py # 16 column-level checks
443
+ โ”‚ โ”œโ”€โ”€ table_expectations.py # 5 table-level checks
444
+ โ”‚ โ””โ”€โ”€ aggregate_expectations.py # 4 cross-column checks
445
+ โ”œโ”€โ”€ datasources/
446
+ โ”‚ โ”œโ”€โ”€ csv_source.py # CSV files
447
+ โ”‚ โ”œโ”€โ”€ parquet_source.py # Parquet files
448
+ โ”‚ โ”œโ”€โ”€ database_source.py # SQL databases (SQLAlchemy)
449
+ โ”‚ โ””โ”€โ”€ dataframe_source.py # Direct DataFrames
450
+ โ”œโ”€โ”€ profiler/
451
+ โ”‚ โ””โ”€โ”€ profiler.py # Auto-profiling & suggestion engine
452
+ โ”œโ”€โ”€ reporting/
453
+ โ”‚ โ”œโ”€โ”€ html_report.py # Production HTML reports
454
+ โ”‚ โ””โ”€โ”€ json_report.py # JSON reports
455
+ โ”œโ”€โ”€ config/
456
+ โ”‚ โ””โ”€โ”€ loader.py # YAML/JSON config loading
457
+ โ””โ”€โ”€ cli/
458
+ โ””โ”€โ”€ main.py # CLI (validate, run, profile, init, list-expectations)
459
+ ```
460
+
461
+ ---
462
+
463
+ ## ๐Ÿงช Testing
464
+
465
+ ```bash
466
+ # Run all tests (66 tests)
467
+ pytest tests/ -v
468
+
469
+ # Run with coverage
470
+ pytest tests/ -v --cov=validatex --cov-report=html
471
+
472
+ # Unit tests only
473
+ pytest tests/unit/ -v
474
+
475
+ # Integration tests
476
+ pytest tests/integration/ -v
477
+ ```
478
+
479
+ ---
480
+
481
+ ## ๐Ÿค Creating Custom Expectations
482
+
483
+ ```python
484
+ from dataclasses import dataclass, field
485
+ from validatex.core.expectation import Expectation, register_expectation
486
+ from validatex.core.result import ExpectationResult
487
+
488
+ @register_expectation
489
+ @dataclass
490
+ class ExpectColumnValuesToBePositive(Expectation):
491
+ """Expect all values in a numeric column to be positive."""
492
+
493
+ expectation_type: str = field(
494
+ init=False, default="expect_column_values_to_be_positive"
495
+ )
496
+
497
+ def _validate_pandas(self, df) -> ExpectationResult:
498
+ series = df[self.column].dropna()
499
+ total = len(series)
500
+ negative_mask = series <= 0
501
+ unexpected_count = int(negative_mask.sum())
502
+ pct = (unexpected_count / total * 100) if total > 0 else 0.0
503
+
504
+ return self._build_result(
505
+ success=(unexpected_count == 0),
506
+ element_count=total,
507
+ unexpected_count=unexpected_count,
508
+ unexpected_percent=pct,
509
+ unexpected_values=series[negative_mask].tolist()[:20],
510
+ )
511
+ ```
512
+
513
+ ---
514
+
515
+ ## ๐Ÿงน Clean Output
516
+
517
+ ValidateX converts all internal types to native Python before rendering. You'll never see `np.int64(20)` in reports or JSON โ€” only clean `20`.
518
+
519
+ ```python
520
+ result = vx.validate(df, suite)
521
+ data = result.to_dict()
522
+
523
+ # Observed values are always clean:
524
+ # {'min': 20, 'max': 69} โ† NOT {'min': np.int64(20), ...}
525
+ # "Unique: 100/100 (100.0%)" โ† NOT "100 unique out of 100"
526
+ # "Distinct values: 3" โ† NOT "{'unique_values': 3}"
527
+ ```
528
+
529
+ ---
530
+
531
+ ## ๐Ÿš€ Roadmap
532
+
533
+ - [x] 25+ built-in expectations (column, table, aggregate)
534
+ - [x] Pandas + PySpark dual-engine support
535
+ - [x] Severity modeling (Critical / Warning / Info)
536
+ - [x] Weighted data quality score (0โ€“100)
537
+ - [x] Column health summary with mini charts
538
+ - [x] Modern HTML reports with dark theme
539
+ - [x] Download buttons (JSON, CSV, clipboard)
540
+ - [x] Drift detection foundation
541
+ - [x] Data profiler with auto-suggestion
542
+ - [x] CLI with validate, profile, run, init commands
543
+ - [x] YAML/JSON declarative configuration
544
+ - [x] Native Python type sanitization
545
+ - [ ] Slack / Teams notifications on failure
546
+ - [ ] GitHub Action template for CI/CD
547
+ - [ ] Polars engine support
548
+ - [ ] Baseline history tracking & trend charts
549
+ - [ ] Anomaly detection expectations
550
+ - [ ] Great Expectations suite import/migration
551
+ - [ ] Web dashboard for multi-dataset monitoring
552
+ - [ ] dbt integration plugin
553
+
554
+ ### Versioning
555
+ ValidateX follows [Semantic Versioning](https://semver.org/).
556
+ - **MAJOR** version for incompatible API changes
557
+ - **MINOR** version for backwards-compatible new functionality
558
+ - **PATCH** version for backwards-compatible bug fixes
559
+
560
+ ---
561
+
562
+ ## ๐Ÿ“„ License
563
+
564
+ MIT License
565
+
566
+ ---
567
+
568
+ <p align="center">
569
+ <strong>Built with โค๏ธ by the ValidateX Team</strong>
570
+ <br>
571
+ <sub>If this project helps you, consider giving it a โญ</sub>
572
+ </p>