usecortex-ai 0.4.0__tar.gz → 0.5.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. {usecortex_ai-0.4.0/src/usecortex_ai.egg-info → usecortex_ai-0.5.1}/PKG-INFO +1 -1
  2. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/pyproject.toml +1 -1
  3. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/__init__.py +10 -4
  4. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/client.py +0 -4
  5. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/dashboard/client.py +2 -30
  6. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/dashboard/raw_client.py +0 -28
  7. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/embeddings/client.py +8 -58
  8. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/embeddings/raw_client.py +8 -58
  9. usecortex_ai-0.5.1/src/usecortex_ai/fetch/__init__.py +7 -0
  10. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/fetch/client.py +42 -165
  11. usecortex_ai-0.5.1/src/usecortex_ai/fetch/raw_client.py +861 -0
  12. usecortex_ai-0.5.1/src/usecortex_ai/fetch/types/__init__.py +7 -0
  13. usecortex_ai-0.5.1/src/usecortex_ai/fetch/types/fetch_list_knowledge_response.py +8 -0
  14. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/raw_client.py +0 -4
  15. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/search/client.py +40 -108
  16. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/search/raw_client.py +40 -108
  17. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/sources/client.py +2 -16
  18. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/sources/raw_client.py +2 -16
  19. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/tenant/client.py +4 -108
  20. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/tenant/raw_client.py +2 -106
  21. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/__init__.py +8 -2
  22. usecortex_ai-0.5.1/src/usecortex_ai/types/forceful_relations_payload.py +27 -0
  23. usecortex_ai-0.5.1/src/usecortex_ai/types/list_content_kind.py +5 -0
  24. usecortex_ai-0.5.1/src/usecortex_ai/types/list_user_memories_response.py +32 -0
  25. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/memory_item.py +7 -1
  26. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/retrieval_result.py +4 -0
  27. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/retrieve_mode.py +1 -1
  28. usecortex_ai-0.5.1/src/usecortex_ai/types/user_memory.py +31 -0
  29. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/vector_store_chunk.py +5 -0
  30. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/upload/client.py +34 -204
  31. {usecortex_ai-0.4.0/src/usecortex_ai/fetch → usecortex_ai-0.5.1/src/usecortex_ai/upload}/raw_client.py +189 -216
  32. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1/src/usecortex_ai.egg-info}/PKG-INFO +1 -1
  33. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai.egg-info/SOURCES.txt +7 -4
  34. usecortex_ai-0.4.0/src/usecortex_ai/types/app_sources_upload_data.py +0 -39
  35. usecortex_ai-0.4.0/src/usecortex_ai/upload/__init__.py +0 -7
  36. usecortex_ai-0.4.0/src/usecortex_ai/upload/raw_client.py +0 -1489
  37. usecortex_ai-0.4.0/src/usecortex_ai/upload/types/__init__.py +0 -7
  38. usecortex_ai-0.4.0/src/usecortex_ai/upload/types/body_upload_app_ingestion_upload_app_post_app_sources.py +0 -7
  39. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/LICENSE +0 -0
  40. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/README.md +0 -0
  41. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/setup.cfg +0 -0
  42. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/__init__.py +0 -0
  43. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/api_error.py +0 -0
  44. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/client_wrapper.py +0 -0
  45. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/datetime_utils.py +0 -0
  46. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/file.py +0 -0
  47. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/force_multipart.py +0 -0
  48. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/http_client.py +0 -0
  49. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/http_response.py +0 -0
  50. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/jsonable_encoder.py +0 -0
  51. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/pydantic_utilities.py +0 -0
  52. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/query_encoder.py +0 -0
  53. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/remove_none_from_dict.py +0 -0
  54. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/request_options.py +0 -0
  55. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/core/serialization.py +0 -0
  56. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/dashboard/__init__.py +0 -0
  57. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/embeddings/__init__.py +0 -0
  58. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/environment.py +0 -0
  59. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/__init__.py +0 -0
  60. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/bad_request_error.py +0 -0
  61. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/forbidden_error.py +0 -0
  62. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/internal_server_error.py +0 -0
  63. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/not_found_error.py +0 -0
  64. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/service_unavailable_error.py +0 -0
  65. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/too_many_requests_error.py +0 -0
  66. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/unauthorized_error.py +0 -0
  67. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/errors/unprocessable_entity_error.py +0 -0
  68. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/search/__init__.py +0 -0
  69. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/search/types/__init__.py +0 -0
  70. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/search/types/alpha.py +0 -0
  71. {usecortex_ai-0.4.0/src/usecortex_ai/fetch → usecortex_ai-0.5.1/src/usecortex_ai/sources}/__init__.py +0 -0
  72. {usecortex_ai-0.4.0/src/usecortex_ai/sources → usecortex_ai-0.5.1/src/usecortex_ai/tenant}/__init__.py +0 -0
  73. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/actual_error_response.py +0 -0
  74. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/add_memory_response.py +0 -0
  75. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/api_key_info.py +0 -0
  76. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/attachment_model.py +0 -0
  77. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/bm_25_operator_type.py +0 -0
  78. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/collection_stats.py +0 -0
  79. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/content_model.py +0 -0
  80. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/custom_property_definition.py +0 -0
  81. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/dashboard_apis_response.py +0 -0
  82. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/dashboard_sources_response.py +0 -0
  83. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/dashboard_tenants_response.py +0 -0
  84. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/delete_result.py +0 -0
  85. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/delete_user_memory_response.py +0 -0
  86. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/entity.py +0 -0
  87. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/error_response.py +0 -0
  88. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/fetch_mode.py +0 -0
  89. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/graph_context.py +0 -0
  90. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/http_validation_error.py +0 -0
  91. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/infra.py +0 -0
  92. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/insert_result.py +0 -0
  93. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/memory_result_item.py +0 -0
  94. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/milvus_data_type.py +0 -0
  95. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/path_triplet.py +0 -0
  96. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/processing_status.py +0 -0
  97. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/processing_status_indexing_status.py +0 -0
  98. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/qn_a_search_response.py +0 -0
  99. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/raw_embedding_document.py +0 -0
  100. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/raw_embedding_search_result.py +0 -0
  101. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/raw_embedding_vector.py +0 -0
  102. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/relation_evidence.py +0 -0
  103. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/scored_path_response.py +0 -0
  104. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/search_mode.py +0 -0
  105. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_delete_response.py +0 -0
  106. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_delete_result_item.py +0 -0
  107. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_fetch_response.py +0 -0
  108. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_graph_relations_response.py +0 -0
  109. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_list_response.py +0 -0
  110. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_model.py +0 -0
  111. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_status.py +0 -0
  112. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_upload_response.py +0 -0
  113. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/source_upload_result_item.py +0 -0
  114. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/supported_llm_providers.py +0 -0
  115. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/tenant_create_response.py +0 -0
  116. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/tenant_info.py +0 -0
  117. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/tenant_metadata_schema_info.py +0 -0
  118. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/tenant_stats_response.py +0 -0
  119. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/triplet_with_evidence.py +0 -0
  120. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/user_assistant_pair.py +0 -0
  121. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/validation_error.py +0 -0
  122. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai/types/validation_error_loc_item.py +0 -0
  123. {usecortex_ai-0.4.0/src/usecortex_ai/tenant → usecortex_ai-0.5.1/src/usecortex_ai/upload}/__init__.py +0 -0
  124. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai.egg-info/dependency_links.txt +0 -0
  125. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai.egg-info/requires.txt +0 -0
  126. {usecortex_ai-0.4.0 → usecortex_ai-0.5.1}/src/usecortex_ai.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: usecortex-ai
3
- Version: 0.4.0
3
+ Version: 0.5.1
4
4
  Summary: The official Python SDK for the Cortex AI platform.
5
5
  Author-email: Soham Ratnaparkhi <soham@usecortex.ai>
6
6
  License: Copyright (c) 2024 Cortex AI
@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
5
5
  [project]
6
6
  name = "usecortex-ai"
7
7
 
8
- version = "0.4.0"
8
+ version = "0.5.1"
9
9
 
10
10
  authors = [
11
11
  { name = "Soham Ratnaparkhi", email = "soham@usecortex.ai" },
@@ -6,7 +6,6 @@ from .types import (
6
6
  ActualErrorResponse,
7
7
  AddMemoryResponse,
8
8
  ApiKeyInfo,
9
- AppSourcesUploadData,
10
9
  AttachmentModel,
11
10
  Bm25OperatorType,
12
11
  CollectionStats,
@@ -20,10 +19,13 @@ from .types import (
20
19
  Entity,
21
20
  ErrorResponse,
22
21
  FetchMode,
22
+ ForcefulRelationsPayload,
23
23
  GraphContext,
24
24
  HttpValidationError,
25
25
  Infra,
26
26
  InsertResult,
27
+ ListContentKind,
28
+ ListUserMemoriesResponse,
27
29
  MemoryItem,
28
30
  MemoryResultItem,
29
31
  MilvusDataType,
@@ -55,6 +57,7 @@ from .types import (
55
57
  TenantStatsResponse,
56
58
  TripletWithEvidence,
57
59
  UserAssistantPair,
60
+ UserMemory,
58
61
  ValidationError,
59
62
  ValidationErrorLocItem,
60
63
  VectorStoreChunk,
@@ -72,20 +75,18 @@ from .errors import (
72
75
  from . import dashboard, embeddings, fetch, search, sources, tenant, upload
73
76
  from .client import AsyncCortexAI, CortexAI
74
77
  from .environment import CortexAIEnvironment
78
+ from .fetch import FetchListKnowledgeResponse
75
79
  from .search import Alpha
76
- from .upload import BodyUploadAppIngestionUploadAppPostAppSources
77
80
 
78
81
  __all__ = [
79
82
  "ActualErrorResponse",
80
83
  "AddMemoryResponse",
81
84
  "Alpha",
82
85
  "ApiKeyInfo",
83
- "AppSourcesUploadData",
84
86
  "AsyncCortexAI",
85
87
  "AttachmentModel",
86
88
  "BadRequestError",
87
89
  "Bm25OperatorType",
88
- "BodyUploadAppIngestionUploadAppPostAppSources",
89
90
  "CollectionStats",
90
91
  "ContentModel",
91
92
  "CortexAI",
@@ -98,13 +99,17 @@ __all__ = [
98
99
  "DeleteUserMemoryResponse",
99
100
  "Entity",
100
101
  "ErrorResponse",
102
+ "FetchListKnowledgeResponse",
101
103
  "FetchMode",
102
104
  "ForbiddenError",
105
+ "ForcefulRelationsPayload",
103
106
  "GraphContext",
104
107
  "HttpValidationError",
105
108
  "Infra",
106
109
  "InsertResult",
107
110
  "InternalServerError",
111
+ "ListContentKind",
112
+ "ListUserMemoriesResponse",
108
113
  "MemoryItem",
109
114
  "MemoryResultItem",
110
115
  "MilvusDataType",
@@ -141,6 +146,7 @@ __all__ = [
141
146
  "UnauthorizedError",
142
147
  "UnprocessableEntityError",
143
148
  "UserAssistantPair",
149
+ "UserMemory",
144
150
  "ValidationError",
145
151
  "ValidationErrorLocItem",
146
152
  "VectorStoreChunk",
@@ -103,8 +103,6 @@ class CortexAI:
103
103
  self, *, request_options: typing.Optional[RequestOptions] = None
104
104
  ) -> typing.Optional[typing.Any]:
105
105
  """
106
- Endpoint that serves Prometheus metrics.
107
-
108
106
  Parameters
109
107
  ----------
110
108
  request_options : typing.Optional[RequestOptions]
@@ -213,8 +211,6 @@ class AsyncCortexAI:
213
211
  self, *, request_options: typing.Optional[RequestOptions] = None
214
212
  ) -> typing.Optional[typing.Any]:
215
213
  """
216
- Endpoint that serves Prometheus metrics.
217
-
218
214
  Parameters
219
215
  ----------
220
216
  request_options : typing.Optional[RequestOptions]
@@ -27,11 +27,6 @@ class DashboardClient:
27
27
 
28
28
  def list_apis(self, *, request_options: typing.Optional[RequestOptions] = None) -> DashboardApisResponse:
29
29
  """
30
- List all API keys for dashboard view.
31
-
32
- Uses Firebase authentication to identify the user and returns API keys
33
- associated with that user.
34
-
35
30
  Parameters
36
31
  ----------
37
32
  request_options : typing.Optional[RequestOptions]
@@ -56,10 +51,6 @@ class DashboardClient:
56
51
  self, *, tenant_id: str, sub_tenant_id: str, request_options: typing.Optional[RequestOptions] = None
57
52
  ) -> DashboardSourcesResponse:
58
53
  """
59
- List all sources for a tenant/sub-tenant combination.
60
-
61
- Uses the same logic as the existing get_sources function.
62
-
63
54
  Parameters
64
55
  ----------
65
56
  tenant_id : str
@@ -81,7 +72,7 @@ class DashboardClient:
81
72
  from usecortex-ai import CortexAI
82
73
 
83
74
  client = CortexAI(token="YOUR_TOKEN", )
84
- client.dashboard.list_sources(tenant_id='tenant_id', sub_tenant_id='sub_tenant_id', )
75
+ client.dashboard.list_sources(tenant_id='tenant_1234', sub_tenant_id='sub_tenant_4567', )
85
76
  """
86
77
  _response = self._raw_client.list_sources(
87
78
  tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
@@ -90,11 +81,6 @@ class DashboardClient:
90
81
 
91
82
  def list_tenants(self, *, request_options: typing.Optional[RequestOptions] = None) -> DashboardTenantsResponse:
92
83
  """
93
- List all tenants for dashboard view.
94
-
95
- Uses Firebase authentication to identify the user and returns tenant
96
- mappings associated with that user's organization.
97
-
98
84
  Parameters
99
85
  ----------
100
86
  request_options : typing.Optional[RequestOptions]
@@ -231,11 +217,6 @@ class AsyncDashboardClient:
231
217
 
232
218
  async def list_apis(self, *, request_options: typing.Optional[RequestOptions] = None) -> DashboardApisResponse:
233
219
  """
234
- List all API keys for dashboard view.
235
-
236
- Uses Firebase authentication to identify the user and returns API keys
237
- associated with that user.
238
-
239
220
  Parameters
240
221
  ----------
241
222
  request_options : typing.Optional[RequestOptions]
@@ -264,10 +245,6 @@ class AsyncDashboardClient:
264
245
  self, *, tenant_id: str, sub_tenant_id: str, request_options: typing.Optional[RequestOptions] = None
265
246
  ) -> DashboardSourcesResponse:
266
247
  """
267
- List all sources for a tenant/sub-tenant combination.
268
-
269
- Uses the same logic as the existing get_sources function.
270
-
271
248
  Parameters
272
249
  ----------
273
250
  tenant_id : str
@@ -292,7 +269,7 @@ class AsyncDashboardClient:
292
269
 
293
270
  client = AsyncCortexAI(token="YOUR_TOKEN", )
294
271
  async def main() -> None:
295
- await client.dashboard.list_sources(tenant_id='tenant_id', sub_tenant_id='sub_tenant_id', )
272
+ await client.dashboard.list_sources(tenant_id='tenant_1234', sub_tenant_id='sub_tenant_4567', )
296
273
  asyncio.run(main())
297
274
  """
298
275
  _response = await self._raw_client.list_sources(
@@ -304,11 +281,6 @@ class AsyncDashboardClient:
304
281
  self, *, request_options: typing.Optional[RequestOptions] = None
305
282
  ) -> DashboardTenantsResponse:
306
283
  """
307
- List all tenants for dashboard view.
308
-
309
- Uses Firebase authentication to identify the user and returns tenant
310
- mappings associated with that user's organization.
311
-
312
284
  Parameters
313
285
  ----------
314
286
  request_options : typing.Optional[RequestOptions]
@@ -28,11 +28,6 @@ class RawDashboardClient:
28
28
  self, *, request_options: typing.Optional[RequestOptions] = None
29
29
  ) -> HttpResponse[DashboardApisResponse]:
30
30
  """
31
- List all API keys for dashboard view.
32
-
33
- Uses Firebase authentication to identify the user and returns API keys
34
- associated with that user.
35
-
36
31
  Parameters
37
32
  ----------
38
33
  request_options : typing.Optional[RequestOptions]
@@ -144,10 +139,6 @@ class RawDashboardClient:
144
139
  self, *, tenant_id: str, sub_tenant_id: str, request_options: typing.Optional[RequestOptions] = None
145
140
  ) -> HttpResponse[DashboardSourcesResponse]:
146
141
  """
147
- List all sources for a tenant/sub-tenant combination.
148
-
149
- Uses the same logic as the existing get_sources function.
150
-
151
142
  Parameters
152
143
  ----------
153
144
  tenant_id : str
@@ -269,11 +260,6 @@ class RawDashboardClient:
269
260
  self, *, request_options: typing.Optional[RequestOptions] = None
270
261
  ) -> HttpResponse[DashboardTenantsResponse]:
271
262
  """
272
- List all tenants for dashboard view.
273
-
274
- Uses Firebase authentication to identify the user and returns tenant
275
- mappings associated with that user's organization.
276
-
277
263
  Parameters
278
264
  ----------
279
265
  request_options : typing.Optional[RequestOptions]
@@ -550,11 +536,6 @@ class AsyncRawDashboardClient:
550
536
  self, *, request_options: typing.Optional[RequestOptions] = None
551
537
  ) -> AsyncHttpResponse[DashboardApisResponse]:
552
538
  """
553
- List all API keys for dashboard view.
554
-
555
- Uses Firebase authentication to identify the user and returns API keys
556
- associated with that user.
557
-
558
539
  Parameters
559
540
  ----------
560
541
  request_options : typing.Optional[RequestOptions]
@@ -666,10 +647,6 @@ class AsyncRawDashboardClient:
666
647
  self, *, tenant_id: str, sub_tenant_id: str, request_options: typing.Optional[RequestOptions] = None
667
648
  ) -> AsyncHttpResponse[DashboardSourcesResponse]:
668
649
  """
669
- List all sources for a tenant/sub-tenant combination.
670
-
671
- Uses the same logic as the existing get_sources function.
672
-
673
650
  Parameters
674
651
  ----------
675
652
  tenant_id : str
@@ -791,11 +768,6 @@ class AsyncRawDashboardClient:
791
768
  self, *, request_options: typing.Optional[RequestOptions] = None
792
769
  ) -> AsyncHttpResponse[DashboardTenantsResponse]:
793
770
  """
794
- List all tenants for dashboard view.
795
-
796
- Uses Firebase authentication to identify the user and returns tenant
797
- mappings associated with that user's organization.
798
-
799
771
  Parameters
800
772
  ----------
801
773
  request_options : typing.Optional[RequestOptions]
@@ -39,16 +39,6 @@ class EmbeddingsClient:
39
39
  request_options: typing.Optional[RequestOptions] = None,
40
40
  ) -> InsertResult:
41
41
  """
42
- Upload pre-computed embeddings for advanced similarity search.
43
-
44
- This endpoint accepts vector embeddings that you’ve generated externally,
45
- allowing you to integrate with custom embedding models or existing vector databases.
46
- The embeddings represent chunks of your content as numerical vectors.
47
-
48
- The system stores these embeddings and makes them available for semantic search and similarity matching.
49
- Use this when you want to leverage specialized embedding models or have existing vector representations.
50
- When upsert=True, existing embeddings with the same chunk_id will be updated.
51
-
52
42
  Parameters
53
43
  ----------
54
44
  tenant_id : str
@@ -76,7 +66,7 @@ class EmbeddingsClient:
76
66
  from usecortex-ai import CortexAI, RawEmbeddingDocument, RawEmbeddingVector
77
67
 
78
68
  client = CortexAI(token="YOUR_TOKEN", )
79
- client.embeddings.insert(tenant_id='tenant_id', embeddings=[RawEmbeddingDocument(source_id='source_id', embeddings=[RawEmbeddingVector(chunk_id='chunk_id', embedding=[1.1], )], )], )
69
+ client.embeddings.insert(tenant_id='tenant_1234', embeddings=[RawEmbeddingDocument(source_id='<source_id>', embeddings=[RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], ), RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], )], ), RawEmbeddingDocument(source_id='<source_id>', embeddings=[RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], ), RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], )], )], )
80
70
  """
81
71
  _response = self._raw_client.insert(
82
72
  tenant_id=tenant_id,
@@ -99,13 +89,6 @@ class EmbeddingsClient:
99
89
  request_options: typing.Optional[RequestOptions] = None,
100
90
  ) -> typing.List[RawEmbeddingSearchResult]:
101
91
  """
102
- Find similar chunks using an embedding vector.
103
-
104
- Use this to retrieve the most similar chunk IDs to a single query embedding.
105
-
106
- Expected outcome:
107
- - You receive the closest chunk IDs with optional similarity scores.
108
-
109
92
  Parameters
110
93
  ----------
111
94
  tenant_id : str
@@ -139,7 +122,7 @@ class EmbeddingsClient:
139
122
  from usecortex-ai import CortexAI
140
123
 
141
124
  client = CortexAI(token="YOUR_TOKEN", )
142
- client.embeddings.search(tenant_id='tenant_id', sub_tenant_id='sub_tenant_id', query_embedding=[1.1], )
125
+ client.embeddings.search(tenant_id='tenant_1234', sub_tenant_id='sub_tenant_4567', query_embedding=[1.1], )
143
126
  """
144
127
  _response = self._raw_client.search(
145
128
  tenant_id=tenant_id,
@@ -164,9 +147,6 @@ class EmbeddingsClient:
164
147
  request_options: typing.Optional[RequestOptions] = None,
165
148
  ) -> typing.List[RawEmbeddingSearchResult]:
166
149
  """
167
- Retrieve embeddings for specific chunk IDs.
168
- Use this when you already know the chunk IDs and need their corresponding embeddings.
169
-
170
150
  Parameters
171
151
  ----------
172
152
  tenant_id : str
@@ -200,7 +180,7 @@ class EmbeddingsClient:
200
180
  from usecortex-ai import CortexAI
201
181
 
202
182
  client = CortexAI(token="YOUR_TOKEN", )
203
- client.embeddings.filter(tenant_id='tenant_id', sub_tenant_id='sub_tenant_id', )
183
+ client.embeddings.filter(tenant_id='tenant_1234', sub_tenant_id='sub_tenant_4567', )
204
184
  """
205
185
  _response = self._raw_client.filter(
206
186
  tenant_id=tenant_id,
@@ -223,11 +203,6 @@ class EmbeddingsClient:
223
203
  request_options: typing.Optional[RequestOptions] = None,
224
204
  ) -> DeleteResult:
225
205
  """
226
- Delete embedding chunks by chunk ID.
227
-
228
- Use this to remove specific chunks from your embeddings index when they are no longer
229
- valid or should not appear in results.
230
-
231
206
  Parameters
232
207
  ----------
233
208
  tenant_id : str
@@ -255,7 +230,7 @@ class EmbeddingsClient:
255
230
  from usecortex-ai import CortexAI
256
231
 
257
232
  client = CortexAI(token="YOUR_TOKEN", )
258
- client.embeddings.delete(tenant_id='tenant_id', )
233
+ client.embeddings.delete(tenant_id='tenant_1234', )
259
234
  """
260
235
  _response = self._raw_client.delete(
261
236
  tenant_id=tenant_id,
@@ -292,16 +267,6 @@ class AsyncEmbeddingsClient:
292
267
  request_options: typing.Optional[RequestOptions] = None,
293
268
  ) -> InsertResult:
294
269
  """
295
- Upload pre-computed embeddings for advanced similarity search.
296
-
297
- This endpoint accepts vector embeddings that you’ve generated externally,
298
- allowing you to integrate with custom embedding models or existing vector databases.
299
- The embeddings represent chunks of your content as numerical vectors.
300
-
301
- The system stores these embeddings and makes them available for semantic search and similarity matching.
302
- Use this when you want to leverage specialized embedding models or have existing vector representations.
303
- When upsert=True, existing embeddings with the same chunk_id will be updated.
304
-
305
270
  Parameters
306
271
  ----------
307
272
  tenant_id : str
@@ -333,7 +298,7 @@ class AsyncEmbeddingsClient:
333
298
 
334
299
  client = AsyncCortexAI(token="YOUR_TOKEN", )
335
300
  async def main() -> None:
336
- await client.embeddings.insert(tenant_id='tenant_id', embeddings=[RawEmbeddingDocument(source_id='source_id', embeddings=[RawEmbeddingVector(chunk_id='chunk_id', embedding=[1.1], )], )], )
301
+ await client.embeddings.insert(tenant_id='tenant_1234', embeddings=[RawEmbeddingDocument(source_id='<source_id>', embeddings=[RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], ), RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], )], ), RawEmbeddingDocument(source_id='<source_id>', embeddings=[RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], ), RawEmbeddingVector(chunk_id='<chunk_id>', embedding=[1.1], )], )], )
337
302
  asyncio.run(main())
338
303
  """
339
304
  _response = await self._raw_client.insert(
@@ -357,13 +322,6 @@ class AsyncEmbeddingsClient:
357
322
  request_options: typing.Optional[RequestOptions] = None,
358
323
  ) -> typing.List[RawEmbeddingSearchResult]:
359
324
  """
360
- Find similar chunks using an embedding vector.
361
-
362
- Use this to retrieve the most similar chunk IDs to a single query embedding.
363
-
364
- Expected outcome:
365
- - You receive the closest chunk IDs with optional similarity scores.
366
-
367
325
  Parameters
368
326
  ----------
369
327
  tenant_id : str
@@ -400,7 +358,7 @@ class AsyncEmbeddingsClient:
400
358
 
401
359
  client = AsyncCortexAI(token="YOUR_TOKEN", )
402
360
  async def main() -> None:
403
- await client.embeddings.search(tenant_id='tenant_id', sub_tenant_id='sub_tenant_id', query_embedding=[1.1], )
361
+ await client.embeddings.search(tenant_id='tenant_1234', sub_tenant_id='sub_tenant_4567', query_embedding=[1.1], )
404
362
  asyncio.run(main())
405
363
  """
406
364
  _response = await self._raw_client.search(
@@ -426,9 +384,6 @@ class AsyncEmbeddingsClient:
426
384
  request_options: typing.Optional[RequestOptions] = None,
427
385
  ) -> typing.List[RawEmbeddingSearchResult]:
428
386
  """
429
- Retrieve embeddings for specific chunk IDs.
430
- Use this when you already know the chunk IDs and need their corresponding embeddings.
431
-
432
387
  Parameters
433
388
  ----------
434
389
  tenant_id : str
@@ -465,7 +420,7 @@ class AsyncEmbeddingsClient:
465
420
 
466
421
  client = AsyncCortexAI(token="YOUR_TOKEN", )
467
422
  async def main() -> None:
468
- await client.embeddings.filter(tenant_id='tenant_id', sub_tenant_id='sub_tenant_id', )
423
+ await client.embeddings.filter(tenant_id='tenant_1234', sub_tenant_id='sub_tenant_4567', )
469
424
  asyncio.run(main())
470
425
  """
471
426
  _response = await self._raw_client.filter(
@@ -489,11 +444,6 @@ class AsyncEmbeddingsClient:
489
444
  request_options: typing.Optional[RequestOptions] = None,
490
445
  ) -> DeleteResult:
491
446
  """
492
- Delete embedding chunks by chunk ID.
493
-
494
- Use this to remove specific chunks from your embeddings index when they are no longer
495
- valid or should not appear in results.
496
-
497
447
  Parameters
498
448
  ----------
499
449
  tenant_id : str
@@ -524,7 +474,7 @@ class AsyncEmbeddingsClient:
524
474
 
525
475
  client = AsyncCortexAI(token="YOUR_TOKEN", )
526
476
  async def main() -> None:
527
- await client.embeddings.delete(tenant_id='tenant_id', )
477
+ await client.embeddings.delete(tenant_id='tenant_1234', )
528
478
  asyncio.run(main())
529
479
  """
530
480
  _response = await self._raw_client.delete(
@@ -39,16 +39,6 @@ class RawEmbeddingsClient:
39
39
  request_options: typing.Optional[RequestOptions] = None,
40
40
  ) -> HttpResponse[InsertResult]:
41
41
  """
42
- Upload pre-computed embeddings for advanced similarity search.
43
-
44
- This endpoint accepts vector embeddings that you’ve generated externally,
45
- allowing you to integrate with custom embedding models or existing vector databases.
46
- The embeddings represent chunks of your content as numerical vectors.
47
-
48
- The system stores these embeddings and makes them available for semantic search and similarity matching.
49
- Use this when you want to leverage specialized embedding models or have existing vector representations.
50
- When upsert=True, existing embeddings with the same chunk_id will be updated.
51
-
52
42
  Parameters
53
43
  ----------
54
44
  tenant_id : str
@@ -72,7 +62,7 @@ class RawEmbeddingsClient:
72
62
  Successful Response
73
63
  """
74
64
  _response = self._client_wrapper.httpx_client.request(
75
- "embeddings/insert-raw-embeddings",
65
+ "embeddings/insert_raw_embeddings",
76
66
  method="POST",
77
67
  json={
78
68
  "tenant_id": tenant_id,
@@ -192,13 +182,6 @@ class RawEmbeddingsClient:
192
182
  request_options: typing.Optional[RequestOptions] = None,
193
183
  ) -> HttpResponse[typing.List[RawEmbeddingSearchResult]]:
194
184
  """
195
- Find similar chunks using an embedding vector.
196
-
197
- Use this to retrieve the most similar chunk IDs to a single query embedding.
198
-
199
- Expected outcome:
200
- - You receive the closest chunk IDs with optional similarity scores.
201
-
202
185
  Parameters
203
186
  ----------
204
187
  tenant_id : str
@@ -228,7 +211,7 @@ class RawEmbeddingsClient:
228
211
  Successful Response
229
212
  """
230
213
  _response = self._client_wrapper.httpx_client.request(
231
- "embeddings/search-raw-embeddings",
214
+ "embeddings/search_raw_embeddings",
232
215
  method="POST",
233
216
  json={
234
217
  "tenant_id": tenant_id,
@@ -348,9 +331,6 @@ class RawEmbeddingsClient:
348
331
  request_options: typing.Optional[RequestOptions] = None,
349
332
  ) -> HttpResponse[typing.List[RawEmbeddingSearchResult]]:
350
333
  """
351
- Retrieve embeddings for specific chunk IDs.
352
- Use this when you already know the chunk IDs and need their corresponding embeddings.
353
-
354
334
  Parameters
355
335
  ----------
356
336
  tenant_id : str
@@ -380,7 +360,7 @@ class RawEmbeddingsClient:
380
360
  Successful Response
381
361
  """
382
362
  _response = self._client_wrapper.httpx_client.request(
383
- "embeddings/filter-raw-embeddings",
363
+ "embeddings/filter_raw_embeddings",
384
364
  method="POST",
385
365
  json={
386
366
  "tenant_id": tenant_id,
@@ -498,11 +478,6 @@ class RawEmbeddingsClient:
498
478
  request_options: typing.Optional[RequestOptions] = None,
499
479
  ) -> HttpResponse[DeleteResult]:
500
480
  """
501
- Delete embedding chunks by chunk ID.
502
-
503
- Use this to remove specific chunks from your embeddings index when they are no longer
504
- valid or should not appear in results.
505
-
506
481
  Parameters
507
482
  ----------
508
483
  tenant_id : str
@@ -526,7 +501,7 @@ class RawEmbeddingsClient:
526
501
  Successful Response
527
502
  """
528
503
  _response = self._client_wrapper.httpx_client.request(
529
- "embeddings/delete-raw-embeddings",
504
+ "embeddings/delete_raw_embeddings",
530
505
  method="DELETE",
531
506
  params={
532
507
  "tenant_id": tenant_id,
@@ -643,16 +618,6 @@ class AsyncRawEmbeddingsClient:
643
618
  request_options: typing.Optional[RequestOptions] = None,
644
619
  ) -> AsyncHttpResponse[InsertResult]:
645
620
  """
646
- Upload pre-computed embeddings for advanced similarity search.
647
-
648
- This endpoint accepts vector embeddings that you’ve generated externally,
649
- allowing you to integrate with custom embedding models or existing vector databases.
650
- The embeddings represent chunks of your content as numerical vectors.
651
-
652
- The system stores these embeddings and makes them available for semantic search and similarity matching.
653
- Use this when you want to leverage specialized embedding models or have existing vector representations.
654
- When upsert=True, existing embeddings with the same chunk_id will be updated.
655
-
656
621
  Parameters
657
622
  ----------
658
623
  tenant_id : str
@@ -676,7 +641,7 @@ class AsyncRawEmbeddingsClient:
676
641
  Successful Response
677
642
  """
678
643
  _response = await self._client_wrapper.httpx_client.request(
679
- "embeddings/insert-raw-embeddings",
644
+ "embeddings/insert_raw_embeddings",
680
645
  method="POST",
681
646
  json={
682
647
  "tenant_id": tenant_id,
@@ -796,13 +761,6 @@ class AsyncRawEmbeddingsClient:
796
761
  request_options: typing.Optional[RequestOptions] = None,
797
762
  ) -> AsyncHttpResponse[typing.List[RawEmbeddingSearchResult]]:
798
763
  """
799
- Find similar chunks using an embedding vector.
800
-
801
- Use this to retrieve the most similar chunk IDs to a single query embedding.
802
-
803
- Expected outcome:
804
- - You receive the closest chunk IDs with optional similarity scores.
805
-
806
764
  Parameters
807
765
  ----------
808
766
  tenant_id : str
@@ -832,7 +790,7 @@ class AsyncRawEmbeddingsClient:
832
790
  Successful Response
833
791
  """
834
792
  _response = await self._client_wrapper.httpx_client.request(
835
- "embeddings/search-raw-embeddings",
793
+ "embeddings/search_raw_embeddings",
836
794
  method="POST",
837
795
  json={
838
796
  "tenant_id": tenant_id,
@@ -952,9 +910,6 @@ class AsyncRawEmbeddingsClient:
952
910
  request_options: typing.Optional[RequestOptions] = None,
953
911
  ) -> AsyncHttpResponse[typing.List[RawEmbeddingSearchResult]]:
954
912
  """
955
- Retrieve embeddings for specific chunk IDs.
956
- Use this when you already know the chunk IDs and need their corresponding embeddings.
957
-
958
913
  Parameters
959
914
  ----------
960
915
  tenant_id : str
@@ -984,7 +939,7 @@ class AsyncRawEmbeddingsClient:
984
939
  Successful Response
985
940
  """
986
941
  _response = await self._client_wrapper.httpx_client.request(
987
- "embeddings/filter-raw-embeddings",
942
+ "embeddings/filter_raw_embeddings",
988
943
  method="POST",
989
944
  json={
990
945
  "tenant_id": tenant_id,
@@ -1102,11 +1057,6 @@ class AsyncRawEmbeddingsClient:
1102
1057
  request_options: typing.Optional[RequestOptions] = None,
1103
1058
  ) -> AsyncHttpResponse[DeleteResult]:
1104
1059
  """
1105
- Delete embedding chunks by chunk ID.
1106
-
1107
- Use this to remove specific chunks from your embeddings index when they are no longer
1108
- valid or should not appear in results.
1109
-
1110
1060
  Parameters
1111
1061
  ----------
1112
1062
  tenant_id : str
@@ -1130,7 +1080,7 @@ class AsyncRawEmbeddingsClient:
1130
1080
  Successful Response
1131
1081
  """
1132
1082
  _response = await self._client_wrapper.httpx_client.request(
1133
- "embeddings/delete-raw-embeddings",
1083
+ "embeddings/delete_raw_embeddings",
1134
1084
  method="DELETE",
1135
1085
  params={
1136
1086
  "tenant_id": tenant_id,
@@ -0,0 +1,7 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ # isort: skip_file
4
+
5
+ from .types import FetchListKnowledgeResponse
6
+
7
+ __all__ = ["FetchListKnowledgeResponse"]