ursa-ai 0.5.0__tar.gz → 0.6.0rc1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ursa-ai might be problematic. Click here for more details.

Files changed (46) hide show
  1. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/PKG-INFO +123 -4
  2. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/README.md +121 -1
  3. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/pyproject.toml +12 -2
  4. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/arxiv_agent.py +77 -47
  5. ursa_ai-0.6.0rc1/src/ursa/agents/base.py +408 -0
  6. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/execution_agent.py +92 -48
  7. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/hypothesizer_agent.py +39 -42
  8. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/lammps_agent.py +51 -29
  9. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/mp_agent.py +45 -20
  10. ursa_ai-0.6.0rc1/src/ursa/agents/optimization_agent.py +403 -0
  11. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/planning_agent.py +63 -28
  12. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/rag_agent.py +75 -44
  13. ursa_ai-0.6.0rc1/src/ursa/agents/recall_agent.py +53 -0
  14. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/websearch_agent.py +44 -54
  15. ursa_ai-0.6.0rc1/src/ursa/cli/__init__.py +127 -0
  16. ursa_ai-0.6.0rc1/src/ursa/cli/hitl.py +426 -0
  17. ursa_ai-0.6.0rc1/src/ursa/observability/pricing.py +319 -0
  18. ursa_ai-0.6.0rc1/src/ursa/observability/timing.py +1441 -0
  19. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/execution_prompts.py +7 -0
  20. ursa_ai-0.6.0rc1/src/ursa/prompt_library/optimization_prompts.py +131 -0
  21. ursa_ai-0.6.0rc1/src/ursa/tools/feasibility_checker.py +114 -0
  22. ursa_ai-0.6.0rc1/src/ursa/tools/feasibility_tools.py +1075 -0
  23. ursa_ai-0.6.0rc1/src/ursa/util/helperFunctions.py +142 -0
  24. ursa_ai-0.6.0rc1/src/ursa/util/optimization_schema.py +78 -0
  25. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/PKG-INFO +123 -4
  26. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/SOURCES.txt +11 -0
  27. ursa_ai-0.6.0rc1/src/ursa_ai.egg-info/entry_points.txt +2 -0
  28. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/requires.txt +1 -2
  29. ursa_ai-0.5.0/src/ursa/agents/base.py +0 -41
  30. ursa_ai-0.5.0/src/ursa/agents/recall_agent.py +0 -23
  31. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/LICENSE +0 -0
  32. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/setup.cfg +0 -0
  33. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/__init__.py +0 -0
  34. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/agents/code_review_agent.py +0 -0
  35. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/code_review_prompts.py +0 -0
  36. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/hypothesizer_prompts.py +0 -0
  37. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/literature_prompts.py +0 -0
  38. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/planning_prompts.py +0 -0
  39. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/websearch_prompts.py +0 -0
  40. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/tools/run_command.py +0 -0
  41. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/tools/write_code.py +0 -0
  42. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/util/diff_renderer.py +0 -0
  43. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/util/memory_logger.py +0 -0
  44. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa/util/parse.py +0 -0
  45. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/dependency_links.txt +0 -0
  46. {ursa_ai-0.5.0 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ursa-ai
3
- Version: 0.5.0
3
+ Version: 0.6.0rc1
4
4
  Summary: Agents for science at LANL
5
5
  Author-email: Mike Grosskopf <mikegros@lanl.gov>, Nathan Debardeleben <ndebard@lanl.gov>, Rahul Somasundaram <rsomasundaram@lanl.gov>, Isaac Michaud <imichaud@lanl.gov>, Avanish Mishra <avanish@lanl.gov>, Arthur Lui <alui@lanl.gov>, Russell Bent <rbent@lanl.gov>, Earl Lawrence <earl@lanl.gov>
6
6
  License-Expression: BSD-3-Clause
@@ -38,8 +38,7 @@ Requires-Dist: langchain-anthropic<0.4,>=0.3.19
38
38
  Requires-Dist: langgraph-checkpoint-sqlite<3.0,>=2.0.10
39
39
  Requires-Dist: langchain-ollama<0.4,>=0.3.6
40
40
  Requires-Dist: ddgs>=9.5.5
41
- Requires-Dist: atomman>=1.5.2
42
- Requires-Dist: trafilatura>=1.6.1
41
+ Requires-Dist: typer>=0.16.1
43
42
  Dynamic: license-file
44
43
 
45
44
  # URSA - The Universal Research and Scientific Agent
@@ -81,7 +80,68 @@ Documentation for combining agents:
81
80
  - [ArXiv -> Execution for Materials](docs/combining_arxiv_and_execution.md)
82
81
  - [ArXiv -> Execution for Neutron Star Properties](docs/combining_arxiv_and_execution_neutronStar.md)
83
82
 
84
- # Sandboxing
83
+
84
+ ## Command line usage
85
+
86
+ You can install `ursa` as a command line app with `pip install`; or with `uv` via
87
+
88
+ ```bash
89
+ uv tool install ursa-ai
90
+ ```
91
+
92
+ To use the command line app, run
93
+
94
+ ```
95
+ ursa run
96
+ ```
97
+
98
+ This will start a REPL in your terminal.
99
+
100
+ ```
101
+ __ ________________ _
102
+ / / / / ___/ ___/ __ `/
103
+ / /_/ / / (__ ) /_/ /
104
+ \__,_/_/ /____/\__,_/
105
+
106
+ For help, type: ? or help. Exit with Ctrl+d.
107
+ ursa>
108
+ ```
109
+
110
+ Within the REPL, you can get help by typing `?` or `help`.
111
+
112
+ You can chat with an LLM by simply typing into the terminal.
113
+
114
+ ```
115
+ ursa> How are you?
116
+ Thanks for asking! I’m doing well. How are you today? What can I help you with?
117
+ ```
118
+
119
+ You can run various agents by typing the name of the agent. For example,
120
+
121
+ ```
122
+ ursa> plan
123
+ Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
124
+ ```
125
+
126
+ If you run subsequent agents, the last output will be appended to the prompt for the next agent.
127
+
128
+ So, to run the Planning Agent followed by the Execution Agent:
129
+ ```
130
+ ursa> plan
131
+ Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
132
+
133
+ ...
134
+
135
+ ursa> execute
136
+ Enter your prompt for Execution Agent: Execute the plan.
137
+ ```
138
+
139
+ You can get a list of available command line options via
140
+ ```
141
+ ursa run --help
142
+ ```
143
+
144
+ ## Sandboxing
85
145
  The Execution Agent is allowed to run system commands and write/run code. Being able to execute arbitrary system commands or write
86
146
  and execute code has the potential to cause problems like:
87
147
  - Damage code or data on the computer
@@ -98,6 +158,65 @@ Some suggestions for sandboxing the agent:
98
158
 
99
159
  You have a duty for ensuring that you use URSA responsibly.
100
160
 
161
+ ## Container image
162
+
163
+ To enable limited sandboxing insofar as containerization does this, you can run
164
+ the following commands:
165
+
166
+ ### Docker
167
+
168
+ ```shell
169
+ # Build a local container using the Docker runtime
170
+ docker buildx build --progress=plain -t ursa .
171
+
172
+ # Run included example
173
+ docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY ursa \
174
+ bash -c "uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
175
+
176
+ # Run script from host system
177
+ mkdir -p scripts
178
+ echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
179
+ docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY \
180
+ --mount type=bind,src=$PWD/scripts,dst=/mnt/workspace \
181
+ ursa \
182
+ bash -c "uv run /mnt/workspace/my_script.py"
183
+ ```
184
+
185
+ ### Charliecloud
186
+
187
+ [Charliecloud](https://charliecloud.io/) is a rootless alternative to docker
188
+ that is sometimes preferred on HPC. The following commands replicate the
189
+ behaviors above for docker.
190
+
191
+ ```shell
192
+ # Build a local container using the Docker runtime
193
+ ch-image build -t ursa
194
+
195
+ # Convert image to sqfs, for use on another system
196
+ ch-convert ursa ursa.sqfs
197
+
198
+ # Run included example (if wanted, replace ursa with /path/to/ursa.sqfs)
199
+ ch-run -W ursa \
200
+ --unset-env="*" \
201
+ --set-env \
202
+ --set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
203
+ --cd /app \
204
+ -- bash -c \
205
+ "uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
206
+
207
+ # Run script from host system (if wanted, replace ursa with /path/to/ursa.sqfs)
208
+ mkdir -p scripts
209
+ echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
210
+ ch-run -W ursa \
211
+ --unset-env="*" \
212
+ --set-env \
213
+ --set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
214
+ --bind ${PWD}/scripts:/mnt/workspace \
215
+ --cd /app \
216
+ -- bash -c \
217
+ "uv run python /mnt/workspace/integer_sum.py"
218
+ ```
219
+
101
220
  ## Development Dependencies
102
221
 
103
222
  * [`uv`](https://docs.astral.sh/uv/)
@@ -37,7 +37,68 @@ Documentation for combining agents:
37
37
  - [ArXiv -> Execution for Materials](docs/combining_arxiv_and_execution.md)
38
38
  - [ArXiv -> Execution for Neutron Star Properties](docs/combining_arxiv_and_execution_neutronStar.md)
39
39
 
40
- # Sandboxing
40
+
41
+ ## Command line usage
42
+
43
+ You can install `ursa` as a command line app with `pip install`; or with `uv` via
44
+
45
+ ```bash
46
+ uv tool install ursa-ai
47
+ ```
48
+
49
+ To use the command line app, run
50
+
51
+ ```
52
+ ursa run
53
+ ```
54
+
55
+ This will start a REPL in your terminal.
56
+
57
+ ```
58
+ __ ________________ _
59
+ / / / / ___/ ___/ __ `/
60
+ / /_/ / / (__ ) /_/ /
61
+ \__,_/_/ /____/\__,_/
62
+
63
+ For help, type: ? or help. Exit with Ctrl+d.
64
+ ursa>
65
+ ```
66
+
67
+ Within the REPL, you can get help by typing `?` or `help`.
68
+
69
+ You can chat with an LLM by simply typing into the terminal.
70
+
71
+ ```
72
+ ursa> How are you?
73
+ Thanks for asking! I’m doing well. How are you today? What can I help you with?
74
+ ```
75
+
76
+ You can run various agents by typing the name of the agent. For example,
77
+
78
+ ```
79
+ ursa> plan
80
+ Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
81
+ ```
82
+
83
+ If you run subsequent agents, the last output will be appended to the prompt for the next agent.
84
+
85
+ So, to run the Planning Agent followed by the Execution Agent:
86
+ ```
87
+ ursa> plan
88
+ Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
89
+
90
+ ...
91
+
92
+ ursa> execute
93
+ Enter your prompt for Execution Agent: Execute the plan.
94
+ ```
95
+
96
+ You can get a list of available command line options via
97
+ ```
98
+ ursa run --help
99
+ ```
100
+
101
+ ## Sandboxing
41
102
  The Execution Agent is allowed to run system commands and write/run code. Being able to execute arbitrary system commands or write
42
103
  and execute code has the potential to cause problems like:
43
104
  - Damage code or data on the computer
@@ -54,6 +115,65 @@ Some suggestions for sandboxing the agent:
54
115
 
55
116
  You have a duty for ensuring that you use URSA responsibly.
56
117
 
118
+ ## Container image
119
+
120
+ To enable limited sandboxing insofar as containerization does this, you can run
121
+ the following commands:
122
+
123
+ ### Docker
124
+
125
+ ```shell
126
+ # Build a local container using the Docker runtime
127
+ docker buildx build --progress=plain -t ursa .
128
+
129
+ # Run included example
130
+ docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY ursa \
131
+ bash -c "uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
132
+
133
+ # Run script from host system
134
+ mkdir -p scripts
135
+ echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
136
+ docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY \
137
+ --mount type=bind,src=$PWD/scripts,dst=/mnt/workspace \
138
+ ursa \
139
+ bash -c "uv run /mnt/workspace/my_script.py"
140
+ ```
141
+
142
+ ### Charliecloud
143
+
144
+ [Charliecloud](https://charliecloud.io/) is a rootless alternative to docker
145
+ that is sometimes preferred on HPC. The following commands replicate the
146
+ behaviors above for docker.
147
+
148
+ ```shell
149
+ # Build a local container using the Docker runtime
150
+ ch-image build -t ursa
151
+
152
+ # Convert image to sqfs, for use on another system
153
+ ch-convert ursa ursa.sqfs
154
+
155
+ # Run included example (if wanted, replace ursa with /path/to/ursa.sqfs)
156
+ ch-run -W ursa \
157
+ --unset-env="*" \
158
+ --set-env \
159
+ --set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
160
+ --cd /app \
161
+ -- bash -c \
162
+ "uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
163
+
164
+ # Run script from host system (if wanted, replace ursa with /path/to/ursa.sqfs)
165
+ mkdir -p scripts
166
+ echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
167
+ ch-run -W ursa \
168
+ --unset-env="*" \
169
+ --set-env \
170
+ --set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
171
+ --bind ${PWD}/scripts:/mnt/workspace \
172
+ --cd /app \
173
+ -- bash -c \
174
+ "uv run python /mnt/workspace/integer_sum.py"
175
+ ```
176
+
57
177
  ## Development Dependencies
58
178
 
59
179
  * [`uv`](https://docs.astral.sh/uv/)
@@ -38,8 +38,7 @@ dependencies = [
38
38
  "langgraph-checkpoint-sqlite>=2.0.10,<3.0",
39
39
  "langchain-ollama>=0.3.6,<0.4",
40
40
  "ddgs>=9.5.5",
41
- "atomman>=1.5.2",
42
- "trafilatura>=1.6.1",
41
+ "typer>=0.16.1",
43
42
  ]
44
43
  classifiers = [
45
44
  "Operating System :: OS Independent",
@@ -50,6 +49,9 @@ classifiers = [
50
49
  "Programming Language :: Python :: 3.14",
51
50
  ]
52
51
 
52
+ [project.scripts]
53
+ ursa = "ursa.cli:main"
54
+
53
55
  [project.urls]
54
56
  Homepage = "https://github.com/lanl/ursa"
55
57
  Documentation = "https://github.com/lanl/ursa/tree/main/docs"
@@ -81,5 +83,13 @@ dev = [
81
83
  "langgraph-checkpoint-sqlite>=2.0.10",
82
84
  "notebook>=7.3.3",
83
85
  "pre-commit>=4.3.0",
86
+ "pytest>=8.4.2",
84
87
  "scikit-optimize>=0.10.2",
85
88
  ]
89
+ lammps = [
90
+ "atomman>=1.5.2",
91
+ "trafilatura>=1.6.1",
92
+ ]
93
+ opt = [
94
+ "ortools>=9.14,<9.15",
95
+ ]
@@ -3,12 +3,14 @@ import os
3
3
  import re
4
4
  from concurrent.futures import ThreadPoolExecutor, as_completed
5
5
  from io import BytesIO
6
+ from typing import Any, Mapping
6
7
  from urllib.parse import quote
7
8
 
8
9
  import feedparser
9
10
  import pymupdf
10
11
  import requests
11
12
  from langchain_community.document_loaders import PyPDFLoader
13
+ from langchain_core.language_models import BaseChatModel
12
14
  from langchain_core.output_parsers import StrOutputParser
13
15
  from langchain_core.prompts import ChatPromptTemplate
14
16
  from langgraph.graph import StateGraph
@@ -16,8 +18,8 @@ from PIL import Image
16
18
  from tqdm import tqdm
17
19
  from typing_extensions import List, TypedDict
18
20
 
19
- from .base import BaseAgent
20
- from .rag_agent import RAGAgent
21
+ from ursa.agents.base import BaseAgent
22
+ from ursa.agents.rag_agent import RAGAgent
21
23
 
22
24
  try:
23
25
  from openai import OpenAI
@@ -120,7 +122,7 @@ def remove_surrogates(text: str) -> str:
120
122
  class ArxivAgent(BaseAgent):
121
123
  def __init__(
122
124
  self,
123
- llm="openai/o3-mini",
125
+ llm: str | BaseChatModel = "openai/o3-mini",
124
126
  summarize: bool = True,
125
127
  process_images=True,
126
128
  max_results: int = 3,
@@ -141,7 +143,7 @@ class ArxivAgent(BaseAgent):
141
143
  self.download_papers = download_papers
142
144
  self.rag_embedding = rag_embedding
143
145
 
144
- self.graph = self._build_graph()
146
+ self._action = self._build_graph()
145
147
 
146
148
  os.makedirs(self.database_path, exist_ok=True)
147
149
 
@@ -259,10 +261,13 @@ class ArxivAgent(BaseAgent):
259
261
 
260
262
  try:
261
263
  cleaned_text = remove_surrogates(paper["full_text"])
262
- summary = chain.invoke({
263
- "retrieved_content": cleaned_text,
264
- "context": state["context"],
265
- })
264
+ summary = chain.invoke(
265
+ {
266
+ "retrieved_content": cleaned_text,
267
+ "context": state["context"],
268
+ },
269
+ config=self.build_config(tags=["arxiv", "summarize_each"]),
270
+ )
266
271
 
267
272
  except Exception as e:
268
273
  summary = f"Error summarizing paper: {e}"
@@ -304,7 +309,9 @@ class ArxivAgent(BaseAgent):
304
309
  embedding=self.rag_embedding,
305
310
  database_path=self.database_path,
306
311
  )
307
- new_state["final_summary"] = rag_agent.run(context=state["context"])
312
+ new_state["final_summary"] = rag_agent.invoke(context=state["context"])[
313
+ "summary"
314
+ ]
308
315
  return new_state
309
316
 
310
317
  def _aggregate_node(self, state: PaperState) -> PaperState:
@@ -341,10 +348,13 @@ class ArxivAgent(BaseAgent):
341
348
 
342
349
  chain = prompt | self.llm | StrOutputParser()
343
350
 
344
- final_summary = chain.invoke({
345
- "Summaries": combined,
346
- "context": state["context"],
347
- })
351
+ final_summary = chain.invoke(
352
+ {
353
+ "Summaries": combined,
354
+ "context": state["context"],
355
+ },
356
+ config=self.build_config(tags=["arxiv", "aggregate"]),
357
+ )
348
358
 
349
359
  with open(self.summaries_path + "/final_summary.txt", "w") as f:
350
360
  f.write(final_summary)
@@ -352,49 +362,69 @@ class ArxivAgent(BaseAgent):
352
362
  return {**state, "final_summary": final_summary}
353
363
 
354
364
  def _build_graph(self):
355
- builder = StateGraph(PaperState)
356
- builder.add_node("fetch_papers", self._fetch_node)
365
+ graph = StateGraph(PaperState)
357
366
 
367
+ self.add_node(graph, self._fetch_node)
358
368
  if self.summarize:
359
369
  if self.rag_embedding:
360
- builder.add_node("rag_summarize", self._rag_node)
361
-
362
- builder.set_entry_point("fetch_papers")
363
- builder.add_edge("fetch_papers", "rag_summarize")
364
- builder.set_finish_point("rag_summarize")
370
+ self.add_node(graph, self._rag_node)
371
+ graph.set_entry_point("_fetch_node")
372
+ graph.add_edge("_fetch_node", "_rag_node")
373
+ graph.set_finish_point("_rag_node")
365
374
  else:
366
- builder.add_node("summarize_each", self._summarize_node)
367
- builder.add_node("aggregate", self._aggregate_node)
368
-
369
- builder.set_entry_point("fetch_papers")
370
- builder.add_edge("fetch_papers", "summarize_each")
371
- builder.add_edge("summarize_each", "aggregate")
372
- builder.set_finish_point("aggregate")
375
+ self.add_node(graph, self._summarize_node)
376
+ self.add_node(graph, self._aggregate_node)
373
377
 
378
+ graph.set_entry_point("_fetch_node")
379
+ graph.add_edge("_fetch_node", "_summarize_node")
380
+ graph.add_edge("_summarize_node", "_aggregate_node")
381
+ graph.set_finish_point("_aggregate_node")
374
382
  else:
375
- builder.set_entry_point("fetch_papers")
376
- builder.set_finish_point("fetch_papers")
383
+ graph.set_entry_point("_fetch_node")
384
+ graph.set_finish_point("_fetch_node")
377
385
 
378
- graph = builder.compile()
379
- return graph
386
+ return graph.compile(checkpointer=self.checkpointer)
380
387
 
381
- def run(self, arxiv_search_query: str, context: str) -> str:
382
- result = self.graph.invoke({
383
- "query": arxiv_search_query,
384
- "context": context,
385
- })
388
+ def _invoke(
389
+ self,
390
+ inputs: Mapping[str, Any],
391
+ *,
392
+ summarize: bool | None = None,
393
+ recursion_limit: int = 1000,
394
+ **_,
395
+ ) -> str:
396
+ config = self.build_config(
397
+ recursion_limit=recursion_limit, tags=["graph"]
398
+ )
386
399
 
387
- if self.summarize:
388
- return result.get("final_summary", "No summary generated.")
389
- else:
390
- return "\n\nFinished Fetching papers!"
400
+ # this seems dumb, but it's b/c sometimes we had referred to the value as
401
+ # 'query' other times as 'arxiv_search_query' so trying to keep it compatible
402
+ # aliasing: accept arxiv_search_query -> query
403
+ if "query" not in inputs:
404
+ if "arxiv_search_query" in inputs:
405
+ # make a shallow copy and rename the key
406
+ inputs = dict(inputs)
407
+ inputs["query"] = inputs.pop("arxiv_search_query")
408
+ else:
409
+ raise KeyError(
410
+ "Missing 'query' in inputs (alias 'arxiv_search_query' also accepted)."
411
+ )
391
412
 
413
+ result = self._action.invoke(inputs, config)
414
+
415
+ use_summary = self.summarize if summarize is None else summarize
416
+
417
+ return (
418
+ result.get("final_summary", "No summary generated.")
419
+ if use_summary
420
+ else "\n\nFinished Fetching papers!"
421
+ )
392
422
 
393
- if __name__ == "__main__":
394
- agent = ArxivAgent()
395
- result = agent.run(
396
- arxiv_search_query="Experimental Constraints on neutron star radius",
397
- context="What are the constraints on the neutron star radius and what uncertainties are there on the constraints?",
398
- )
399
423
 
400
- print(result)
424
+ # NOTE: Run test in `tests/agents/test_arxiv_agent/test_arxiv_agent.py` via:
425
+ #
426
+ # pytest -s tests/agents/test_arxiv_agent
427
+ #
428
+ # OR
429
+ #
430
+ # uv run pytest -s tests/agents/test_arxiv_agent