ursa-ai 0.4.2__tar.gz → 0.6.0rc1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ursa-ai might be problematic. Click here for more details.
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/PKG-INFO +123 -4
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/README.md +121 -1
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/pyproject.toml +12 -2
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/__init__.py +2 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/arxiv_agent.py +88 -99
- ursa_ai-0.6.0rc1/src/ursa/agents/base.py +408 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/execution_agent.py +92 -48
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/hypothesizer_agent.py +39 -42
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/lammps_agent.py +51 -29
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/mp_agent.py +45 -20
- ursa_ai-0.6.0rc1/src/ursa/agents/optimization_agent.py +403 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/planning_agent.py +63 -28
- ursa_ai-0.6.0rc1/src/ursa/agents/rag_agent.py +303 -0
- ursa_ai-0.6.0rc1/src/ursa/agents/recall_agent.py +53 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/websearch_agent.py +44 -54
- ursa_ai-0.6.0rc1/src/ursa/cli/__init__.py +127 -0
- ursa_ai-0.6.0rc1/src/ursa/cli/hitl.py +426 -0
- ursa_ai-0.6.0rc1/src/ursa/observability/pricing.py +319 -0
- ursa_ai-0.6.0rc1/src/ursa/observability/timing.py +1441 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/execution_prompts.py +7 -0
- ursa_ai-0.6.0rc1/src/ursa/prompt_library/optimization_prompts.py +131 -0
- ursa_ai-0.6.0rc1/src/ursa/tools/feasibility_checker.py +114 -0
- ursa_ai-0.6.0rc1/src/ursa/tools/feasibility_tools.py +1075 -0
- ursa_ai-0.6.0rc1/src/ursa/util/helperFunctions.py +142 -0
- ursa_ai-0.6.0rc1/src/ursa/util/optimization_schema.py +78 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/PKG-INFO +123 -4
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/SOURCES.txt +12 -0
- ursa_ai-0.6.0rc1/src/ursa_ai.egg-info/entry_points.txt +2 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/requires.txt +1 -2
- ursa_ai-0.4.2/src/ursa/agents/base.py +0 -41
- ursa_ai-0.4.2/src/ursa/agents/recall_agent.py +0 -23
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/LICENSE +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/setup.cfg +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/agents/code_review_agent.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/code_review_prompts.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/hypothesizer_prompts.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/literature_prompts.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/planning_prompts.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/prompt_library/websearch_prompts.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/tools/run_command.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/tools/write_code.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/util/diff_renderer.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/util/memory_logger.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa/util/parse.py +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/dependency_links.txt +0 -0
- {ursa_ai-0.4.2 → ursa_ai-0.6.0rc1}/src/ursa_ai.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ursa-ai
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.6.0rc1
|
|
4
4
|
Summary: Agents for science at LANL
|
|
5
5
|
Author-email: Mike Grosskopf <mikegros@lanl.gov>, Nathan Debardeleben <ndebard@lanl.gov>, Rahul Somasundaram <rsomasundaram@lanl.gov>, Isaac Michaud <imichaud@lanl.gov>, Avanish Mishra <avanish@lanl.gov>, Arthur Lui <alui@lanl.gov>, Russell Bent <rbent@lanl.gov>, Earl Lawrence <earl@lanl.gov>
|
|
6
6
|
License-Expression: BSD-3-Clause
|
|
@@ -38,8 +38,7 @@ Requires-Dist: langchain-anthropic<0.4,>=0.3.19
|
|
|
38
38
|
Requires-Dist: langgraph-checkpoint-sqlite<3.0,>=2.0.10
|
|
39
39
|
Requires-Dist: langchain-ollama<0.4,>=0.3.6
|
|
40
40
|
Requires-Dist: ddgs>=9.5.5
|
|
41
|
-
Requires-Dist:
|
|
42
|
-
Requires-Dist: trafilatura>=1.6.1
|
|
41
|
+
Requires-Dist: typer>=0.16.1
|
|
43
42
|
Dynamic: license-file
|
|
44
43
|
|
|
45
44
|
# URSA - The Universal Research and Scientific Agent
|
|
@@ -81,7 +80,68 @@ Documentation for combining agents:
|
|
|
81
80
|
- [ArXiv -> Execution for Materials](docs/combining_arxiv_and_execution.md)
|
|
82
81
|
- [ArXiv -> Execution for Neutron Star Properties](docs/combining_arxiv_and_execution_neutronStar.md)
|
|
83
82
|
|
|
84
|
-
|
|
83
|
+
|
|
84
|
+
## Command line usage
|
|
85
|
+
|
|
86
|
+
You can install `ursa` as a command line app with `pip install`; or with `uv` via
|
|
87
|
+
|
|
88
|
+
```bash
|
|
89
|
+
uv tool install ursa-ai
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
To use the command line app, run
|
|
93
|
+
|
|
94
|
+
```
|
|
95
|
+
ursa run
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
This will start a REPL in your terminal.
|
|
99
|
+
|
|
100
|
+
```
|
|
101
|
+
__ ________________ _
|
|
102
|
+
/ / / / ___/ ___/ __ `/
|
|
103
|
+
/ /_/ / / (__ ) /_/ /
|
|
104
|
+
\__,_/_/ /____/\__,_/
|
|
105
|
+
|
|
106
|
+
For help, type: ? or help. Exit with Ctrl+d.
|
|
107
|
+
ursa>
|
|
108
|
+
```
|
|
109
|
+
|
|
110
|
+
Within the REPL, you can get help by typing `?` or `help`.
|
|
111
|
+
|
|
112
|
+
You can chat with an LLM by simply typing into the terminal.
|
|
113
|
+
|
|
114
|
+
```
|
|
115
|
+
ursa> How are you?
|
|
116
|
+
Thanks for asking! I’m doing well. How are you today? What can I help you with?
|
|
117
|
+
```
|
|
118
|
+
|
|
119
|
+
You can run various agents by typing the name of the agent. For example,
|
|
120
|
+
|
|
121
|
+
```
|
|
122
|
+
ursa> plan
|
|
123
|
+
Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
If you run subsequent agents, the last output will be appended to the prompt for the next agent.
|
|
127
|
+
|
|
128
|
+
So, to run the Planning Agent followed by the Execution Agent:
|
|
129
|
+
```
|
|
130
|
+
ursa> plan
|
|
131
|
+
Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
|
|
132
|
+
|
|
133
|
+
...
|
|
134
|
+
|
|
135
|
+
ursa> execute
|
|
136
|
+
Enter your prompt for Execution Agent: Execute the plan.
|
|
137
|
+
```
|
|
138
|
+
|
|
139
|
+
You can get a list of available command line options via
|
|
140
|
+
```
|
|
141
|
+
ursa run --help
|
|
142
|
+
```
|
|
143
|
+
|
|
144
|
+
## Sandboxing
|
|
85
145
|
The Execution Agent is allowed to run system commands and write/run code. Being able to execute arbitrary system commands or write
|
|
86
146
|
and execute code has the potential to cause problems like:
|
|
87
147
|
- Damage code or data on the computer
|
|
@@ -98,6 +158,65 @@ Some suggestions for sandboxing the agent:
|
|
|
98
158
|
|
|
99
159
|
You have a duty for ensuring that you use URSA responsibly.
|
|
100
160
|
|
|
161
|
+
## Container image
|
|
162
|
+
|
|
163
|
+
To enable limited sandboxing insofar as containerization does this, you can run
|
|
164
|
+
the following commands:
|
|
165
|
+
|
|
166
|
+
### Docker
|
|
167
|
+
|
|
168
|
+
```shell
|
|
169
|
+
# Build a local container using the Docker runtime
|
|
170
|
+
docker buildx build --progress=plain -t ursa .
|
|
171
|
+
|
|
172
|
+
# Run included example
|
|
173
|
+
docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY ursa \
|
|
174
|
+
bash -c "uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
|
|
175
|
+
|
|
176
|
+
# Run script from host system
|
|
177
|
+
mkdir -p scripts
|
|
178
|
+
echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
|
|
179
|
+
docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY \
|
|
180
|
+
--mount type=bind,src=$PWD/scripts,dst=/mnt/workspace \
|
|
181
|
+
ursa \
|
|
182
|
+
bash -c "uv run /mnt/workspace/my_script.py"
|
|
183
|
+
```
|
|
184
|
+
|
|
185
|
+
### Charliecloud
|
|
186
|
+
|
|
187
|
+
[Charliecloud](https://charliecloud.io/) is a rootless alternative to docker
|
|
188
|
+
that is sometimes preferred on HPC. The following commands replicate the
|
|
189
|
+
behaviors above for docker.
|
|
190
|
+
|
|
191
|
+
```shell
|
|
192
|
+
# Build a local container using the Docker runtime
|
|
193
|
+
ch-image build -t ursa
|
|
194
|
+
|
|
195
|
+
# Convert image to sqfs, for use on another system
|
|
196
|
+
ch-convert ursa ursa.sqfs
|
|
197
|
+
|
|
198
|
+
# Run included example (if wanted, replace ursa with /path/to/ursa.sqfs)
|
|
199
|
+
ch-run -W ursa \
|
|
200
|
+
--unset-env="*" \
|
|
201
|
+
--set-env \
|
|
202
|
+
--set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
|
|
203
|
+
--cd /app \
|
|
204
|
+
-- bash -c \
|
|
205
|
+
"uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
|
|
206
|
+
|
|
207
|
+
# Run script from host system (if wanted, replace ursa with /path/to/ursa.sqfs)
|
|
208
|
+
mkdir -p scripts
|
|
209
|
+
echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
|
|
210
|
+
ch-run -W ursa \
|
|
211
|
+
--unset-env="*" \
|
|
212
|
+
--set-env \
|
|
213
|
+
--set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
|
|
214
|
+
--bind ${PWD}/scripts:/mnt/workspace \
|
|
215
|
+
--cd /app \
|
|
216
|
+
-- bash -c \
|
|
217
|
+
"uv run python /mnt/workspace/integer_sum.py"
|
|
218
|
+
```
|
|
219
|
+
|
|
101
220
|
## Development Dependencies
|
|
102
221
|
|
|
103
222
|
* [`uv`](https://docs.astral.sh/uv/)
|
|
@@ -37,7 +37,68 @@ Documentation for combining agents:
|
|
|
37
37
|
- [ArXiv -> Execution for Materials](docs/combining_arxiv_and_execution.md)
|
|
38
38
|
- [ArXiv -> Execution for Neutron Star Properties](docs/combining_arxiv_and_execution_neutronStar.md)
|
|
39
39
|
|
|
40
|
-
|
|
40
|
+
|
|
41
|
+
## Command line usage
|
|
42
|
+
|
|
43
|
+
You can install `ursa` as a command line app with `pip install`; or with `uv` via
|
|
44
|
+
|
|
45
|
+
```bash
|
|
46
|
+
uv tool install ursa-ai
|
|
47
|
+
```
|
|
48
|
+
|
|
49
|
+
To use the command line app, run
|
|
50
|
+
|
|
51
|
+
```
|
|
52
|
+
ursa run
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
This will start a REPL in your terminal.
|
|
56
|
+
|
|
57
|
+
```
|
|
58
|
+
__ ________________ _
|
|
59
|
+
/ / / / ___/ ___/ __ `/
|
|
60
|
+
/ /_/ / / (__ ) /_/ /
|
|
61
|
+
\__,_/_/ /____/\__,_/
|
|
62
|
+
|
|
63
|
+
For help, type: ? or help. Exit with Ctrl+d.
|
|
64
|
+
ursa>
|
|
65
|
+
```
|
|
66
|
+
|
|
67
|
+
Within the REPL, you can get help by typing `?` or `help`.
|
|
68
|
+
|
|
69
|
+
You can chat with an LLM by simply typing into the terminal.
|
|
70
|
+
|
|
71
|
+
```
|
|
72
|
+
ursa> How are you?
|
|
73
|
+
Thanks for asking! I’m doing well. How are you today? What can I help you with?
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
You can run various agents by typing the name of the agent. For example,
|
|
77
|
+
|
|
78
|
+
```
|
|
79
|
+
ursa> plan
|
|
80
|
+
Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
If you run subsequent agents, the last output will be appended to the prompt for the next agent.
|
|
84
|
+
|
|
85
|
+
So, to run the Planning Agent followed by the Execution Agent:
|
|
86
|
+
```
|
|
87
|
+
ursa> plan
|
|
88
|
+
Enter your prompt for Planning Agent: Write a python script to do linear regression using only numpy.
|
|
89
|
+
|
|
90
|
+
...
|
|
91
|
+
|
|
92
|
+
ursa> execute
|
|
93
|
+
Enter your prompt for Execution Agent: Execute the plan.
|
|
94
|
+
```
|
|
95
|
+
|
|
96
|
+
You can get a list of available command line options via
|
|
97
|
+
```
|
|
98
|
+
ursa run --help
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
## Sandboxing
|
|
41
102
|
The Execution Agent is allowed to run system commands and write/run code. Being able to execute arbitrary system commands or write
|
|
42
103
|
and execute code has the potential to cause problems like:
|
|
43
104
|
- Damage code or data on the computer
|
|
@@ -54,6 +115,65 @@ Some suggestions for sandboxing the agent:
|
|
|
54
115
|
|
|
55
116
|
You have a duty for ensuring that you use URSA responsibly.
|
|
56
117
|
|
|
118
|
+
## Container image
|
|
119
|
+
|
|
120
|
+
To enable limited sandboxing insofar as containerization does this, you can run
|
|
121
|
+
the following commands:
|
|
122
|
+
|
|
123
|
+
### Docker
|
|
124
|
+
|
|
125
|
+
```shell
|
|
126
|
+
# Build a local container using the Docker runtime
|
|
127
|
+
docker buildx build --progress=plain -t ursa .
|
|
128
|
+
|
|
129
|
+
# Run included example
|
|
130
|
+
docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY ursa \
|
|
131
|
+
bash -c "uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
|
|
132
|
+
|
|
133
|
+
# Run script from host system
|
|
134
|
+
mkdir -p scripts
|
|
135
|
+
echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
|
|
136
|
+
docker run -e "OPENAI_API_KEY"=$OPENAI_API_KEY \
|
|
137
|
+
--mount type=bind,src=$PWD/scripts,dst=/mnt/workspace \
|
|
138
|
+
ursa \
|
|
139
|
+
bash -c "uv run /mnt/workspace/my_script.py"
|
|
140
|
+
```
|
|
141
|
+
|
|
142
|
+
### Charliecloud
|
|
143
|
+
|
|
144
|
+
[Charliecloud](https://charliecloud.io/) is a rootless alternative to docker
|
|
145
|
+
that is sometimes preferred on HPC. The following commands replicate the
|
|
146
|
+
behaviors above for docker.
|
|
147
|
+
|
|
148
|
+
```shell
|
|
149
|
+
# Build a local container using the Docker runtime
|
|
150
|
+
ch-image build -t ursa
|
|
151
|
+
|
|
152
|
+
# Convert image to sqfs, for use on another system
|
|
153
|
+
ch-convert ursa ursa.sqfs
|
|
154
|
+
|
|
155
|
+
# Run included example (if wanted, replace ursa with /path/to/ursa.sqfs)
|
|
156
|
+
ch-run -W ursa \
|
|
157
|
+
--unset-env="*" \
|
|
158
|
+
--set-env \
|
|
159
|
+
--set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
|
|
160
|
+
--cd /app \
|
|
161
|
+
-- bash -c \
|
|
162
|
+
"uv run python examples/single_agent_examples/execution_agnet/integer_sum.py"
|
|
163
|
+
|
|
164
|
+
# Run script from host system (if wanted, replace ursa with /path/to/ursa.sqfs)
|
|
165
|
+
mkdir -p scripts
|
|
166
|
+
echo "import ursa; print('Hello from ursa')" > scripts/my_script.py
|
|
167
|
+
ch-run -W ursa \
|
|
168
|
+
--unset-env="*" \
|
|
169
|
+
--set-env \
|
|
170
|
+
--set-env="OPENAI_API_KEY"=$OPENAI_API_KEY \
|
|
171
|
+
--bind ${PWD}/scripts:/mnt/workspace \
|
|
172
|
+
--cd /app \
|
|
173
|
+
-- bash -c \
|
|
174
|
+
"uv run python /mnt/workspace/integer_sum.py"
|
|
175
|
+
```
|
|
176
|
+
|
|
57
177
|
## Development Dependencies
|
|
58
178
|
|
|
59
179
|
* [`uv`](https://docs.astral.sh/uv/)
|
|
@@ -38,8 +38,7 @@ dependencies = [
|
|
|
38
38
|
"langgraph-checkpoint-sqlite>=2.0.10,<3.0",
|
|
39
39
|
"langchain-ollama>=0.3.6,<0.4",
|
|
40
40
|
"ddgs>=9.5.5",
|
|
41
|
-
"
|
|
42
|
-
"trafilatura>=1.6.1",
|
|
41
|
+
"typer>=0.16.1",
|
|
43
42
|
]
|
|
44
43
|
classifiers = [
|
|
45
44
|
"Operating System :: OS Independent",
|
|
@@ -50,6 +49,9 @@ classifiers = [
|
|
|
50
49
|
"Programming Language :: Python :: 3.14",
|
|
51
50
|
]
|
|
52
51
|
|
|
52
|
+
[project.scripts]
|
|
53
|
+
ursa = "ursa.cli:main"
|
|
54
|
+
|
|
53
55
|
[project.urls]
|
|
54
56
|
Homepage = "https://github.com/lanl/ursa"
|
|
55
57
|
Documentation = "https://github.com/lanl/ursa/tree/main/docs"
|
|
@@ -81,5 +83,13 @@ dev = [
|
|
|
81
83
|
"langgraph-checkpoint-sqlite>=2.0.10",
|
|
82
84
|
"notebook>=7.3.3",
|
|
83
85
|
"pre-commit>=4.3.0",
|
|
86
|
+
"pytest>=8.4.2",
|
|
84
87
|
"scikit-optimize>=0.10.2",
|
|
85
88
|
]
|
|
89
|
+
lammps = [
|
|
90
|
+
"atomman>=1.5.2",
|
|
91
|
+
"trafilatura>=1.6.1",
|
|
92
|
+
]
|
|
93
|
+
opt = [
|
|
94
|
+
"ortools>=9.14,<9.15",
|
|
95
|
+
]
|
|
@@ -14,6 +14,8 @@ from .lammps_agent import LammpsState as LammpsState
|
|
|
14
14
|
from .mp_agent import MaterialsProjectAgent as MaterialsProjectAgent
|
|
15
15
|
from .planning_agent import PlanningAgent as PlanningAgent
|
|
16
16
|
from .planning_agent import PlanningState as PlanningState
|
|
17
|
+
from .rag_agent import RAGAgent as RAGAgent
|
|
18
|
+
from .rag_agent import RAGState as RAGState
|
|
17
19
|
from .recall_agent import RecallAgent as RecallAgent
|
|
18
20
|
from .websearch_agent import WebSearchAgent as WebSearchAgent
|
|
19
21
|
from .websearch_agent import WebSearchState as WebSearchState
|
|
@@ -1,17 +1,16 @@
|
|
|
1
1
|
import base64
|
|
2
2
|
import os
|
|
3
3
|
import re
|
|
4
|
-
import statistics
|
|
5
4
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
6
5
|
from io import BytesIO
|
|
6
|
+
from typing import Any, Mapping
|
|
7
7
|
from urllib.parse import quote
|
|
8
8
|
|
|
9
9
|
import feedparser
|
|
10
10
|
import pymupdf
|
|
11
11
|
import requests
|
|
12
|
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
13
|
-
from langchain_chroma import Chroma
|
|
14
12
|
from langchain_community.document_loaders import PyPDFLoader
|
|
13
|
+
from langchain_core.language_models import BaseChatModel
|
|
15
14
|
from langchain_core.output_parsers import StrOutputParser
|
|
16
15
|
from langchain_core.prompts import ChatPromptTemplate
|
|
17
16
|
from langgraph.graph import StateGraph
|
|
@@ -19,16 +18,14 @@ from PIL import Image
|
|
|
19
18
|
from tqdm import tqdm
|
|
20
19
|
from typing_extensions import List, TypedDict
|
|
21
20
|
|
|
22
|
-
from .base import BaseAgent
|
|
21
|
+
from ursa.agents.base import BaseAgent
|
|
22
|
+
from ursa.agents.rag_agent import RAGAgent
|
|
23
23
|
|
|
24
24
|
try:
|
|
25
25
|
from openai import OpenAI
|
|
26
26
|
except Exception:
|
|
27
27
|
pass
|
|
28
28
|
|
|
29
|
-
# embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
30
|
-
# embeddings = OpenAIEmbeddings()
|
|
31
|
-
|
|
32
29
|
|
|
33
30
|
class PaperMetadata(TypedDict):
|
|
34
31
|
arxiv_id: str
|
|
@@ -125,7 +122,7 @@ def remove_surrogates(text: str) -> str:
|
|
|
125
122
|
class ArxivAgent(BaseAgent):
|
|
126
123
|
def __init__(
|
|
127
124
|
self,
|
|
128
|
-
llm="openai/o3-mini",
|
|
125
|
+
llm: str | BaseChatModel = "openai/o3-mini",
|
|
129
126
|
summarize: bool = True,
|
|
130
127
|
process_images=True,
|
|
131
128
|
max_results: int = 3,
|
|
@@ -146,7 +143,7 @@ class ArxivAgent(BaseAgent):
|
|
|
146
143
|
self.download_papers = download_papers
|
|
147
144
|
self.rag_embedding = rag_embedding
|
|
148
145
|
|
|
149
|
-
self.
|
|
146
|
+
self._action = self._build_graph()
|
|
150
147
|
|
|
151
148
|
os.makedirs(self.database_path, exist_ok=True)
|
|
152
149
|
|
|
@@ -242,27 +239,6 @@ class ArxivAgent(BaseAgent):
|
|
|
242
239
|
papers = self._fetch_papers(state["query"])
|
|
243
240
|
return {**state, "papers": papers}
|
|
244
241
|
|
|
245
|
-
def _get_or_build_vectorstore(self, paper_text: str, arxiv_id: str):
|
|
246
|
-
os.makedirs(self.vectorstore_path, exist_ok=True)
|
|
247
|
-
|
|
248
|
-
persist_directory = os.path.join(self.vectorstore_path, arxiv_id)
|
|
249
|
-
|
|
250
|
-
if os.path.exists(persist_directory):
|
|
251
|
-
vectorstore = Chroma(
|
|
252
|
-
persist_directory=persist_directory,
|
|
253
|
-
embedding_function=self.rag_embedding,
|
|
254
|
-
)
|
|
255
|
-
else:
|
|
256
|
-
splitter = RecursiveCharacterTextSplitter(
|
|
257
|
-
chunk_size=1000, chunk_overlap=200
|
|
258
|
-
)
|
|
259
|
-
docs = splitter.create_documents([paper_text])
|
|
260
|
-
vectorstore = Chroma.from_documents(
|
|
261
|
-
docs, self.rag_embedding, persist_directory=persist_directory
|
|
262
|
-
)
|
|
263
|
-
|
|
264
|
-
return vectorstore.as_retriever(search_kwargs={"k": 5})
|
|
265
|
-
|
|
266
242
|
def _summarize_node(self, state: PaperState) -> PaperState:
|
|
267
243
|
prompt = ChatPromptTemplate.from_template("""
|
|
268
244
|
You are a scientific assistant responsible for summarizing extracts from research papers, in the context of the following task: {context}
|
|
@@ -285,35 +261,13 @@ class ArxivAgent(BaseAgent):
|
|
|
285
261
|
|
|
286
262
|
try:
|
|
287
263
|
cleaned_text = remove_surrogates(paper["full_text"])
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
cleaned_text,
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
state["context"], k=5
|
|
296
|
-
)
|
|
297
|
-
)
|
|
298
|
-
|
|
299
|
-
if relevant_docs_with_scores:
|
|
300
|
-
score = sum([
|
|
301
|
-
s for _, s in relevant_docs_with_scores
|
|
302
|
-
]) / len(relevant_docs_with_scores)
|
|
303
|
-
relevancy_scores[i] = abs(1.0 - score)
|
|
304
|
-
else:
|
|
305
|
-
relevancy_scores[i] = 0.0
|
|
306
|
-
|
|
307
|
-
retrieved_content = "\n\n".join([
|
|
308
|
-
doc.page_content for doc, _ in relevant_docs_with_scores
|
|
309
|
-
])
|
|
310
|
-
else:
|
|
311
|
-
retrieved_content = cleaned_text
|
|
312
|
-
|
|
313
|
-
summary = chain.invoke({
|
|
314
|
-
"retrieved_content": retrieved_content,
|
|
315
|
-
"context": state["context"],
|
|
316
|
-
})
|
|
264
|
+
summary = chain.invoke(
|
|
265
|
+
{
|
|
266
|
+
"retrieved_content": cleaned_text,
|
|
267
|
+
"context": state["context"],
|
|
268
|
+
},
|
|
269
|
+
config=self.build_config(tags=["arxiv", "summarize_each"]),
|
|
270
|
+
)
|
|
317
271
|
|
|
318
272
|
except Exception as e:
|
|
319
273
|
summary = f"Error summarizing paper: {e}"
|
|
@@ -346,15 +300,20 @@ class ArxivAgent(BaseAgent):
|
|
|
346
300
|
i, result = future.result()
|
|
347
301
|
summaries[i] = result
|
|
348
302
|
|
|
349
|
-
if self.rag_embedding:
|
|
350
|
-
print(f"\nMax Relevancy Score: {max(relevancy_scores)}")
|
|
351
|
-
print(f"Min Relevancy Score: {min(relevancy_scores)}")
|
|
352
|
-
print(
|
|
353
|
-
f"Median Relevancy Score: {statistics.median(relevancy_scores)}\n"
|
|
354
|
-
)
|
|
355
|
-
|
|
356
303
|
return {**state, "summaries": summaries}
|
|
357
304
|
|
|
305
|
+
def _rag_node(self, state: PaperState) -> PaperState:
|
|
306
|
+
new_state = state.copy()
|
|
307
|
+
rag_agent = RAGAgent(
|
|
308
|
+
llm=self.llm,
|
|
309
|
+
embedding=self.rag_embedding,
|
|
310
|
+
database_path=self.database_path,
|
|
311
|
+
)
|
|
312
|
+
new_state["final_summary"] = rag_agent.invoke(context=state["context"])[
|
|
313
|
+
"summary"
|
|
314
|
+
]
|
|
315
|
+
return new_state
|
|
316
|
+
|
|
358
317
|
def _aggregate_node(self, state: PaperState) -> PaperState:
|
|
359
318
|
summaries = state["summaries"]
|
|
360
319
|
papers = state["papers"]
|
|
@@ -389,10 +348,13 @@ class ArxivAgent(BaseAgent):
|
|
|
389
348
|
|
|
390
349
|
chain = prompt | self.llm | StrOutputParser()
|
|
391
350
|
|
|
392
|
-
final_summary = chain.invoke(
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
351
|
+
final_summary = chain.invoke(
|
|
352
|
+
{
|
|
353
|
+
"Summaries": combined,
|
|
354
|
+
"context": state["context"],
|
|
355
|
+
},
|
|
356
|
+
config=self.build_config(tags=["arxiv", "aggregate"]),
|
|
357
|
+
)
|
|
396
358
|
|
|
397
359
|
with open(self.summaries_path + "/final_summary.txt", "w") as f:
|
|
398
360
|
f.write(final_summary)
|
|
@@ -400,42 +362,69 @@ class ArxivAgent(BaseAgent):
|
|
|
400
362
|
return {**state, "final_summary": final_summary}
|
|
401
363
|
|
|
402
364
|
def _build_graph(self):
|
|
403
|
-
|
|
404
|
-
builder.add_node("fetch_papers", self._fetch_node)
|
|
365
|
+
graph = StateGraph(PaperState)
|
|
405
366
|
|
|
367
|
+
self.add_node(graph, self._fetch_node)
|
|
406
368
|
if self.summarize:
|
|
407
|
-
|
|
408
|
-
|
|
369
|
+
if self.rag_embedding:
|
|
370
|
+
self.add_node(graph, self._rag_node)
|
|
371
|
+
graph.set_entry_point("_fetch_node")
|
|
372
|
+
graph.add_edge("_fetch_node", "_rag_node")
|
|
373
|
+
graph.set_finish_point("_rag_node")
|
|
374
|
+
else:
|
|
375
|
+
self.add_node(graph, self._summarize_node)
|
|
376
|
+
self.add_node(graph, self._aggregate_node)
|
|
377
|
+
|
|
378
|
+
graph.set_entry_point("_fetch_node")
|
|
379
|
+
graph.add_edge("_fetch_node", "_summarize_node")
|
|
380
|
+
graph.add_edge("_summarize_node", "_aggregate_node")
|
|
381
|
+
graph.set_finish_point("_aggregate_node")
|
|
382
|
+
else:
|
|
383
|
+
graph.set_entry_point("_fetch_node")
|
|
384
|
+
graph.set_finish_point("_fetch_node")
|
|
409
385
|
|
|
410
|
-
|
|
411
|
-
builder.add_edge("fetch_papers", "summarize_each")
|
|
412
|
-
builder.add_edge("summarize_each", "aggregate")
|
|
413
|
-
builder.set_finish_point("aggregate")
|
|
386
|
+
return graph.compile(checkpointer=self.checkpointer)
|
|
414
387
|
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
388
|
+
def _invoke(
|
|
389
|
+
self,
|
|
390
|
+
inputs: Mapping[str, Any],
|
|
391
|
+
*,
|
|
392
|
+
summarize: bool | None = None,
|
|
393
|
+
recursion_limit: int = 1000,
|
|
394
|
+
**_,
|
|
395
|
+
) -> str:
|
|
396
|
+
config = self.build_config(
|
|
397
|
+
recursion_limit=recursion_limit, tags=["graph"]
|
|
398
|
+
)
|
|
418
399
|
|
|
419
|
-
|
|
420
|
-
|
|
400
|
+
# this seems dumb, but it's b/c sometimes we had referred to the value as
|
|
401
|
+
# 'query' other times as 'arxiv_search_query' so trying to keep it compatible
|
|
402
|
+
# aliasing: accept arxiv_search_query -> query
|
|
403
|
+
if "query" not in inputs:
|
|
404
|
+
if "arxiv_search_query" in inputs:
|
|
405
|
+
# make a shallow copy and rename the key
|
|
406
|
+
inputs = dict(inputs)
|
|
407
|
+
inputs["query"] = inputs.pop("arxiv_search_query")
|
|
408
|
+
else:
|
|
409
|
+
raise KeyError(
|
|
410
|
+
"Missing 'query' in inputs (alias 'arxiv_search_query' also accepted)."
|
|
411
|
+
)
|
|
421
412
|
|
|
422
|
-
|
|
423
|
-
result = self.graph.invoke({
|
|
424
|
-
"query": arxiv_search_query,
|
|
425
|
-
"context": context,
|
|
426
|
-
})
|
|
413
|
+
result = self._action.invoke(inputs, config)
|
|
427
414
|
|
|
428
|
-
|
|
429
|
-
return result.get("final_summary", "No summary generated.")
|
|
430
|
-
else:
|
|
431
|
-
return "\n\nFinished Fetching papers!"
|
|
415
|
+
use_summary = self.summarize if summarize is None else summarize
|
|
432
416
|
|
|
417
|
+
return (
|
|
418
|
+
result.get("final_summary", "No summary generated.")
|
|
419
|
+
if use_summary
|
|
420
|
+
else "\n\nFinished Fetching papers!"
|
|
421
|
+
)
|
|
433
422
|
|
|
434
|
-
if __name__ == "__main__":
|
|
435
|
-
agent = ArxivAgent()
|
|
436
|
-
result = agent.run(
|
|
437
|
-
arxiv_search_query="Experimental Constraints on neutron star radius",
|
|
438
|
-
context="What are the constraints on the neutron star radius and what uncertainties are there on the constraints?",
|
|
439
|
-
)
|
|
440
423
|
|
|
441
|
-
|
|
424
|
+
# NOTE: Run test in `tests/agents/test_arxiv_agent/test_arxiv_agent.py` via:
|
|
425
|
+
#
|
|
426
|
+
# pytest -s tests/agents/test_arxiv_agent
|
|
427
|
+
#
|
|
428
|
+
# OR
|
|
429
|
+
#
|
|
430
|
+
# uv run pytest -s tests/agents/test_arxiv_agent
|