upgini 1.2.56a3675.dev2__py3-none-any.whl → 1.2.57a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.56a3675.dev2"
1
+ __version__ = "1.2.57a1"
upgini/autofe/date.py CHANGED
@@ -64,9 +64,6 @@ class DateDiff(PandasOperand, DateDiffMixin):
64
64
  return res
65
65
 
66
66
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
67
- if left.isna().all() or right.isna().all():
68
- return pd.Series([None] * len(left))
69
-
70
67
  left = self._convert_to_date(left, self.left_unit)
71
68
  right = self._convert_to_date(right, self.right_unit)
72
69
  diff = self._convert_diff_to_unit(left.dt.date - right.dt.date)
@@ -145,9 +142,6 @@ class DateListDiff(PandasOperand, DateDiffMixin, ParametrizedOperand):
145
142
  return cls(aggregation=aggregation)
146
143
 
147
144
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
148
- if left.isna().all() or right.isna().all():
149
- return pd.Series([None] * len(left), dtype=np.float64)
150
-
151
145
  left = self._convert_to_date(left, self.left_unit)
152
146
  right_mask = right.apply(lambda x: len(x) > 0)
153
147
  mask = left.notna() & right.notna() & right_mask
@@ -236,8 +230,6 @@ class DatePercentileBase(PandasOperand, abc.ABC):
236
230
  pass
237
231
 
238
232
  def _perc(self, f, bounds):
239
- if f is None or np.isnan(f):
240
- return np.nan
241
233
  hit = np.where(f >= np.array(bounds))[0]
242
234
  if hit.size > 0:
243
235
  return np.max(hit) + 1
upgini/autofe/feature.py CHANGED
@@ -26,9 +26,18 @@ class Column:
26
26
  return dict()
27
27
 
28
28
  def rename_columns(self, mapping: Dict[str, str]) -> "Column":
29
- self.name = mapping.get(self.name) or self.name
29
+ self.name = self._unhash(mapping.get(self.name) or self.name)
30
30
  return self
31
31
 
32
+ def _unhash(self, feature_name: str) -> str:
33
+ last_component_idx = feature_name.rfind("_")
34
+ if not feature_name.startswith("f_"):
35
+ return feature_name # etalon feature
36
+ elif last_component_idx == 1:
37
+ return feature_name[2:] # fully hashed name, cannot unhash
38
+ else:
39
+ return feature_name[2:last_component_idx]
40
+
32
41
  def delete_data(self):
33
42
  self.data = None
34
43
 
upgini/dataset.py CHANGED
@@ -587,15 +587,23 @@ class Dataset: # (pd.DataFrame):
587
587
  if (
588
588
  runtime_parameters is not None
589
589
  and runtime_parameters.properties is not None
590
- and "generate_features" in runtime_parameters.properties
591
590
  ):
592
- generate_features = runtime_parameters.properties["generate_features"].split(",")
593
- renamed_generate_features = []
594
- for f in generate_features:
595
- for new_column, orig_column in self.columns_renaming.items():
596
- if f == orig_column:
597
- renamed_generate_features.append(new_column)
598
- runtime_parameters.properties["generate_features"] = ",".join(renamed_generate_features)
591
+ if "generate_features" in runtime_parameters.properties:
592
+ generate_features = runtime_parameters.properties["generate_features"].split(",")
593
+ renamed_generate_features = []
594
+ for f in generate_features:
595
+ for new_column, orig_column in self.columns_renaming.items():
596
+ if f == orig_column:
597
+ renamed_generate_features.append(new_column)
598
+ runtime_parameters.properties["generate_features"] = ",".join(renamed_generate_features)
599
+ if "columns_for_online_api" in runtime_parameters.properties:
600
+ columns_for_online_api = runtime_parameters.properties["columns_for_online_api"].split(",")
601
+ renamed_columns_for_online_api = []
602
+ for f in columns_for_online_api:
603
+ for new_column, orig_column in self.columns_renaming.items():
604
+ if f == orig_column:
605
+ renamed_columns_for_online_api.append(new_column)
606
+ runtime_parameters.properties["columns_for_online_api"] = ",".join(renamed_columns_for_online_api)
599
607
 
600
608
  return runtime_parameters
601
609
 
@@ -222,6 +222,7 @@ class FeaturesEnricher(TransformerMixin):
222
222
  loss: Optional[str] = None,
223
223
  detect_missing_search_keys: bool = True,
224
224
  generate_features: Optional[List[str]] = None,
225
+ columns_for_online_api: Optional[List[str]] = None,
225
226
  round_embeddings: Optional[int] = None,
226
227
  logs_enabled: bool = True,
227
228
  raise_validation_error: bool = True,
@@ -345,6 +346,9 @@ class FeaturesEnricher(TransformerMixin):
345
346
  self.logger.error(msg)
346
347
  raise ValidationError(msg)
347
348
  self.runtime_parameters.properties["round_embeddings"] = round_embeddings
349
+ self.columns_for_online_api = columns_for_online_api
350
+ if columns_for_online_api is not None:
351
+ self.runtime_parameters.properties["columns_for_online_api"] = ",".join(columns_for_online_api)
348
352
  maybe_downsampling_limit = self.runtime_parameters.properties.get("downsampling_limit")
349
353
  if maybe_downsampling_limit is not None:
350
354
  Dataset.FIT_SAMPLE_THRESHOLD = int(maybe_downsampling_limit)
@@ -2620,17 +2624,18 @@ if response.status_code == 200:
2620
2624
  checked_generate_features = []
2621
2625
  for gen_feature in self.generate_features:
2622
2626
  if gen_feature not in x_columns:
2623
- if gen_feature == self._get_phone_column(self.search_keys):
2624
- raise ValidationError(
2625
- self.bundle.get("missing_generate_feature").format(gen_feature, x_columns)
2626
- )
2627
- else:
2628
- self.__log_warning(self.bundle.get("missing_generate_feature").format(gen_feature, x_columns))
2627
+ msg = self.bundle.get("missing_generate_feature").format(gen_feature, x_columns)
2628
+ self.__log_warning(msg)
2629
2629
  else:
2630
2630
  checked_generate_features.append(gen_feature)
2631
2631
  self.generate_features = checked_generate_features
2632
2632
  self.runtime_parameters.properties["generate_features"] = ",".join(self.generate_features)
2633
2633
 
2634
+ if self.columns_for_online_api is not None and len(self.columns_for_online_api) > 0:
2635
+ for column in self.columns_for_online_api:
2636
+ if column not in validated_X.columns:
2637
+ raise ValidationError(self.bundle.get("missing_column_for_online_api").format(column))
2638
+
2634
2639
  if self.id_columns is not None:
2635
2640
  for id_column in self.id_columns:
2636
2641
  if id_column not in validated_X.columns:
@@ -3733,7 +3738,7 @@ if response.status_code == 200:
3733
3738
  features_info_without_links = []
3734
3739
  internal_features_info = []
3735
3740
 
3736
- original_shaps = {fm.name: fm.shap_value for fm in features_meta}
3741
+ original_shaps = {original_names_dict.get(fm.name, fm.name): fm.shap_value for fm in features_meta}
3737
3742
 
3738
3743
  if updated_shaps is not None:
3739
3744
  for fm in features_meta:
@@ -111,6 +111,7 @@ x_is_empty=X is empty
111
111
  y_is_empty=y is empty
112
112
  x_contains_reserved_column_name=Column name {} is reserved. Please rename column and try again
113
113
  missing_generate_feature=Feature {} specified in `generate_features` is not present in input columns: {}
114
+ missing_column_for_online_api=Column {} specified in `columns_for_online_api` is not present in input columns: {}
114
115
  x_unstable_by_date=Your training sample is unstable in number of rows per date. It is recommended to redesign the training sample
115
116
  train_unstable_target=Your training sample contains an unstable target event, PSI = {}. This will lead to unstable scoring on deferred samples. It is recommended to redesign the training sample
116
117
  eval_unstable_target=Your training and evaluation samples have a difference in target distribution. PSI = {}. The results will be unstable. It is recommended to redesign the training and evaluation samples
@@ -116,17 +116,17 @@ class EmailSearchKeyConverter:
116
116
  else:
117
117
  df[self.hem_column] = df[self.hem_column].astype("string").str.lower()
118
118
 
119
- del self.search_keys[self.email_column]
120
- if self.email_column in self.unnest_search_keys:
121
- self.unnest_search_keys.remove(self.email_column)
119
+ # del self.search_keys[self.email_column]
120
+ # if self.email_column in self.unnest_search_keys:
121
+ # self.unnest_search_keys.remove(self.email_column)
122
122
 
123
123
  one_domain_name = self.email_column + self.ONE_DOMAIN_SUFFIX
124
124
  df[one_domain_name] = df[self.email_column].apply(self._email_to_one_domain)
125
125
  self.columns_renaming[one_domain_name] = original_email_column
126
126
  self.search_keys[one_domain_name] = SearchKey.EMAIL_ONE_DOMAIN
127
127
 
128
- if self.email_converted_to_hem:
129
- df = df.drop(columns=self.email_column)
130
- del self.columns_renaming[self.email_column]
128
+ # if self.email_converted_to_hem:
129
+ # df = df.drop(columns=self.email_column)
130
+ # del self.columns_renaming[self.email_column]
131
131
 
132
132
  return df
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.2.56a3675.dev2
3
+ Version: 1.2.57a1
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,9 +1,9 @@
1
- upgini/__about__.py,sha256=lxbUjTKc_tR-57Zv9niYfqnEu3PzryVa0e8YESfstcc,33
1
+ upgini/__about__.py,sha256=xD1rNwR16E6bKFK9Htq3h-NvCGMf-iKdee5LdoC_PtM,25
2
2
  upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
- upgini/dataset.py,sha256=vT4JyHmafLNbj54SySXr93f5hNS6-t94aFslbBy-7No,33535
4
+ upgini/dataset.py,sha256=NP5vHqEfZQ1HWz3TcNAa_OhXG8wiMRdydm26D6UBiRU,34166
5
5
  upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
- upgini/features_enricher.py,sha256=Te4ZbFZ2RCEi9NHo1ddWaxfkTep_3O6Okct3U_DWeD0,201520
6
+ upgini/features_enricher.py,sha256=qJhzMy_Z16wUduRrtAluawV8h_t4HCg9I7uDpRnhKjk,201884
7
7
  upgini/http.py,sha256=ud0Cp7h0jNeHuuZGpU_1dAAEiabGoJjGxc1X5oeBQr4,43496
8
8
  upgini/lazy_import.py,sha256=74gQ8JuA48BGRLxAo7lNHNKY2D2emMxrUxKGdxVGhuY,1012
9
9
  upgini/metadata.py,sha256=Jh6YTaS00m_nbaOY_owvlSyn9zgkErkqu8iTr9ZjKI8,12279
@@ -16,8 +16,8 @@ upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo
16
16
  upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  upgini/autofe/all_operands.py,sha256=v0_NozalvvzeojSAA0d7UJ5INS654ZVaLn4S8djK6Ac,329
18
18
  upgini/autofe/binary.py,sha256=zMhtHVuGUAFLUqem-XiXqJj-GRXxS88tdz8tFuDfSNM,7659
19
- upgini/autofe/date.py,sha256=oykxfmny4LOr6m79IipOUCtk2JQSUdSCWHh8K9n7nek,10726
20
- upgini/autofe/feature.py,sha256=zvRdlxCkaOsX0XiragNvh0tAPyOWut0MQTq5JGU5HtY,14749
19
+ upgini/autofe/date.py,sha256=d-sijAD7dETfqIOCaZh1vhuVjsS_nqa-6dhjwkCdny4,10441
20
+ upgini/autofe/feature.py,sha256=l8A8E3BH2BmYvqEC81zbcIEfH6KEEhcesJ2BH4fn0-4,15140
21
21
  upgini/autofe/groupby.py,sha256=G48_sQZw016eGx3cOy8YQrEIOp95puWqYUpFWd-gdeM,3595
22
22
  upgini/autofe/operand.py,sha256=8Ttrfxv_H91dMbS7J55zxluzAJHfGXU_Y2xCh4OHwb8,4774
23
23
  upgini/autofe/unary.py,sha256=T3E7F3dA_7o_rkdCFq7JV6nHLzcoHLHQTcxO7y5Opa4,4646
@@ -30,7 +30,7 @@ upgini/normalizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
30
30
  upgini/normalizer/normalize_utils.py,sha256=Ft2MwSgVoBilXAORAOYAuwPD79GOLfwn4qQE3IUFzzg,7218
31
31
  upgini/resource_bundle/__init__.py,sha256=S5F2G47pnJd2LDpmFsjDqEwiKkP8Hm-hcseDbMka6Ko,8345
32
32
  upgini/resource_bundle/exceptions.py,sha256=5fRvx0_vWdE1-7HcSgF0tckB4A9AKyf5RiinZkInTsI,621
33
- upgini/resource_bundle/strings.properties,sha256=0_KAExIi1u48N1CQ13LKJS3bgDlRs-MPOyU3VxcE-qY,27350
33
+ upgini/resource_bundle/strings.properties,sha256=UXMiaFP3p-WdiXyZJN3O_OZstb-F33BWVDxDiofyxd4,27464
34
34
  upgini/resource_bundle/strings_widget.properties,sha256=gOdqvZWntP2LCza_tyVk1_yRYcG4c04K9sQOAVhF_gw,1577
35
35
  upgini/sampler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
36
  upgini/sampler/base.py,sha256=7GpjYqjOp58vYcJLiX__1R5wjUlyQbxvHJ2klFnup_M,6389
@@ -46,7 +46,7 @@ upgini/utils/cv_utils.py,sha256=w6FQb9nO8BWDx88EF83NpjPLarK4eR4ia0Wg0kLBJC4,3525
46
46
  upgini/utils/datetime_utils.py,sha256=RVAk4_rakK8X9zjybK3-rj0to0e3elye8tnBuA4wTWU,13491
47
47
  upgini/utils/deduplicate_utils.py,sha256=SMZx9IKIhWI5HqXepfKiQb3uDJrogQZtG6jcWuMo5Z4,8855
48
48
  upgini/utils/display_utils.py,sha256=DsBjJ8jEYAh8BPgfAbzq5imoGFV6IACP20PQ78BQCX0,11964
49
- upgini/utils/email_utils.py,sha256=GbnhHJn1nhUBytmK6PophYqaoq4t7Lp6i0-O0Gd3RV8,5265
49
+ upgini/utils/email_utils.py,sha256=pZ2vCfNxLIPUhxr0-OlABNXm12jjU44isBk8kGmqQzA,5277
50
50
  upgini/utils/fallback_progress_bar.py,sha256=PDaKb8dYpVZaWMroNcOHsTc3pSjgi9mOm0--cOFTwJ0,1074
51
51
  upgini/utils/feature_info.py,sha256=0rOXSyCj-sw-8migWP0ge8qrOzGU50dQvH0JUJUrDfQ,6766
52
52
  upgini/utils/features_validator.py,sha256=lEfmk4DoxZ4ooOE1HC0ZXtUb_lFKRFHIrnFULZ4_rL8,3746
@@ -59,7 +59,7 @@ upgini/utils/sklearn_ext.py,sha256=13jQS_k7v0aUtudXV6nGUEWjttPQzAW9AFYL5wgEz9k,4
59
59
  upgini/utils/target_utils.py,sha256=RlpKGss9kMibVSlA8iZuO_qxmyeplqzn7X8g6hiGGGs,14341
60
60
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
61
61
  upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
62
- upgini-1.2.56a3675.dev2.dist-info/METADATA,sha256=uZ9srZg0MdR_AyLhbdW_EPCQBQcdDbdf5IYQSAFOFM4,49065
63
- upgini-1.2.56a3675.dev2.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
64
- upgini-1.2.56a3675.dev2.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
65
- upgini-1.2.56a3675.dev2.dist-info/RECORD,,
62
+ upgini-1.2.57a1.dist-info/METADATA,sha256=N_Ensc34wVnclvB6j7sFAtFjSZX2m8tYZat7YUeSAhk,49057
63
+ upgini-1.2.57a1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
64
+ upgini-1.2.57a1.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
65
+ upgini-1.2.57a1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.24.2
2
+ Generator: hatchling 1.25.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any