upgini 1.2.22__tar.gz → 1.2.24__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of upgini might be problematic. Click here for more details.
- {upgini-1.2.22 → upgini-1.2.24}/PKG-INFO +1 -1
- upgini-1.2.24/src/upgini/__about__.py +1 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/features_enricher.py +76 -78
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/metrics.py +18 -9
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/normalizer/normalize_utils.py +2 -14
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/resource_bundle/strings.properties +45 -48
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/datetime_utils.py +5 -26
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/deduplicate_utils.py +41 -33
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/features_validator.py +8 -15
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/warning_counter.py +1 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/version_validator.py +7 -3
- upgini-1.2.22/src/upgini/__about__.py +0 -1
- {upgini-1.2.22 → upgini-1.2.24}/.gitignore +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/LICENSE +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/README.md +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/pyproject.toml +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/ads.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/ads_management/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/ads_management/ads_manager.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/all_operands.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/binary.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/date.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/feature.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/groupby.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/operand.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/unary.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/autofe/vector.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/data_source/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/data_source/data_source_publisher.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/dataset.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/errors.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/http.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/lazy_import.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/mdc/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/mdc/context.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/metadata.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/normalizer/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/resource_bundle/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/resource_bundle/exceptions.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/resource_bundle/strings_widget.properties +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/sampler/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/sampler/base.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/sampler/random_under_sampler.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/sampler/utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/search_task.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/spinner.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/__init__.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/base_search_key_detector.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/blocked_time_series.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/country_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/custom_loss_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/cv_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/display_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/email_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/fallback_progress_bar.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/format.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/ip_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/phone_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/postal_code_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/progress_bar.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/sklearn_ext.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/target_utils.py +0 -0
- {upgini-1.2.22 → upgini-1.2.24}/src/upgini/utils/track_info.py +0 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "1.2.24"
|
|
@@ -77,8 +77,8 @@ from upgini.utils.cv_utils import CVConfig, get_groups
|
|
|
77
77
|
from upgini.utils.datetime_utils import (
|
|
78
78
|
DateTimeSearchKeyConverter,
|
|
79
79
|
is_blocked_time_series,
|
|
80
|
+
is_dates_distribution_valid,
|
|
80
81
|
is_time_series,
|
|
81
|
-
validate_dates_distribution,
|
|
82
82
|
)
|
|
83
83
|
from upgini.utils.deduplicate_utils import (
|
|
84
84
|
clean_full_duplicates,
|
|
@@ -263,7 +263,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
263
263
|
dict()
|
|
264
264
|
)
|
|
265
265
|
|
|
266
|
-
validate_version(self.logger)
|
|
266
|
+
validate_version(self.logger, self.__log_warning)
|
|
267
267
|
self.search_keys = search_keys or {}
|
|
268
268
|
self.country_code = country_code
|
|
269
269
|
self.__validate_search_keys(search_keys, search_id)
|
|
@@ -723,7 +723,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
723
723
|
|
|
724
724
|
start_time = time.time()
|
|
725
725
|
try:
|
|
726
|
-
result, _ = self.__inner_transform(
|
|
726
|
+
result, _, _ = self.__inner_transform(
|
|
727
727
|
trace_id,
|
|
728
728
|
X,
|
|
729
729
|
exclude_features_sources=exclude_features_sources,
|
|
@@ -951,9 +951,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
951
951
|
gc.collect()
|
|
952
952
|
|
|
953
953
|
if fitting_X.shape[1] == 0 and fitting_enriched_X.shape[1] == 0:
|
|
954
|
-
|
|
955
|
-
self.logger.warning("No client or free relevant ADS features found to calculate metrics")
|
|
956
|
-
self.warning_counter.increment()
|
|
954
|
+
self.__log_warning(self.bundle.get("metrics_no_important_free_features"))
|
|
957
955
|
return None
|
|
958
956
|
|
|
959
957
|
print(self.bundle.get("metrics_start"))
|
|
@@ -1654,9 +1652,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1654
1652
|
date_column = SearchKey.find_key(search_keys, [SearchKey.DATE, SearchKey.DATETIME])
|
|
1655
1653
|
generated_features = []
|
|
1656
1654
|
if date_column is not None:
|
|
1657
|
-
converter = DateTimeSearchKeyConverter(
|
|
1658
|
-
date_column, self.date_format, self.logger, self.bundle, silent_mode=True
|
|
1659
|
-
)
|
|
1655
|
+
converter = DateTimeSearchKeyConverter(date_column, self.date_format, self.logger, self.bundle)
|
|
1660
1656
|
df = converter.convert(df, keep_time=True)
|
|
1661
1657
|
generated_features = converter.generated_features
|
|
1662
1658
|
|
|
@@ -1666,11 +1662,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1666
1662
|
df = generator.generate(df)
|
|
1667
1663
|
generated_features.extend(generator.generated_features)
|
|
1668
1664
|
|
|
1669
|
-
normalizer = Normalizer(self.bundle, self.logger
|
|
1665
|
+
normalizer = Normalizer(self.bundle, self.logger)
|
|
1670
1666
|
df, search_keys, generated_features = normalizer.normalize(df, search_keys, generated_features)
|
|
1671
1667
|
columns_renaming = normalizer.columns_renaming
|
|
1672
1668
|
|
|
1673
|
-
df = clean_full_duplicates(df, logger=self.logger,
|
|
1669
|
+
df, _ = clean_full_duplicates(df, logger=self.logger, bundle=self.bundle)
|
|
1674
1670
|
|
|
1675
1671
|
num_samples = _num_samples(df)
|
|
1676
1672
|
sample_threshold, sample_rows = (
|
|
@@ -1817,7 +1813,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1817
1813
|
eval_df_with_index[EVAL_SET_INDEX] = idx + 1
|
|
1818
1814
|
df = pd.concat([df, eval_df_with_index])
|
|
1819
1815
|
|
|
1820
|
-
df = clean_full_duplicates(df, logger=self.logger,
|
|
1816
|
+
df, _ = clean_full_duplicates(df, logger=self.logger, bundle=self.bundle)
|
|
1821
1817
|
|
|
1822
1818
|
# downsample if need to eval_set threshold
|
|
1823
1819
|
num_samples = _num_samples(df)
|
|
@@ -1830,7 +1826,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1830
1826
|
tmp_target_name = "__target"
|
|
1831
1827
|
df = df.rename(columns={TARGET: tmp_target_name})
|
|
1832
1828
|
|
|
1833
|
-
enriched_df, columns_renaming = self.__inner_transform(
|
|
1829
|
+
enriched_df, columns_renaming, generated_features = self.__inner_transform(
|
|
1834
1830
|
trace_id,
|
|
1835
1831
|
df,
|
|
1836
1832
|
exclude_features_sources=exclude_features_sources,
|
|
@@ -1847,7 +1843,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1847
1843
|
|
|
1848
1844
|
x_columns = [
|
|
1849
1845
|
c
|
|
1850
|
-
for c in (validated_X.columns.tolist() +
|
|
1846
|
+
for c in (validated_X.columns.tolist() + generated_features + [SYSTEM_RECORD_ID])
|
|
1851
1847
|
if c in enriched_df.columns
|
|
1852
1848
|
]
|
|
1853
1849
|
|
|
@@ -1869,7 +1865,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1869
1865
|
|
|
1870
1866
|
df[TARGET] = validated_y
|
|
1871
1867
|
|
|
1872
|
-
df = clean_full_duplicates(df, logger=self.logger,
|
|
1868
|
+
df, _ = clean_full_duplicates(df, logger=self.logger, bundle=self.bundle)
|
|
1873
1869
|
|
|
1874
1870
|
num_samples = _num_samples(df)
|
|
1875
1871
|
if num_samples > Dataset.FIT_SAMPLE_THRESHOLD:
|
|
@@ -1879,7 +1875,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1879
1875
|
tmp_target_name = "__target"
|
|
1880
1876
|
df = df.rename(columns={TARGET: tmp_target_name})
|
|
1881
1877
|
|
|
1882
|
-
enriched_Xy, columns_renaming = self.__inner_transform(
|
|
1878
|
+
enriched_Xy, columns_renaming, generated_features = self.__inner_transform(
|
|
1883
1879
|
trace_id,
|
|
1884
1880
|
df,
|
|
1885
1881
|
exclude_features_sources=exclude_features_sources,
|
|
@@ -1896,7 +1892,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1896
1892
|
|
|
1897
1893
|
x_columns = [
|
|
1898
1894
|
c
|
|
1899
|
-
for c in (validated_X.columns.tolist() +
|
|
1895
|
+
for c in (validated_X.columns.tolist() + generated_features + [SYSTEM_RECORD_ID])
|
|
1900
1896
|
if c in enriched_Xy.columns
|
|
1901
1897
|
]
|
|
1902
1898
|
|
|
@@ -1904,7 +1900,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
1904
1900
|
y_sampled = enriched_Xy[TARGET].copy()
|
|
1905
1901
|
enriched_X = enriched_Xy.drop(columns=TARGET)
|
|
1906
1902
|
|
|
1907
|
-
datasets_hash = hash_input(
|
|
1903
|
+
datasets_hash = hash_input(validated_X, validated_y, eval_set)
|
|
1908
1904
|
self.__cached_sampled_datasets[datasets_hash] = (
|
|
1909
1905
|
X_sampled,
|
|
1910
1906
|
y_sampled,
|
|
@@ -2023,7 +2019,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2023
2019
|
progress_bar: Optional[ProgressBar] = None,
|
|
2024
2020
|
progress_callback: Optional[Callable[[SearchProgress], Any]] = None,
|
|
2025
2021
|
add_fit_system_record_id: bool = False,
|
|
2026
|
-
) -> Tuple[pd.DataFrame, Dict[str, str]]:
|
|
2022
|
+
) -> Tuple[pd.DataFrame, Dict[str, str], List[str]]:
|
|
2027
2023
|
if self._search_task is None:
|
|
2028
2024
|
raise NotFittedError(self.bundle.get("transform_unfitted_enricher"))
|
|
2029
2025
|
|
|
@@ -2036,24 +2032,25 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2036
2032
|
|
|
2037
2033
|
if len(self.feature_names_) == 0:
|
|
2038
2034
|
self.logger.warning(self.bundle.get("no_important_features_for_transform"))
|
|
2039
|
-
return X, {c: c for c in X.columns}
|
|
2035
|
+
return X, {c: c for c in X.columns}, []
|
|
2040
2036
|
|
|
2041
2037
|
if self._has_paid_features(exclude_features_sources):
|
|
2042
2038
|
msg = self.bundle.get("transform_with_paid_features")
|
|
2043
2039
|
self.logger.warning(msg)
|
|
2044
2040
|
self.__display_support_link(msg)
|
|
2045
|
-
return None, {c: c for c in X.columns}
|
|
2041
|
+
return None, {c: c for c in X.columns}, []
|
|
2046
2042
|
|
|
2047
2043
|
if not metrics_calculation:
|
|
2048
2044
|
transform_usage = self.rest_client.get_current_transform_usage(trace_id)
|
|
2049
2045
|
self.logger.info(f"Current transform usage: {transform_usage}. Transforming {len(X)} rows")
|
|
2050
2046
|
if transform_usage.has_limit:
|
|
2051
2047
|
if len(X) > transform_usage.rest_rows:
|
|
2052
|
-
|
|
2048
|
+
rest_rows = max(transform_usage.rest_rows, 0)
|
|
2049
|
+
msg = self.bundle.get("transform_usage_warning").format(len(X), rest_rows)
|
|
2053
2050
|
self.logger.warning(msg)
|
|
2054
2051
|
print(msg)
|
|
2055
2052
|
show_request_quote_button()
|
|
2056
|
-
return None, {c: c for c in X.columns}
|
|
2053
|
+
return None, {c: c for c in X.columns}, []
|
|
2057
2054
|
else:
|
|
2058
2055
|
msg = self.bundle.get("transform_usage_info").format(
|
|
2059
2056
|
transform_usage.limit, transform_usage.transformed_rows
|
|
@@ -2093,9 +2090,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2093
2090
|
generated_features = []
|
|
2094
2091
|
date_column = SearchKey.find_key(search_keys, [SearchKey.DATE, SearchKey.DATETIME])
|
|
2095
2092
|
if date_column is not None:
|
|
2096
|
-
converter = DateTimeSearchKeyConverter(
|
|
2097
|
-
date_column, self.date_format, self.logger, bundle=self.bundle, silent_mode=silent_mode
|
|
2098
|
-
)
|
|
2093
|
+
converter = DateTimeSearchKeyConverter(date_column, self.date_format, self.logger, bundle=self.bundle)
|
|
2099
2094
|
df = converter.convert(df)
|
|
2100
2095
|
self.logger.info(f"Date column after convertion: {df[date_column]}")
|
|
2101
2096
|
generated_features.extend(converter.generated_features)
|
|
@@ -2110,7 +2105,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2110
2105
|
df = generator.generate(df)
|
|
2111
2106
|
generated_features.extend(generator.generated_features)
|
|
2112
2107
|
|
|
2113
|
-
normalizer = Normalizer(self.bundle, self.logger
|
|
2108
|
+
normalizer = Normalizer(self.bundle, self.logger)
|
|
2114
2109
|
df, search_keys, generated_features = normalizer.normalize(df, search_keys, generated_features)
|
|
2115
2110
|
columns_renaming = normalizer.columns_renaming
|
|
2116
2111
|
|
|
@@ -2176,7 +2171,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2176
2171
|
converter = PostalCodeSearchKeyConverter(postal_code)
|
|
2177
2172
|
df = converter.convert(df)
|
|
2178
2173
|
|
|
2179
|
-
generated_features = [f for f in generated_features if f in self.fit_generated_features]
|
|
2174
|
+
# generated_features = [f for f in generated_features if f in self.fit_generated_features]
|
|
2180
2175
|
|
|
2181
2176
|
meaning_types = {col: key.value for col, key in search_keys.items()}
|
|
2182
2177
|
for col in features_for_transform:
|
|
@@ -2216,9 +2211,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2216
2211
|
|
|
2217
2212
|
df_without_features = df.drop(columns=features_not_to_pass)
|
|
2218
2213
|
|
|
2219
|
-
df_without_features = clean_full_duplicates(
|
|
2220
|
-
df_without_features, self.logger,
|
|
2214
|
+
df_without_features, full_duplicates_warning = clean_full_duplicates(
|
|
2215
|
+
df_without_features, self.logger, bundle=self.bundle
|
|
2221
2216
|
)
|
|
2217
|
+
if not silent_mode and full_duplicates_warning:
|
|
2218
|
+
self.__log_warning(full_duplicates_warning)
|
|
2222
2219
|
|
|
2223
2220
|
del df
|
|
2224
2221
|
gc.collect()
|
|
@@ -2337,7 +2334,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2337
2334
|
if add_fit_system_record_id:
|
|
2338
2335
|
result = result.rename(columns={SORT_ID: SYSTEM_RECORD_ID})
|
|
2339
2336
|
|
|
2340
|
-
return result, columns_renaming
|
|
2337
|
+
return result, columns_renaming, generated_features
|
|
2341
2338
|
|
|
2342
2339
|
def _get_excluded_features(self, max_features: Optional[int], importance_threshold: Optional[float]) -> List[str]:
|
|
2343
2340
|
features_info = self._internal_features_info
|
|
@@ -2415,6 +2412,15 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2415
2412
|
def __is_registered(self) -> bool:
|
|
2416
2413
|
return self.api_key is not None and self.api_key != ""
|
|
2417
2414
|
|
|
2415
|
+
def __log_warning(self, message: str, show_support_link: bool = False):
|
|
2416
|
+
warning_num = self.warning_counter.increment()
|
|
2417
|
+
formatted_message = f"WARNING #{warning_num}: {message}\n"
|
|
2418
|
+
if show_support_link:
|
|
2419
|
+
self.__display_support_link(formatted_message)
|
|
2420
|
+
else:
|
|
2421
|
+
print(formatted_message)
|
|
2422
|
+
self.logger.warning(message)
|
|
2423
|
+
|
|
2418
2424
|
def __inner_fit(
|
|
2419
2425
|
self,
|
|
2420
2426
|
trace_id: str,
|
|
@@ -2461,9 +2467,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2461
2467
|
checked_generate_features = []
|
|
2462
2468
|
for gen_feature in self.generate_features:
|
|
2463
2469
|
if gen_feature not in x_columns:
|
|
2464
|
-
|
|
2465
|
-
print(msg)
|
|
2466
|
-
self.logger.warning(msg)
|
|
2470
|
+
self.__log_warning(self.bundle.get("missing_generate_feature").format(gen_feature, x_columns))
|
|
2467
2471
|
else:
|
|
2468
2472
|
checked_generate_features.append(gen_feature)
|
|
2469
2473
|
self.generate_features = checked_generate_features
|
|
@@ -2524,9 +2528,10 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2524
2528
|
self.date_format,
|
|
2525
2529
|
self.logger,
|
|
2526
2530
|
bundle=self.bundle,
|
|
2527
|
-
warnings_counter=self.warning_counter,
|
|
2528
2531
|
)
|
|
2529
2532
|
df = converter.convert(df, keep_time=True)
|
|
2533
|
+
if converter.has_old_dates:
|
|
2534
|
+
self.__log_warning(self.bundle.get("dataset_drop_old_dates"))
|
|
2530
2535
|
self.logger.info(f"Date column after convertion: {df[maybe_date_column]}")
|
|
2531
2536
|
self.fit_generated_features.extend(converter.generated_features)
|
|
2532
2537
|
else:
|
|
@@ -2541,7 +2546,9 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2541
2546
|
self.fit_generated_features.extend(generator.generated_features)
|
|
2542
2547
|
|
|
2543
2548
|
# Checks that need validated date
|
|
2544
|
-
|
|
2549
|
+
|
|
2550
|
+
if not is_dates_distribution_valid(df, self.fit_search_keys):
|
|
2551
|
+
self.__log_warning(bundle.get("x_unstable_by_date"))
|
|
2545
2552
|
|
|
2546
2553
|
if (
|
|
2547
2554
|
is_numeric_dtype(df[self.TARGET_NAME])
|
|
@@ -2550,18 +2557,25 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2550
2557
|
):
|
|
2551
2558
|
self._validate_PSI(df.sort_values(by=maybe_date_column))
|
|
2552
2559
|
|
|
2553
|
-
normalizer = Normalizer(self.bundle, self.logger
|
|
2560
|
+
normalizer = Normalizer(self.bundle, self.logger)
|
|
2554
2561
|
df, self.fit_search_keys, self.fit_generated_features = normalizer.normalize(
|
|
2555
2562
|
df, self.fit_search_keys, self.fit_generated_features
|
|
2556
2563
|
)
|
|
2557
2564
|
self.fit_columns_renaming = normalizer.columns_renaming
|
|
2565
|
+
if normalizer.removed_features:
|
|
2566
|
+
self.__log_warning(self.bundle.get("dataset_date_features").format(normalizer.removed_features))
|
|
2558
2567
|
|
|
2559
2568
|
self.__adjust_cv(df)
|
|
2560
2569
|
|
|
2561
|
-
df = remove_fintech_duplicates(
|
|
2570
|
+
df, fintech_warnings = remove_fintech_duplicates(
|
|
2562
2571
|
df, self.fit_search_keys, date_format=self.date_format, logger=self.logger, bundle=self.bundle
|
|
2563
2572
|
)
|
|
2564
|
-
|
|
2573
|
+
if fintech_warnings:
|
|
2574
|
+
for fintech_warning in fintech_warnings:
|
|
2575
|
+
self.__log_warning(fintech_warning)
|
|
2576
|
+
df, full_duplicates_warning = clean_full_duplicates(df, self.logger, bundle=self.bundle)
|
|
2577
|
+
if full_duplicates_warning:
|
|
2578
|
+
self.__log_warning(full_duplicates_warning)
|
|
2565
2579
|
|
|
2566
2580
|
# Explode multiple search keys
|
|
2567
2581
|
df = self.__add_fit_system_record_id(df, self.fit_search_keys, ENTITY_SYSTEM_RECORD_ID)
|
|
@@ -2621,9 +2635,12 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2621
2635
|
|
|
2622
2636
|
features_columns = [c for c in df.columns if c not in non_feature_columns]
|
|
2623
2637
|
|
|
2624
|
-
features_to_drop = FeaturesValidator(self.logger).validate(
|
|
2625
|
-
df, features_columns, self.generate_features, self.
|
|
2638
|
+
features_to_drop, feature_validator_warnings = FeaturesValidator(self.logger).validate(
|
|
2639
|
+
df, features_columns, self.generate_features, self.fit_columns_renaming
|
|
2626
2640
|
)
|
|
2641
|
+
if feature_validator_warnings:
|
|
2642
|
+
for warning in feature_validator_warnings:
|
|
2643
|
+
self.__log_warning(warning)
|
|
2627
2644
|
self.fit_dropped_features.update(features_to_drop)
|
|
2628
2645
|
df = df.drop(columns=features_to_drop)
|
|
2629
2646
|
|
|
@@ -2739,9 +2756,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2739
2756
|
zero_hit_columns = self.get_columns_by_search_keys(zero_hit_search_keys)
|
|
2740
2757
|
if zero_hit_columns:
|
|
2741
2758
|
msg = self.bundle.get("features_info_zero_hit_rate_search_keys").format(zero_hit_columns)
|
|
2742
|
-
self.
|
|
2743
|
-
self.__display_support_link(msg)
|
|
2744
|
-
self.warning_counter.increment()
|
|
2759
|
+
self.__log_warning(msg, show_support_link=True)
|
|
2745
2760
|
|
|
2746
2761
|
if (
|
|
2747
2762
|
self._search_task.unused_features_for_generation is not None
|
|
@@ -2751,9 +2766,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
2751
2766
|
dataset.columns_renaming.get(col) or col for col in self._search_task.unused_features_for_generation
|
|
2752
2767
|
]
|
|
2753
2768
|
msg = self.bundle.get("features_not_generated").format(unused_features_for_generation)
|
|
2754
|
-
self.
|
|
2755
|
-
print(msg)
|
|
2756
|
-
self.warning_counter.increment()
|
|
2769
|
+
self.__log_warning(msg)
|
|
2757
2770
|
|
|
2758
2771
|
self.__prepare_feature_importances(trace_id, validated_X.columns.to_list() + self.fit_generated_features)
|
|
2759
2772
|
|
|
@@ -3154,7 +3167,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
3154
3167
|
maybe_date_col = SearchKey.find_key(self.search_keys, [SearchKey.DATE, SearchKey.DATETIME])
|
|
3155
3168
|
if X is not None and maybe_date_col is not None and maybe_date_col in X.columns:
|
|
3156
3169
|
# TODO cast date column to single dtype
|
|
3157
|
-
date_converter = DateTimeSearchKeyConverter(maybe_date_col, self.date_format
|
|
3170
|
+
date_converter = DateTimeSearchKeyConverter(maybe_date_col, self.date_format)
|
|
3158
3171
|
converted_X = date_converter.convert(X)
|
|
3159
3172
|
min_date = converted_X[maybe_date_col].min()
|
|
3160
3173
|
max_date = converted_X[maybe_date_col].max()
|
|
@@ -3196,7 +3209,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
3196
3209
|
logger.warning(msg)
|
|
3197
3210
|
df[FeaturesEnricher.CURRENT_DATE] = datetime.date.today()
|
|
3198
3211
|
search_keys[FeaturesEnricher.CURRENT_DATE] = SearchKey.DATE
|
|
3199
|
-
converter = DateTimeSearchKeyConverter(FeaturesEnricher.CURRENT_DATE
|
|
3212
|
+
converter = DateTimeSearchKeyConverter(FeaturesEnricher.CURRENT_DATE)
|
|
3200
3213
|
df = converter.convert(df)
|
|
3201
3214
|
return df
|
|
3202
3215
|
|
|
@@ -3768,15 +3781,15 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
3768
3781
|
if meaning_type == SearchKey.COUNTRY and self.country_code is not None:
|
|
3769
3782
|
msg = self.bundle.get("search_key_country_and_country_code")
|
|
3770
3783
|
self.logger.warning(msg)
|
|
3771
|
-
|
|
3784
|
+
if not silent_mode:
|
|
3785
|
+
self.__log_warning(msg)
|
|
3772
3786
|
self.country_code = None
|
|
3773
3787
|
|
|
3774
3788
|
if not self.__is_registered and not is_demo_dataset and meaning_type in SearchKey.personal_keys():
|
|
3775
3789
|
msg = self.bundle.get("unregistered_with_personal_keys").format(meaning_type)
|
|
3776
3790
|
self.logger.warning(msg)
|
|
3777
3791
|
if not silent_mode:
|
|
3778
|
-
self.
|
|
3779
|
-
print(msg)
|
|
3792
|
+
self.__log_warning(msg)
|
|
3780
3793
|
|
|
3781
3794
|
valid_search_keys[column_name] = SearchKey.CUSTOM_KEY
|
|
3782
3795
|
else:
|
|
@@ -3810,27 +3823,22 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
3810
3823
|
and not silent_mode
|
|
3811
3824
|
):
|
|
3812
3825
|
msg = self.bundle.get("date_only_search")
|
|
3813
|
-
|
|
3814
|
-
self.logger.warning(msg)
|
|
3815
|
-
self.warning_counter.increment()
|
|
3826
|
+
self.__log_warning(msg)
|
|
3816
3827
|
|
|
3817
3828
|
maybe_date = [k for k, v in valid_search_keys.items() if v in [SearchKey.DATE, SearchKey.DATETIME]]
|
|
3818
3829
|
if (self.cv is None or self.cv == CVType.k_fold) and len(maybe_date) > 0 and not silent_mode:
|
|
3819
3830
|
date_column = next(iter(maybe_date))
|
|
3820
3831
|
if x[date_column].nunique() > 0.9 * _num_samples(x):
|
|
3821
3832
|
msg = self.bundle.get("date_search_without_time_series")
|
|
3822
|
-
|
|
3823
|
-
self.logger.warning(msg)
|
|
3824
|
-
self.warning_counter.increment()
|
|
3833
|
+
self.__log_warning(msg)
|
|
3825
3834
|
|
|
3826
3835
|
if len(valid_search_keys) == 1:
|
|
3827
3836
|
key, value = list(valid_search_keys.items())[0]
|
|
3828
3837
|
# Show warning for country only if country is the only key
|
|
3829
3838
|
if x[key].nunique() == 1:
|
|
3830
3839
|
msg = self.bundle.get("single_constant_search_key").format(value, x[key].values[0])
|
|
3831
|
-
|
|
3832
|
-
|
|
3833
|
-
self.warning_counter.increment()
|
|
3840
|
+
if not silent_mode:
|
|
3841
|
+
self.__log_warning(msg)
|
|
3834
3842
|
# TODO maybe raise ValidationError
|
|
3835
3843
|
|
|
3836
3844
|
self.logger.info(f"Prepared search keys: {valid_search_keys}")
|
|
@@ -3890,9 +3898,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
3890
3898
|
)
|
|
3891
3899
|
else:
|
|
3892
3900
|
msg = self.bundle.get("features_info_zero_important_features")
|
|
3893
|
-
self.
|
|
3894
|
-
self.__display_support_link(msg)
|
|
3895
|
-
self.warning_counter.increment()
|
|
3901
|
+
self.__log_warning(msg, show_support_link=True)
|
|
3896
3902
|
except (ImportError, NameError):
|
|
3897
3903
|
print(msg)
|
|
3898
3904
|
print(self._internal_features_info)
|
|
@@ -3994,8 +4000,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
3994
4000
|
" But not used because not registered user"
|
|
3995
4001
|
)
|
|
3996
4002
|
if not silent_mode:
|
|
3997
|
-
|
|
3998
|
-
self.warning_counter.increment()
|
|
4003
|
+
self.__log_warning(self.bundle.get("email_detected_not_registered").format(maybe_keys))
|
|
3999
4004
|
|
|
4000
4005
|
# if SearchKey.PHONE not in search_keys.values() and check_need_detect(SearchKey.PHONE):
|
|
4001
4006
|
if check_need_detect(SearchKey.PHONE):
|
|
@@ -4014,8 +4019,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
4014
4019
|
"But not used because not registered user"
|
|
4015
4020
|
)
|
|
4016
4021
|
if not silent_mode:
|
|
4017
|
-
|
|
4018
|
-
self.warning_counter.increment()
|
|
4022
|
+
self.__log_warning(self.bundle.get("phone_detected_not_registered"))
|
|
4019
4023
|
|
|
4020
4024
|
return search_keys
|
|
4021
4025
|
|
|
@@ -4039,19 +4043,13 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
4039
4043
|
part2 = train[half_train:]
|
|
4040
4044
|
train_psi = calculate_psi(part1[self.TARGET_NAME], part2[self.TARGET_NAME])
|
|
4041
4045
|
if train_psi > 0.2:
|
|
4042
|
-
self.
|
|
4043
|
-
msg = self.bundle.get("train_unstable_target").format(train_psi)
|
|
4044
|
-
print(msg)
|
|
4045
|
-
self.logger.warning(msg)
|
|
4046
|
+
self.__log_warning(self.bundle.get("train_unstable_target").format(train_psi))
|
|
4046
4047
|
|
|
4047
4048
|
# 2. Check train-test PSI
|
|
4048
4049
|
if eval1 is not None:
|
|
4049
4050
|
train_test_psi = calculate_psi(train[self.TARGET_NAME], eval1[self.TARGET_NAME])
|
|
4050
4051
|
if train_test_psi > 0.2:
|
|
4051
|
-
self.
|
|
4052
|
-
msg = self.bundle.get("eval_unstable_target").format(train_test_psi)
|
|
4053
|
-
print(msg)
|
|
4054
|
-
self.logger.warning(msg)
|
|
4052
|
+
self.__log_warning(self.bundle.get("eval_unstable_target").format(train_test_psi))
|
|
4055
4053
|
|
|
4056
4054
|
def _dump_python_libs(self):
|
|
4057
4055
|
try:
|
|
@@ -4073,8 +4071,8 @@ class FeaturesEnricher(TransformerMixin):
|
|
|
4073
4071
|
self.logger.warning(f"Showing support link: {link_text}")
|
|
4074
4072
|
display(
|
|
4075
4073
|
HTML(
|
|
4076
|
-
f"""
|
|
4077
|
-
here</a
|
|
4074
|
+
f"""{link_text} <a href='{support_link}' target='_blank' rel='noopener noreferrer'>
|
|
4075
|
+
here</a><br/>"""
|
|
4078
4076
|
)
|
|
4079
4077
|
)
|
|
4080
4078
|
except (ImportError, NameError):
|
|
@@ -273,6 +273,9 @@ class EstimatorWrapper:
|
|
|
273
273
|
else:
|
|
274
274
|
x, y = self._remove_empty_target_rows(x, y)
|
|
275
275
|
|
|
276
|
+
# Make order of columns idempotent
|
|
277
|
+
x = x[sorted(x.columns)]
|
|
278
|
+
|
|
276
279
|
self.logger.info(f"After preparing data columns: {x.columns.to_list()}")
|
|
277
280
|
return x, y, groups
|
|
278
281
|
|
|
@@ -434,7 +437,8 @@ class EstimatorWrapper:
|
|
|
434
437
|
f"Client cat_feature `{cat_feature}` not found in x columns: {x.columns.to_list()}"
|
|
435
438
|
)
|
|
436
439
|
estimator_copy.set_params(
|
|
437
|
-
cat_features=[x.columns.get_loc(cat_feature) for cat_feature in cat_features]
|
|
440
|
+
# cat_features=[x.columns.get_loc(cat_feature) for cat_feature in cat_features]
|
|
441
|
+
cat_features=cat_features
|
|
438
442
|
)
|
|
439
443
|
estimator = CatBoostWrapper(**kwargs)
|
|
440
444
|
else:
|
|
@@ -745,20 +749,25 @@ class OtherEstimatorWrapper(EstimatorWrapper):
|
|
|
745
749
|
|
|
746
750
|
|
|
747
751
|
def validate_scoring_argument(scoring: Union[Callable, str, None]):
|
|
748
|
-
if
|
|
752
|
+
if scoring is None:
|
|
753
|
+
return
|
|
754
|
+
|
|
755
|
+
if isinstance(scoring, str):
|
|
749
756
|
_get_scorer_by_name(scoring)
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
|
|
753
|
-
raise ValidationError(
|
|
754
|
-
f"Invalid scoring function passed {scoring}. It should accept 3 input arguments: estimator, x, y"
|
|
755
|
-
)
|
|
756
|
-
elif scoring is not None:
|
|
757
|
+
return
|
|
758
|
+
|
|
759
|
+
if not isinstance(scoring, Callable):
|
|
757
760
|
raise ValidationError(
|
|
758
761
|
f"Invalid scoring argument passed {scoring}. It should be string with scoring name or function"
|
|
759
762
|
" that accepts 3 input arguments: estimator, x, y"
|
|
760
763
|
)
|
|
761
764
|
|
|
765
|
+
spec = inspect.getfullargspec(scoring)
|
|
766
|
+
if len(spec.args) < 3:
|
|
767
|
+
raise ValidationError(
|
|
768
|
+
f"Invalid scoring function passed {scoring}. It should accept 3 input arguments: estimator, x, y"
|
|
769
|
+
)
|
|
770
|
+
|
|
762
771
|
|
|
763
772
|
def _get_scorer_by_name(scoring: str) -> Tuple[Callable, str, int]:
|
|
764
773
|
metric_name = scoring
|
|
@@ -26,7 +26,6 @@ from upgini.resource_bundle import ResourceBundle, get_custom_bundle
|
|
|
26
26
|
from upgini.utils import find_numbers_with_decimal_comma
|
|
27
27
|
from upgini.utils.datetime_utils import DateTimeSearchKeyConverter
|
|
28
28
|
from upgini.utils.phone_utils import PhoneSearchKeyConverter
|
|
29
|
-
from upgini.utils.warning_counter import WarningCounter
|
|
30
29
|
|
|
31
30
|
|
|
32
31
|
class Normalizer:
|
|
@@ -37,16 +36,13 @@ class Normalizer:
|
|
|
37
36
|
self,
|
|
38
37
|
bundle: ResourceBundle = None,
|
|
39
38
|
logger: Logger = None,
|
|
40
|
-
warnings_counter: WarningCounter = None,
|
|
41
|
-
silent_mode=False,
|
|
42
39
|
):
|
|
43
40
|
self.bundle = bundle or get_custom_bundle()
|
|
44
41
|
self.logger = logger or getLogger()
|
|
45
|
-
self.warnings_counter = warnings_counter or WarningCounter()
|
|
46
|
-
self.silent_mode = silent_mode
|
|
47
42
|
self.columns_renaming = {}
|
|
48
43
|
self.search_keys = {}
|
|
49
44
|
self.generated_features = []
|
|
45
|
+
self.removed_features = []
|
|
50
46
|
|
|
51
47
|
def normalize(
|
|
52
48
|
self, df: pd.DataFrame, search_keys: Dict[str, SearchKey], generated_features: List[str]
|
|
@@ -139,19 +135,11 @@ class Normalizer:
|
|
|
139
135
|
def _remove_dates_from_features(self, df: pd.DataFrame):
|
|
140
136
|
features = self._get_features(df)
|
|
141
137
|
|
|
142
|
-
removed_features = []
|
|
143
138
|
for f in features:
|
|
144
139
|
if is_datetime(df[f]) or isinstance(df[f].dtype, pd.PeriodDtype):
|
|
145
|
-
removed_features.append(f)
|
|
140
|
+
self.removed_features.append(f)
|
|
146
141
|
df.drop(columns=f, inplace=True)
|
|
147
142
|
|
|
148
|
-
if removed_features:
|
|
149
|
-
msg = self.bundle.get("dataset_date_features").format(removed_features)
|
|
150
|
-
self.logger.warning(msg)
|
|
151
|
-
if not self.silent_mode:
|
|
152
|
-
print(msg)
|
|
153
|
-
self.warnings_counter.increment()
|
|
154
|
-
|
|
155
143
|
return df
|
|
156
144
|
|
|
157
145
|
def _cut_too_long_string_values(self, df: pd.DataFrame):
|