upgini 1.2.103a6__py3-none-any.whl → 1.2.105__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.103a6"
1
+ __version__ = "1.2.105"
@@ -68,6 +68,7 @@ class DataSourcePublisher:
68
68
  date_features_format: Optional[str] = None,
69
69
  generate_runtime_embeddings: Optional[List[str]] = None,
70
70
  exclude_raw: Optional[List[str]] = None,
71
+ force_percentile_generation: Optional[List[str]] = None,
71
72
  _force_generation=False,
72
73
  _silent=False,
73
74
  ) -> str:
@@ -196,6 +197,8 @@ class DataSourcePublisher:
196
197
  request["generateRuntimeEmbeddingsFeatures"] = generate_runtime_embeddings
197
198
  if exclude_raw is not None:
198
199
  request["excludeRaw"] = exclude_raw
200
+ if force_percentile_generation is not None:
201
+ request["forcePercentileGeneration"] = force_percentile_generation
199
202
  self.logger.info(f"Start registering data table {request}")
200
203
 
201
204
  task_id = self._rest_client.register_ads(request, trace_id)
@@ -229,19 +232,28 @@ class DataSourcePublisher:
229
232
 
230
233
  def on_button_clicked(b):
231
234
  self.place(
232
- data_table_uri,
233
- search_keys,
234
- secondary_search_keys,
235
- sort_column,
236
- date_format,
237
- exclude_columns,
238
- hash_feature_names,
239
- snapshot_frequency_days,
240
- features_for_embeddings,
241
- data_table_id_to_replace,
242
- exclude_from_autofe_generation,
243
- True,
244
- _silent,
235
+ data_table_uri=data_table_uri,
236
+ search_keys=search_keys,
237
+ update_frequency=update_frequency,
238
+ exclude_from_autofe_generation=exclude_from_autofe_generation,
239
+ secondary_search_keys=secondary_search_keys,
240
+ sort_column=sort_column,
241
+ date_format=date_format,
242
+ exclude_columns=exclude_columns,
243
+ hash_feature_names=hash_feature_names,
244
+ snapshot_frequency_days=snapshot_frequency_days,
245
+ join_date_abs_limit_days=join_date_abs_limit_days,
246
+ features_for_embeddings=features_for_embeddings,
247
+ data_table_id_to_replace=data_table_id_to_replace,
248
+ keep_features=keep_features,
249
+ date_features=date_features,
250
+ date_vector_features=date_vector_features,
251
+ date_features_format=date_features_format,
252
+ generate_runtime_embeddings=generate_runtime_embeddings,
253
+ exclude_raw=exclude_raw,
254
+ force_percentile_generation=force_percentile_generation,
255
+ _force_generation=True,
256
+ _silent=_silent,
245
257
  )
246
258
 
247
259
  button.on_click(on_button_clicked)
@@ -255,7 +267,8 @@ class DataSourcePublisher:
255
267
  print(msg)
256
268
  if "warnings" in status_response and status_response["warnings"]:
257
269
  self.logger.warning(status_response["warnings"])
258
- print(status_response["warnings"])
270
+ for warning in status_response["warnings"]:
271
+ print(warning)
259
272
  return data_table_id
260
273
  except KeyboardInterrupt:
261
274
  if task_id is not None:
@@ -501,6 +514,7 @@ class DataSourcePublisher:
501
514
  input_names: List[str],
502
515
  search_id: str,
503
516
  date_column: Optional[str] = None,
517
+ score_name: Optional[str] = None,
504
518
  model_type: Optional[Literal["ONNX", "CATBOOST"]] = None,
505
519
  description: str = "",
506
520
  ):
@@ -510,6 +524,7 @@ class DataSourcePublisher:
510
524
  "modelName": name,
511
525
  "inputNames": input_names,
512
526
  "dateColumn": date_column,
527
+ "scoreName": score_name,
513
528
  "searchTaskId": search_id,
514
529
  "modelType": model_type or "ONNX",
515
530
  "description": description,
@@ -2837,6 +2837,8 @@ if response.status_code == 200:
2837
2837
 
2838
2838
  validate_scoring_argument(scoring)
2839
2839
 
2840
+ self._validate_baseline_score(validated_X, validated_eval_set)
2841
+
2840
2842
  self.__log_debug_information(
2841
2843
  validated_X,
2842
2844
  validated_y,
upgini/metrics.py CHANGED
@@ -475,6 +475,7 @@ class EstimatorWrapper:
475
475
  if baseline_score_column is not None and self.metric_name == "GINI":
476
476
  self.logger.info("Calculate baseline GINI on passed baseline_score_column and target")
477
477
  metric = roc_auc_score(y, x[baseline_score_column])
478
+ metric = self.post_process_metric(metric)
478
479
  metric_std = None
479
480
  average_shap_values = None
480
481
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.2.103a6
3
+ Version: 1.2.105
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,12 +1,12 @@
1
- upgini/__about__.py,sha256=YINSZx_dtM8hJaZdUvfPJhPcgsRxL7sluGJryc6JviA,26
1
+ upgini/__about__.py,sha256=gxxeFXQgBe3cRhCPCpyOIotj3ufsQIw5lbHWL9O2HCo,24
2
2
  upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=e6JDYTZ2AwC5aF-dqclKZKkiKrHo2f6cFmMQO2ZZmjM,32724
5
5
  upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
- upgini/features_enricher.py,sha256=qcS6QzfAZL60bXoupXRQVWyeOodFV-hgyajvsDHIGG8,220298
6
+ upgini/features_enricher.py,sha256=dBCBqAhzVHqRB2b1sPy9wzSi9XtIzeb6uArmJhcjj_8,220370
7
7
  upgini/http.py,sha256=DNcoS7qdxG0mOJn6I8r6O5I6XdIJTdzDzW3hkz3NgG4,45443
8
8
  upgini/metadata.py,sha256=vsbbHyPCP3Rs8WkeDgQg99uAA_zmsbDStAT-NwDYhO4,12455
9
- upgini/metrics.py,sha256=gXr2aiw5j9QBWBo1hZp40Is679hef5q8MrT6LJfjsBk,45661
9
+ upgini/metrics.py,sha256=V2SP6NS5bfFHzRqufeKVsCXME1yG4t_8Dmk2E3zKdYk,45715
10
10
  upgini/search_task.py,sha256=Q5HjBpLIB3OCxAD1zNv5yQ3ZNJx696WCK_-H35_y7Rs,17912
11
11
  upgini/spinner.py,sha256=4iMd-eIe_BnkqFEMIliULTbj6rNI2HkN_VJ4qYe0cUc,1118
12
12
  upgini/version_validator.py,sha256=DvbaAvuYFoJqYt0fitpsk6Xcv-H1BYDJYHUMxaKSH_Y,1509
@@ -31,7 +31,7 @@ upgini/autofe/timeseries/roll.py,sha256=zADKXU-eYWQnQ5R3am1yEal8uU6Tm0jLAixwPb_a
31
31
  upgini/autofe/timeseries/trend.py,sha256=K1_iw2ko_LIUU8YCUgrvN3n0MkHtsi7-63-8x9er1k4,2129
32
32
  upgini/autofe/timeseries/volatility.py,sha256=SvZfhM_ZAWCNpTf87WjSnZsnlblARgruDlu4By4Zvhc,8078
33
33
  upgini/data_source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
- upgini/data_source/data_source_publisher.py,sha256=YEnjqGW706Od6uTRp9l_TsTuppwSl5jRPZtg50Rngwk,25284
34
+ upgini/data_source/data_source_publisher.py,sha256=suRmAF1i7yiZ8vJjpEKdVr5Wqtr7o1_vjAhaN9B4DU0,26518
35
35
  upgini/mdc/__init__.py,sha256=iHJlXQg6xRM1-ZOUtaPSJqw5SpQDszvxp4LyqviNLIQ,1027
36
36
  upgini/mdc/context.py,sha256=3u1B-jXt7tXEvNcV3qmR9SDCseudnY7KYsLclBdwVLk,1405
37
37
  upgini/normalizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -71,7 +71,7 @@ upgini/utils/target_utils.py,sha256=i3Xt5l9ybB2_nF_ma5cfPuL3OeFTs2dY2xDI0p4Azpg,
71
71
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
72
72
  upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
73
73
  upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
74
- upgini-1.2.103a6.dist-info/METADATA,sha256=HXXbQMsui50iMdVHRGQKUs7xoi_rXVQFFYwLxsG1YAQ,49531
75
- upgini-1.2.103a6.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
76
- upgini-1.2.103a6.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
77
- upgini-1.2.103a6.dist-info/RECORD,,
74
+ upgini-1.2.105.dist-info/METADATA,sha256=SaEsWWVsSk0fCFud9PY5M-zkFTFiIpHYaPCViAk6jkw,49529
75
+ upgini-1.2.105.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
76
+ upgini-1.2.105.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
77
+ upgini-1.2.105.dist-info/RECORD,,