upgini 1.1.316a5__tar.gz → 1.1.317__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

Files changed (65) hide show
  1. {upgini-1.1.316a5 → upgini-1.1.317}/PKG-INFO +3 -3
  2. {upgini-1.1.316a5 → upgini-1.1.317}/pyproject.toml +11 -13
  3. upgini-1.1.317/src/upgini/__about__.py +1 -0
  4. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/binary.py +75 -72
  5. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/date.py +26 -43
  6. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/groupby.py +22 -22
  7. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/operand.py +4 -4
  8. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/unary.py +46 -47
  9. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/vector.py +8 -8
  10. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/dataset.py +3 -8
  11. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/features_enricher.py +4 -5
  12. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/http.py +15 -15
  13. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/lazy_import.py +1 -14
  14. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/metadata.py +57 -57
  15. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/normalizer/normalize_utils.py +2 -1
  16. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/datetime_utils.py +5 -5
  17. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/phone_utils.py +7 -5
  18. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/postal_code_utils.py +1 -1
  19. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/target_utils.py +1 -4
  20. upgini-1.1.316a5/src/upgini/__about__.py +0 -1
  21. {upgini-1.1.316a5 → upgini-1.1.317}/.gitignore +0 -0
  22. {upgini-1.1.316a5 → upgini-1.1.317}/LICENSE +0 -0
  23. {upgini-1.1.316a5 → upgini-1.1.317}/README.md +0 -0
  24. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/__init__.py +0 -0
  25. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/ads.py +0 -0
  26. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/ads_management/__init__.py +0 -0
  27. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/ads_management/ads_manager.py +0 -0
  28. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/__init__.py +0 -0
  29. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/all_operands.py +0 -0
  30. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/autofe/feature.py +0 -0
  31. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/data_source/__init__.py +0 -0
  32. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/data_source/data_source_publisher.py +0 -0
  33. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/errors.py +0 -0
  34. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/mdc/__init__.py +0 -0
  35. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/mdc/context.py +0 -0
  36. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/metrics.py +0 -0
  37. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/normalizer/__init__.py +0 -0
  38. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/resource_bundle/__init__.py +0 -0
  39. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/resource_bundle/exceptions.py +0 -0
  40. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/resource_bundle/strings.properties +0 -0
  41. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/resource_bundle/strings_widget.properties +0 -0
  42. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/sampler/__init__.py +0 -0
  43. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/sampler/base.py +0 -0
  44. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/sampler/random_under_sampler.py +0 -0
  45. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/sampler/utils.py +0 -0
  46. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/search_task.py +0 -0
  47. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/spinner.py +0 -0
  48. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/__init__.py +0 -0
  49. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/base_search_key_detector.py +0 -0
  50. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/blocked_time_series.py +0 -0
  51. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/country_utils.py +0 -0
  52. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/custom_loss_utils.py +0 -0
  53. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/cv_utils.py +0 -0
  54. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/deduplicate_utils.py +0 -0
  55. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/display_utils.py +0 -0
  56. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/email_utils.py +0 -0
  57. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/fallback_progress_bar.py +0 -0
  58. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/features_validator.py +0 -0
  59. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/format.py +0 -0
  60. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/ip_utils.py +0 -0
  61. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/progress_bar.py +0 -0
  62. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/sklearn_ext.py +0 -0
  63. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/track_info.py +0 -0
  64. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/utils/warning_counter.py +0 -0
  65. {upgini-1.1.316a5 → upgini-1.1.317}/src/upgini/version_validator.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.1.316a5
3
+ Version: 1.1.317
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -29,9 +29,9 @@ Requires-Dist: ipywidgets>=8.1.0
29
29
  Requires-Dist: jarowinkler>=2.0.0
30
30
  Requires-Dist: levenshtein>=0.25.1
31
31
  Requires-Dist: lightgbm>=3.3.2
32
- Requires-Dist: numpy<=1.26.4,>=1.19.0
32
+ Requires-Dist: numpy>=1.19.0
33
33
  Requires-Dist: pandas<3.0.0,>=1.1.0
34
- Requires-Dist: pydantic<3.0.0,>1.0.0
34
+ Requires-Dist: pydantic<2.0.0,>=1.8.2
35
35
  Requires-Dist: pyjwt>=2.8.0
36
36
  Requires-Dist: python-bidi==0.4.2
37
37
  Requires-Dist: python-dateutil>=2.8.0
@@ -39,9 +39,9 @@ dependencies = [
39
39
  "fastparquet>=0.8.1",
40
40
  "ipywidgets>=8.1.0",
41
41
  "lightgbm>=3.3.2",
42
- "numpy>=1.19.0,<=1.26.4",
42
+ "numpy>=1.19.0",
43
43
  "pandas>=1.1.0,<3.0.0",
44
- "pydantic>1.0.0,<3.0.0",
44
+ "pydantic>=1.8.2,<2.0.0",
45
45
  "pyjwt>=2.8.0",
46
46
  "python-dateutil>=2.8.0",
47
47
  "python-json-logger>=2.0.2",
@@ -79,15 +79,15 @@ python = "3.10"
79
79
  cov = 'pytest --cov-report=term-missing --cov-config=pyproject.toml --cov=upgini --cov=tests'
80
80
  format = "black {args}"
81
81
  lint = "ruff check {args}"
82
- test_all = 'pytest -s -vv tests'
82
+ test_binary = 'pytest -s -vv tests/test_binary_dataset.py'
83
83
 
84
- #[[tool.hatch.envs.test.matrix]]
85
- #python = ["3.8"]
86
- #pandas = ["1.1.0"]
84
+ [[tool.hatch.envs.test.matrix]]
85
+ python = ["3.8"]
86
+ pandas = ["1.1.0"]
87
87
 
88
- #[[tool.hatch.envs.test.matrix]]
89
- #python = ["3.8", "3.9", "3.10"]
90
- #pandas = ["1.2.0", "1.3.0", "1.4.0", "1.5.0", "2.0.0"]
88
+ [[tool.hatch.envs.test.matrix]]
89
+ python = ["3.8", "3.9", "3.10"]
90
+ pandas = ["1.2.0", "1.3.0", "1.4.0", "1.5.0", "2.0.0"]
91
91
 
92
92
  [[tool.hatch.envs.test.matrix]]
93
93
  python = ["3.9", "3.10"]
@@ -103,8 +103,7 @@ dependencies = [
103
103
  # "pytest-timeout",
104
104
  "requests-mock",
105
105
  "pytest-datafiles",
106
- "pytest-xdist",
107
- "pandas~={matrix:pandas}",
106
+ "pandas~={matrix:pandas}.0",
108
107
  ]
109
108
 
110
109
  [tool.black]
@@ -116,5 +115,4 @@ profile = "black"
116
115
  [tool.pytest.ini_options]
117
116
  pythonpath = [
118
117
  "./src"
119
- ]
120
- addopts="-n 4"
118
+ ]
@@ -0,0 +1 @@
1
+ __version__ = "1.1.317"
@@ -9,32 +9,32 @@ from upgini.autofe.operand import PandasOperand, VectorizableMixin
9
9
 
10
10
 
11
11
  class Min(PandasOperand):
12
- name: str = "min"
13
- is_binary: bool = True
14
- is_symmetrical: bool = True
15
- has_symmetry_importance: bool = True
12
+ name = "min"
13
+ is_binary = True
14
+ is_symmetrical = True
15
+ has_symmetry_importance = True
16
16
 
17
17
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
18
18
  return np.minimum(left, right)
19
19
 
20
20
 
21
21
  class Max(PandasOperand):
22
- name: str = "max"
23
- is_binary: bool = True
24
- is_symmetrical: bool = True
25
- has_symmetry_importance: bool = True
22
+ name = "max"
23
+ is_binary = True
24
+ is_symmetrical = True
25
+ has_symmetry_importance = True
26
26
 
27
27
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
28
28
  return np.maximum(left, right)
29
29
 
30
30
 
31
31
  class Add(PandasOperand, VectorizableMixin):
32
- name: str = "+"
33
- alias: str = "add"
34
- is_binary: bool = True
35
- is_symmetrical: bool = True
36
- has_symmetry_importance: bool = True
37
- is_vectorizable: bool = True
32
+ name = "+"
33
+ alias = "add"
34
+ is_binary = True
35
+ is_symmetrical = True
36
+ has_symmetry_importance = True
37
+ is_vectorizable = True
38
38
 
39
39
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
40
40
  return left + right
@@ -48,12 +48,12 @@ class Add(PandasOperand, VectorizableMixin):
48
48
 
49
49
 
50
50
  class Subtract(PandasOperand, VectorizableMixin):
51
- name: str = "-"
52
- alias: str = "sub"
53
- is_binary: bool = True
54
- is_symmetrical: bool = True
55
- has_symmetry_importance: bool = True
56
- is_vectorizable: bool = True
51
+ name = "-"
52
+ alias = "sub"
53
+ is_binary = True
54
+ is_symmetrical = True
55
+ has_symmetry_importance = True
56
+ is_vectorizable = True
57
57
 
58
58
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
59
59
  return left - right
@@ -67,12 +67,12 @@ class Subtract(PandasOperand, VectorizableMixin):
67
67
 
68
68
 
69
69
  class Multiply(PandasOperand, VectorizableMixin):
70
- name: str = "*"
71
- alias: str = "mul"
72
- is_binary: bool = True
73
- is_symmetrical: bool = True
74
- has_symmetry_importance: bool = True
75
- is_vectorizable: bool = True
70
+ name = "*"
71
+ alias = "mul"
72
+ is_binary = True
73
+ is_symmetrical = True
74
+ has_symmetry_importance = True
75
+ is_vectorizable = True
76
76
 
77
77
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
78
78
  return left * right
@@ -86,12 +86,12 @@ class Multiply(PandasOperand, VectorizableMixin):
86
86
 
87
87
 
88
88
  class Divide(PandasOperand, VectorizableMixin):
89
- name: str = "/"
90
- alias: str = "div"
91
- is_binary: bool = True
92
- has_symmetry_importance: bool = True
93
- is_vectorizable: bool = True
94
- output_type: Optional[str] = "float"
89
+ name = "/"
90
+ alias = "div"
91
+ is_binary = True
92
+ has_symmetry_importance = True
93
+ is_vectorizable = True
94
+ output_type = "float"
95
95
 
96
96
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
97
97
  return left / right.replace(0, np.nan)
@@ -105,10 +105,10 @@ class Divide(PandasOperand, VectorizableMixin):
105
105
 
106
106
 
107
107
  class Combine(PandasOperand):
108
- name: str = "Combine"
109
- is_binary: bool = True
110
- has_symmetry_importance: bool = True
111
- output_type: Optional[str] = "object"
108
+ name = "Combine"
109
+ is_binary = True
110
+ has_symmetry_importance = True
111
+ output_type = "object"
112
112
 
113
113
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
114
114
  temp = left.astype(str) + "_" + right.astype(str)
@@ -117,13 +117,13 @@ class Combine(PandasOperand):
117
117
 
118
118
 
119
119
  class CombineThenFreq(PandasOperand):
120
- name: str = "CombineThenFreq"
121
- is_binary: bool = True
122
- is_symmetrical: bool = True
123
- has_symmetry_importance: bool = True
124
- output_type: Optional[str] = "float"
125
- is_distribution_dependent: bool = True
126
- input_type: Optional[str] = "discrete"
120
+ name = "CombineThenFreq"
121
+ is_binary = True
122
+ is_symmetrical = True
123
+ has_symmetry_importance = True
124
+ output_type = "float"
125
+ is_distribution_dependent = True
126
+ input_type = "discrete"
127
127
 
128
128
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
129
129
  temp = left.astype(str) + "_" + right.astype(str)
@@ -133,15 +133,15 @@ class CombineThenFreq(PandasOperand):
133
133
 
134
134
 
135
135
  class Distance(PandasOperand):
136
- name: str = "dist"
137
- is_binary: bool = True
138
- output_type: Optional[str] = "float"
139
- is_symmetrical: bool = True
140
- has_symmetry_importance: bool = True
136
+ name = "dist"
137
+ is_binary = True
138
+ output_type = "float"
139
+ is_symmetrical = True
140
+ has_symmetry_importance = True
141
141
 
142
142
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
143
143
  return pd.Series(
144
- 1 - self.__dot(left, right) / (self.__dot(left, left) * self.__dot(right, right)), index=left.index
144
+ 1 - self.__dot(left, right) / (self.__norm(left) * self.__norm(right)), index=left.index
145
145
  )
146
146
 
147
147
  # row-wise dot product
@@ -152,14 +152,17 @@ class Distance(PandasOperand):
152
152
  res = res.reindex(left.index.union(right.index))
153
153
  return res
154
154
 
155
+ def __norm(self, vector: pd.Series) -> pd.Series:
156
+ return np.sqrt(self.__dot(vector, vector))
157
+
155
158
 
156
159
  # Left for backward compatibility
157
160
  class Sim(Distance):
158
- name: str = "sim"
159
- is_binary: bool = True
160
- output_type: Optional[str] = "float"
161
- is_symmetrical: bool = True
162
- has_symmetry_importance: bool = True
161
+ name = "sim"
162
+ is_binary = True
163
+ output_type = "float"
164
+ is_symmetrical = True
165
+ has_symmetry_importance = True
163
166
 
164
167
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
165
168
  return 1 - super().calculate_binary(left, right)
@@ -188,12 +191,12 @@ class StringSim(PandasOperand, abc.ABC):
188
191
 
189
192
 
190
193
  class JaroWinklerSim1(StringSim):
191
- name: str = "sim_jw1"
192
- is_binary: bool = True
193
- input_type: Optional[str] = "string"
194
- output_type: Optional[str] = "float"
195
- is_symmetrical: bool = True
196
- has_symmetry_importance: bool = True
194
+ name = "sim_jw1"
195
+ is_binary = True
196
+ input_type = "string"
197
+ output_type = "float"
198
+ is_symmetrical = True
199
+ has_symmetry_importance = True
197
200
 
198
201
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
199
202
  return value
@@ -203,12 +206,12 @@ class JaroWinklerSim1(StringSim):
203
206
 
204
207
 
205
208
  class JaroWinklerSim2(StringSim):
206
- name: str = "sim_jw2"
207
- is_binary: bool = True
208
- input_type: Optional[str] = "string"
209
- output_type: Optional[str] = "float"
210
- is_symmetrical: bool = True
211
- has_symmetry_importance: bool = True
209
+ name = "sim_jw2"
210
+ is_binary = True
211
+ input_type = "string"
212
+ output_type = "float"
213
+ is_symmetrical = True
214
+ has_symmetry_importance = True
212
215
 
213
216
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
214
217
  return value[::-1] if value is not None else None
@@ -218,12 +221,12 @@ class JaroWinklerSim2(StringSim):
218
221
 
219
222
 
220
223
  class LevenshteinSim(StringSim):
221
- name: str = "sim_lv"
222
- is_binary: bool = True
223
- input_type: Optional[str] = "string"
224
- output_type: Optional[str] = "float"
225
- is_symmetrical: bool = True
226
- has_symmetry_importance: bool = True
224
+ name = "sim_lv"
225
+ is_binary = True
226
+ input_type = "string"
227
+ output_type = "float"
228
+ is_symmetrical = True
229
+ has_symmetry_importance = True
227
230
 
228
231
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
229
232
  return value
@@ -1,19 +1,15 @@
1
1
  import abc
2
+ import json
2
3
  from typing import Any, Dict, List, Optional, Union
3
4
 
4
5
  import numpy as np
5
6
  import pandas as pd
6
7
  from pandas.core.arrays.timedeltas import TimedeltaArray
7
- from pydantic import BaseModel, __version__ as pydantic_version
8
+ from pydantic import BaseModel, validator
8
9
 
9
10
  from upgini.autofe.operand import PandasOperand
10
11
 
11
12
 
12
- def get_pydantic_version():
13
- major_version = int(pydantic_version.split('.')[0])
14
- return major_version
15
-
16
-
17
13
  class DateDiffMixin(BaseModel):
18
14
  diff_unit: str = "D"
19
15
  left_unit: Optional[str] = None
@@ -43,10 +39,10 @@ class DateDiffMixin(BaseModel):
43
39
 
44
40
 
45
41
  class DateDiff(PandasOperand, DateDiffMixin):
46
- name: str = "date_diff"
47
- alias: Optional[str] = "date_diff_type1"
48
- is_binary: bool = True
49
- has_symmetry_importance: bool = True
42
+ name = "date_diff"
43
+ alias = "date_diff_type1"
44
+ is_binary = True
45
+ has_symmetry_importance = True
50
46
 
51
47
  replace_negative: bool = False
52
48
 
@@ -75,9 +71,9 @@ class DateDiff(PandasOperand, DateDiffMixin):
75
71
 
76
72
 
77
73
  class DateDiffType2(PandasOperand, DateDiffMixin):
78
- name: str = "date_diff_type2"
79
- is_binary: bool = True
80
- has_symmetry_importance: bool = True
74
+ name = "date_diff_type2"
75
+ is_binary = True
76
+ has_symmetry_importance = True
81
77
 
82
78
  def get_params(self) -> Dict[str, Optional[str]]:
83
79
  res = super().get_params()
@@ -109,8 +105,8 @@ _count_aggregations = ["nunique", "count"]
109
105
 
110
106
 
111
107
  class DateListDiff(PandasOperand, DateDiffMixin):
112
- is_binary: bool = True
113
- has_symmetry_importance: bool = True
108
+ is_binary = True
109
+ has_symmetry_importance = True
114
110
 
115
111
  aggregation: str
116
112
  replace_negative: bool = False
@@ -170,8 +166,8 @@ class DateListDiff(PandasOperand, DateDiffMixin):
170
166
 
171
167
 
172
168
  class DateListDiffBounded(DateListDiff):
173
- lower_bound: Optional[int] = None
174
- upper_bound: Optional[int] = None
169
+ lower_bound: Optional[int]
170
+ upper_bound: Optional[int]
175
171
 
176
172
  def __init__(self, **data: Any) -> None:
177
173
  if "name" not in data:
@@ -196,8 +192,8 @@ class DateListDiffBounded(DateListDiff):
196
192
 
197
193
 
198
194
  class DatePercentileBase(PandasOperand, abc.ABC):
199
- is_binary: bool = True
200
- output_type: Optional[str] = "float"
195
+ is_binary = True
196
+ output_type = "float"
201
197
 
202
198
  date_unit: Optional[str] = None
203
199
 
@@ -231,12 +227,12 @@ class DatePercentileBase(PandasOperand, abc.ABC):
231
227
 
232
228
 
233
229
  class DatePercentile(DatePercentileBase):
234
- name: str = "date_per"
235
- alias: Optional[str] = "date_per_method1"
230
+ name = "date_per"
231
+ alias = "date_per_method1"
236
232
 
237
- zero_month: Optional[int] = None
238
- zero_year: Optional[int] = None
239
- zero_bounds: Optional[List[float]] = None
233
+ zero_month: Optional[int]
234
+ zero_year: Optional[int]
235
+ zero_bounds: Optional[List[float]]
240
236
  step: int = 30
241
237
 
242
238
  def get_params(self) -> Dict[str, Optional[str]]:
@@ -251,25 +247,12 @@ class DatePercentile(DatePercentileBase):
251
247
  )
252
248
  return res
253
249
 
254
- # Check Pydantic version
255
- if get_pydantic_version() >= 2:
256
- # Use @field_validator for Pydantic 2.x
257
- from pydantic import field_validator
258
-
259
- @field_validator('zero_bounds', mode='before')
260
- def parse_zero_bounds(cls, value):
261
- if isinstance(value, str):
262
- return value[1:-1].split(", ")
263
- return value
264
- else:
265
- # Use @validator for Pydantic 1.x
266
- from pydantic import validator
267
-
268
- @validator('zero_bounds', pre=True)
269
- def parse_zero_bounds(cls, value):
270
- if isinstance(value, str):
271
- return value[1:-1].split(", ")
250
+ @validator("zero_bounds", pre=True)
251
+ def validate_bounds(cls, value):
252
+ if value is None or isinstance(value, list):
272
253
  return value
254
+ elif isinstance(value, str):
255
+ return json.loads(value)
273
256
 
274
257
  def _get_bounds(self, date_col: pd.Series) -> pd.Series:
275
258
  months = date_col.dt.month
@@ -282,7 +265,7 @@ class DatePercentile(DatePercentileBase):
282
265
 
283
266
 
284
267
  class DatePercentileMethod2(DatePercentileBase):
285
- name: str = "date_per_method2"
268
+ name = "date_per_method2"
286
269
 
287
270
  def _get_bounds(self, date_col: pd.Series) -> pd.Series:
288
271
  pass
@@ -7,9 +7,9 @@ from upgini.autofe.operand import PandasOperand, VectorizableMixin
7
7
 
8
8
  class GroupByThenAgg(PandasOperand, VectorizableMixin):
9
9
  agg: Optional[str]
10
- is_vectorizable: bool = True
11
- is_grouping: bool = True
12
- is_distribution_dependent: bool = True
10
+ is_vectorizable = True
11
+ is_grouping = True
12
+ is_distribution_dependent = True
13
13
 
14
14
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
15
15
  temp = left.groupby(right).agg(self.agg)
@@ -24,17 +24,17 @@ class GroupByThenAgg(PandasOperand, VectorizableMixin):
24
24
 
25
25
 
26
26
  class GroupByThenMedian(GroupByThenAgg):
27
- name: str = "GroupByThenMedian"
28
- pandas_agg: str = "median"
29
- is_distribution_dependent: bool = True
27
+ name = "GroupByThenMedian"
28
+ pandas_agg = "median"
29
+ is_distribution_dependent = True
30
30
 
31
31
 
32
32
  class GroupByThenRank(PandasOperand, VectorizableMixin):
33
- name: str = "GroupByThenRank"
34
- is_vectorizable: bool = True
35
- is_grouping: bool = True
36
- output_type: Optional[str] = "float"
37
- is_distribution_dependent: bool = True
33
+ name = "GroupByThenRank"
34
+ is_vectorizable = True
35
+ is_grouping = True
36
+ output_type = "float"
37
+ is_distribution_dependent = True
38
38
 
39
39
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
40
40
  temp = pd.DataFrame(left[~right.isna()].groupby(right).rank(ascending=True, pct=True)).reset_index()
@@ -49,12 +49,12 @@ class GroupByThenRank(PandasOperand, VectorizableMixin):
49
49
 
50
50
 
51
51
  class GroupByThenNUnique(PandasOperand, VectorizableMixin):
52
- name: str = "GroupByThenNUnique"
53
- is_vectorizable: bool = True
54
- is_grouping: bool = True
55
- output_type: Optional[str] = "int"
56
- is_distribution_dependent: bool = True
57
- input_type: Optional[str] = "discrete"
52
+ name = "GroupByThenNUnique"
53
+ is_vectorizable = True
54
+ is_grouping = True
55
+ output_type = "int"
56
+ is_distribution_dependent = True
57
+ input_type = "discrete"
58
58
 
59
59
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
60
60
  nunique = left.groupby(right).nunique()
@@ -69,11 +69,11 @@ class GroupByThenNUnique(PandasOperand, VectorizableMixin):
69
69
 
70
70
 
71
71
  class GroupByThenFreq(PandasOperand):
72
- name: str = "GroupByThenFreq"
73
- is_grouping: bool = True
74
- output_type: Optional[str] = "float"
75
- is_distribution_dependent: bool = True
76
- input_type: Optional[str] = "discrete"
72
+ name = "GroupByThenFreq"
73
+ is_grouping = True
74
+ output_type = "float"
75
+ is_distribution_dependent = True
76
+ input_type = "discrete"
77
77
 
78
78
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
79
79
  def _f(x):
@@ -8,19 +8,19 @@ from pydantic import BaseModel
8
8
 
9
9
  class Operand(BaseModel):
10
10
  name: str
11
- alias: Optional[str] = None
11
+ alias: Optional[str]
12
12
  is_unary: bool = False
13
13
  is_symmetrical: bool = False
14
14
  has_symmetry_importance: bool = False
15
- input_type: Optional[str] = None
16
- output_type: Optional[str] = None
15
+ input_type: Optional[str]
16
+ output_type: Optional[str]
17
17
  is_categorical: bool = False
18
18
  is_vectorizable: bool = False
19
19
  is_grouping: bool = False
20
20
  is_binary: bool = False
21
21
  is_vector: bool = False
22
22
  is_distribution_dependent: bool = False
23
- params: Optional[Dict[str, str]] = None
23
+ params: Optional[Dict[str, str]]
24
24
 
25
25
  def set_params(self, params: Dict[str, str]):
26
26
  self.params = params