upgini 1.1.316a4__tar.gz → 1.1.317__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

Files changed (65) hide show
  1. {upgini-1.1.316a4 → upgini-1.1.317}/PKG-INFO +3 -3
  2. {upgini-1.1.316a4 → upgini-1.1.317}/pyproject.toml +5 -6
  3. upgini-1.1.317/src/upgini/__about__.py +1 -0
  4. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/binary.py +75 -72
  5. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/date.py +22 -21
  6. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/groupby.py +22 -22
  7. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/operand.py +4 -4
  8. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/unary.py +46 -47
  9. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/vector.py +8 -8
  10. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/features_enricher.py +2 -3
  11. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/http.py +32 -32
  12. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/lazy_import.py +1 -14
  13. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/metadata.py +57 -57
  14. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/normalizer/normalize_utils.py +2 -1
  15. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/datetime_utils.py +5 -5
  16. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/phone_utils.py +7 -5
  17. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/target_utils.py +1 -4
  18. upgini-1.1.316a4/src/upgini/__about__.py +0 -1
  19. {upgini-1.1.316a4 → upgini-1.1.317}/.gitignore +0 -0
  20. {upgini-1.1.316a4 → upgini-1.1.317}/LICENSE +0 -0
  21. {upgini-1.1.316a4 → upgini-1.1.317}/README.md +0 -0
  22. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/__init__.py +0 -0
  23. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/ads.py +0 -0
  24. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/ads_management/__init__.py +0 -0
  25. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/ads_management/ads_manager.py +0 -0
  26. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/__init__.py +0 -0
  27. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/all_operands.py +0 -0
  28. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/autofe/feature.py +0 -0
  29. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/data_source/__init__.py +0 -0
  30. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/data_source/data_source_publisher.py +0 -0
  31. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/dataset.py +0 -0
  32. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/errors.py +0 -0
  33. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/mdc/__init__.py +0 -0
  34. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/mdc/context.py +0 -0
  35. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/metrics.py +0 -0
  36. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/normalizer/__init__.py +0 -0
  37. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/resource_bundle/__init__.py +0 -0
  38. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/resource_bundle/exceptions.py +0 -0
  39. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/resource_bundle/strings.properties +0 -0
  40. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/resource_bundle/strings_widget.properties +0 -0
  41. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/sampler/__init__.py +0 -0
  42. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/sampler/base.py +0 -0
  43. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/sampler/random_under_sampler.py +0 -0
  44. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/sampler/utils.py +0 -0
  45. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/search_task.py +0 -0
  46. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/spinner.py +0 -0
  47. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/__init__.py +0 -0
  48. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/base_search_key_detector.py +0 -0
  49. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/blocked_time_series.py +0 -0
  50. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/country_utils.py +0 -0
  51. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/custom_loss_utils.py +0 -0
  52. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/cv_utils.py +0 -0
  53. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/deduplicate_utils.py +0 -0
  54. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/display_utils.py +0 -0
  55. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/email_utils.py +0 -0
  56. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/fallback_progress_bar.py +0 -0
  57. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/features_validator.py +0 -0
  58. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/format.py +0 -0
  59. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/ip_utils.py +0 -0
  60. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/postal_code_utils.py +0 -0
  61. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/progress_bar.py +0 -0
  62. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/sklearn_ext.py +0 -0
  63. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/track_info.py +0 -0
  64. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/utils/warning_counter.py +0 -0
  65. {upgini-1.1.316a4 → upgini-1.1.317}/src/upgini/version_validator.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.1.316a4
3
+ Version: 1.1.317
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -29,9 +29,9 @@ Requires-Dist: ipywidgets>=8.1.0
29
29
  Requires-Dist: jarowinkler>=2.0.0
30
30
  Requires-Dist: levenshtein>=0.25.1
31
31
  Requires-Dist: lightgbm>=3.3.2
32
- Requires-Dist: numpy<=1.26.4,>=1.19.0
32
+ Requires-Dist: numpy>=1.19.0
33
33
  Requires-Dist: pandas<3.0.0,>=1.1.0
34
- Requires-Dist: pydantic<3.0.0,>1.0.0
34
+ Requires-Dist: pydantic<2.0.0,>=1.8.2
35
35
  Requires-Dist: pyjwt>=2.8.0
36
36
  Requires-Dist: python-bidi==0.4.2
37
37
  Requires-Dist: python-dateutil>=2.8.0
@@ -39,9 +39,9 @@ dependencies = [
39
39
  "fastparquet>=0.8.1",
40
40
  "ipywidgets>=8.1.0",
41
41
  "lightgbm>=3.3.2",
42
- "numpy>=1.19.0,<=1.26.4",
42
+ "numpy>=1.19.0",
43
43
  "pandas>=1.1.0,<3.0.0",
44
- "pydantic>1.0.0,<3.0.0",
44
+ "pydantic>=1.8.2,<2.0.0",
45
45
  "pyjwt>=2.8.0",
46
46
  "python-dateutil>=2.8.0",
47
47
  "python-json-logger>=2.0.2",
@@ -79,7 +79,7 @@ python = "3.10"
79
79
  cov = 'pytest --cov-report=term-missing --cov-config=pyproject.toml --cov=upgini --cov=tests'
80
80
  format = "black {args}"
81
81
  lint = "ruff check {args}"
82
- test_all = 'pytest -s -vv tests'
82
+ test_binary = 'pytest -s -vv tests/test_binary_dataset.py'
83
83
 
84
84
  [[tool.hatch.envs.test.matrix]]
85
85
  python = ["3.8"]
@@ -103,7 +103,7 @@ dependencies = [
103
103
  # "pytest-timeout",
104
104
  "requests-mock",
105
105
  "pytest-datafiles",
106
- "pandas~={matrix:pandas}",
106
+ "pandas~={matrix:pandas}.0",
107
107
  ]
108
108
 
109
109
  [tool.black]
@@ -115,5 +115,4 @@ profile = "black"
115
115
  [tool.pytest.ini_options]
116
116
  pythonpath = [
117
117
  "./src"
118
- ]
119
- addopts="-n 4"
118
+ ]
@@ -0,0 +1 @@
1
+ __version__ = "1.1.317"
@@ -9,32 +9,32 @@ from upgini.autofe.operand import PandasOperand, VectorizableMixin
9
9
 
10
10
 
11
11
  class Min(PandasOperand):
12
- name: str = "min"
13
- is_binary: bool = True
14
- is_symmetrical: bool = True
15
- has_symmetry_importance: bool = True
12
+ name = "min"
13
+ is_binary = True
14
+ is_symmetrical = True
15
+ has_symmetry_importance = True
16
16
 
17
17
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
18
18
  return np.minimum(left, right)
19
19
 
20
20
 
21
21
  class Max(PandasOperand):
22
- name: str = "max"
23
- is_binary: bool = True
24
- is_symmetrical: bool = True
25
- has_symmetry_importance: bool = True
22
+ name = "max"
23
+ is_binary = True
24
+ is_symmetrical = True
25
+ has_symmetry_importance = True
26
26
 
27
27
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
28
28
  return np.maximum(left, right)
29
29
 
30
30
 
31
31
  class Add(PandasOperand, VectorizableMixin):
32
- name: str = "+"
33
- alias: str = "add"
34
- is_binary: bool = True
35
- is_symmetrical: bool = True
36
- has_symmetry_importance: bool = True
37
- is_vectorizable: bool = True
32
+ name = "+"
33
+ alias = "add"
34
+ is_binary = True
35
+ is_symmetrical = True
36
+ has_symmetry_importance = True
37
+ is_vectorizable = True
38
38
 
39
39
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
40
40
  return left + right
@@ -48,12 +48,12 @@ class Add(PandasOperand, VectorizableMixin):
48
48
 
49
49
 
50
50
  class Subtract(PandasOperand, VectorizableMixin):
51
- name: str = "-"
52
- alias: str = "sub"
53
- is_binary: bool = True
54
- is_symmetrical: bool = True
55
- has_symmetry_importance: bool = True
56
- is_vectorizable: bool = True
51
+ name = "-"
52
+ alias = "sub"
53
+ is_binary = True
54
+ is_symmetrical = True
55
+ has_symmetry_importance = True
56
+ is_vectorizable = True
57
57
 
58
58
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
59
59
  return left - right
@@ -67,12 +67,12 @@ class Subtract(PandasOperand, VectorizableMixin):
67
67
 
68
68
 
69
69
  class Multiply(PandasOperand, VectorizableMixin):
70
- name: str = "*"
71
- alias: str = "mul"
72
- is_binary: bool = True
73
- is_symmetrical: bool = True
74
- has_symmetry_importance: bool = True
75
- is_vectorizable: bool = True
70
+ name = "*"
71
+ alias = "mul"
72
+ is_binary = True
73
+ is_symmetrical = True
74
+ has_symmetry_importance = True
75
+ is_vectorizable = True
76
76
 
77
77
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
78
78
  return left * right
@@ -86,12 +86,12 @@ class Multiply(PandasOperand, VectorizableMixin):
86
86
 
87
87
 
88
88
  class Divide(PandasOperand, VectorizableMixin):
89
- name: str = "/"
90
- alias: str = "div"
91
- is_binary: bool = True
92
- has_symmetry_importance: bool = True
93
- is_vectorizable: bool = True
94
- output_type: Optional[str] = "float"
89
+ name = "/"
90
+ alias = "div"
91
+ is_binary = True
92
+ has_symmetry_importance = True
93
+ is_vectorizable = True
94
+ output_type = "float"
95
95
 
96
96
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
97
97
  return left / right.replace(0, np.nan)
@@ -105,10 +105,10 @@ class Divide(PandasOperand, VectorizableMixin):
105
105
 
106
106
 
107
107
  class Combine(PandasOperand):
108
- name: str = "Combine"
109
- is_binary: bool = True
110
- has_symmetry_importance: bool = True
111
- output_type: Optional[str] = "object"
108
+ name = "Combine"
109
+ is_binary = True
110
+ has_symmetry_importance = True
111
+ output_type = "object"
112
112
 
113
113
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
114
114
  temp = left.astype(str) + "_" + right.astype(str)
@@ -117,13 +117,13 @@ class Combine(PandasOperand):
117
117
 
118
118
 
119
119
  class CombineThenFreq(PandasOperand):
120
- name: str = "CombineThenFreq"
121
- is_binary: bool = True
122
- is_symmetrical: bool = True
123
- has_symmetry_importance: bool = True
124
- output_type: Optional[str] = "float"
125
- is_distribution_dependent: bool = True
126
- input_type: Optional[str] = "discrete"
120
+ name = "CombineThenFreq"
121
+ is_binary = True
122
+ is_symmetrical = True
123
+ has_symmetry_importance = True
124
+ output_type = "float"
125
+ is_distribution_dependent = True
126
+ input_type = "discrete"
127
127
 
128
128
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
129
129
  temp = left.astype(str) + "_" + right.astype(str)
@@ -133,15 +133,15 @@ class CombineThenFreq(PandasOperand):
133
133
 
134
134
 
135
135
  class Distance(PandasOperand):
136
- name: str = "dist"
137
- is_binary: bool = True
138
- output_type: Optional[str] = "float"
139
- is_symmetrical: bool = True
140
- has_symmetry_importance: bool = True
136
+ name = "dist"
137
+ is_binary = True
138
+ output_type = "float"
139
+ is_symmetrical = True
140
+ has_symmetry_importance = True
141
141
 
142
142
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
143
143
  return pd.Series(
144
- 1 - self.__dot(left, right) / (self.__dot(left, left) * self.__dot(right, right)), index=left.index
144
+ 1 - self.__dot(left, right) / (self.__norm(left) * self.__norm(right)), index=left.index
145
145
  )
146
146
 
147
147
  # row-wise dot product
@@ -152,14 +152,17 @@ class Distance(PandasOperand):
152
152
  res = res.reindex(left.index.union(right.index))
153
153
  return res
154
154
 
155
+ def __norm(self, vector: pd.Series) -> pd.Series:
156
+ return np.sqrt(self.__dot(vector, vector))
157
+
155
158
 
156
159
  # Left for backward compatibility
157
160
  class Sim(Distance):
158
- name: str = "sim"
159
- is_binary: bool = True
160
- output_type: Optional[str] = "float"
161
- is_symmetrical: bool = True
162
- has_symmetry_importance: bool = True
161
+ name = "sim"
162
+ is_binary = True
163
+ output_type = "float"
164
+ is_symmetrical = True
165
+ has_symmetry_importance = True
163
166
 
164
167
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
165
168
  return 1 - super().calculate_binary(left, right)
@@ -188,12 +191,12 @@ class StringSim(PandasOperand, abc.ABC):
188
191
 
189
192
 
190
193
  class JaroWinklerSim1(StringSim):
191
- name: str = "sim_jw1"
192
- is_binary: bool = True
193
- input_type: Optional[str] = "string"
194
- output_type: Optional[str] = "float"
195
- is_symmetrical: bool = True
196
- has_symmetry_importance: bool = True
194
+ name = "sim_jw1"
195
+ is_binary = True
196
+ input_type = "string"
197
+ output_type = "float"
198
+ is_symmetrical = True
199
+ has_symmetry_importance = True
197
200
 
198
201
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
199
202
  return value
@@ -203,12 +206,12 @@ class JaroWinklerSim1(StringSim):
203
206
 
204
207
 
205
208
  class JaroWinklerSim2(StringSim):
206
- name: str = "sim_jw2"
207
- is_binary: bool = True
208
- input_type: Optional[str] = "string"
209
- output_type: Optional[str] = "float"
210
- is_symmetrical: bool = True
211
- has_symmetry_importance: bool = True
209
+ name = "sim_jw2"
210
+ is_binary = True
211
+ input_type = "string"
212
+ output_type = "float"
213
+ is_symmetrical = True
214
+ has_symmetry_importance = True
212
215
 
213
216
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
214
217
  return value[::-1] if value is not None else None
@@ -218,12 +221,12 @@ class JaroWinklerSim2(StringSim):
218
221
 
219
222
 
220
223
  class LevenshteinSim(StringSim):
221
- name: str = "sim_lv"
222
- is_binary: bool = True
223
- input_type: Optional[str] = "string"
224
- output_type: Optional[str] = "float"
225
- is_symmetrical: bool = True
226
- has_symmetry_importance: bool = True
224
+ name = "sim_lv"
225
+ is_binary = True
226
+ input_type = "string"
227
+ output_type = "float"
228
+ is_symmetrical = True
229
+ has_symmetry_importance = True
227
230
 
228
231
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
229
232
  return value
@@ -1,4 +1,5 @@
1
1
  import abc
2
+ import json
2
3
  from typing import Any, Dict, List, Optional, Union
3
4
 
4
5
  import numpy as np
@@ -38,10 +39,10 @@ class DateDiffMixin(BaseModel):
38
39
 
39
40
 
40
41
  class DateDiff(PandasOperand, DateDiffMixin):
41
- name: str = "date_diff"
42
- alias: Optional[str] = "date_diff_type1"
43
- is_binary: bool = True
44
- has_symmetry_importance: bool = True
42
+ name = "date_diff"
43
+ alias = "date_diff_type1"
44
+ is_binary = True
45
+ has_symmetry_importance = True
45
46
 
46
47
  replace_negative: bool = False
47
48
 
@@ -70,9 +71,9 @@ class DateDiff(PandasOperand, DateDiffMixin):
70
71
 
71
72
 
72
73
  class DateDiffType2(PandasOperand, DateDiffMixin):
73
- name: str = "date_diff_type2"
74
- is_binary: bool = True
75
- has_symmetry_importance: bool = True
74
+ name = "date_diff_type2"
75
+ is_binary = True
76
+ has_symmetry_importance = True
76
77
 
77
78
  def get_params(self) -> Dict[str, Optional[str]]:
78
79
  res = super().get_params()
@@ -104,8 +105,8 @@ _count_aggregations = ["nunique", "count"]
104
105
 
105
106
 
106
107
  class DateListDiff(PandasOperand, DateDiffMixin):
107
- is_binary: bool = True
108
- has_symmetry_importance: bool = True
108
+ is_binary = True
109
+ has_symmetry_importance = True
109
110
 
110
111
  aggregation: str
111
112
  replace_negative: bool = False
@@ -165,8 +166,8 @@ class DateListDiff(PandasOperand, DateDiffMixin):
165
166
 
166
167
 
167
168
  class DateListDiffBounded(DateListDiff):
168
- lower_bound: Optional[int] = None
169
- upper_bound: Optional[int] = None
169
+ lower_bound: Optional[int]
170
+ upper_bound: Optional[int]
170
171
 
171
172
  def __init__(self, **data: Any) -> None:
172
173
  if "name" not in data:
@@ -191,8 +192,8 @@ class DateListDiffBounded(DateListDiff):
191
192
 
192
193
 
193
194
  class DatePercentileBase(PandasOperand, abc.ABC):
194
- is_binary: bool = True
195
- output_type: Optional[str] = "float"
195
+ is_binary = True
196
+ output_type = "float"
196
197
 
197
198
  date_unit: Optional[str] = None
198
199
 
@@ -226,12 +227,12 @@ class DatePercentileBase(PandasOperand, abc.ABC):
226
227
 
227
228
 
228
229
  class DatePercentile(DatePercentileBase):
229
- name: str = "date_per"
230
- alias: Optional[str] = "date_per_method1"
230
+ name = "date_per"
231
+ alias = "date_per_method1"
231
232
 
232
- zero_month: Optional[int] = None
233
- zero_year: Optional[int] = None
234
- zero_bounds: Optional[List[float]] = None
233
+ zero_month: Optional[int]
234
+ zero_year: Optional[int]
235
+ zero_bounds: Optional[List[float]]
235
236
  step: int = 30
236
237
 
237
238
  def get_params(self) -> Dict[str, Optional[str]]:
@@ -246,12 +247,12 @@ class DatePercentile(DatePercentileBase):
246
247
  )
247
248
  return res
248
249
 
249
- @validator("zero_bounds", pre="true")
250
+ @validator("zero_bounds", pre=True)
250
251
  def validate_bounds(cls, value):
251
252
  if value is None or isinstance(value, list):
252
253
  return value
253
254
  elif isinstance(value, str):
254
- return value[1:-1].split(", ")
255
+ return json.loads(value)
255
256
 
256
257
  def _get_bounds(self, date_col: pd.Series) -> pd.Series:
257
258
  months = date_col.dt.month
@@ -264,7 +265,7 @@ class DatePercentile(DatePercentileBase):
264
265
 
265
266
 
266
267
  class DatePercentileMethod2(DatePercentileBase):
267
- name: str = "date_per_method2"
268
+ name = "date_per_method2"
268
269
 
269
270
  def _get_bounds(self, date_col: pd.Series) -> pd.Series:
270
271
  pass
@@ -7,9 +7,9 @@ from upgini.autofe.operand import PandasOperand, VectorizableMixin
7
7
 
8
8
  class GroupByThenAgg(PandasOperand, VectorizableMixin):
9
9
  agg: Optional[str]
10
- is_vectorizable: bool = True
11
- is_grouping: bool = True
12
- is_distribution_dependent: bool = True
10
+ is_vectorizable = True
11
+ is_grouping = True
12
+ is_distribution_dependent = True
13
13
 
14
14
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
15
15
  temp = left.groupby(right).agg(self.agg)
@@ -24,17 +24,17 @@ class GroupByThenAgg(PandasOperand, VectorizableMixin):
24
24
 
25
25
 
26
26
  class GroupByThenMedian(GroupByThenAgg):
27
- name: str = "GroupByThenMedian"
28
- pandas_agg: str = "median"
29
- is_distribution_dependent: bool = True
27
+ name = "GroupByThenMedian"
28
+ pandas_agg = "median"
29
+ is_distribution_dependent = True
30
30
 
31
31
 
32
32
  class GroupByThenRank(PandasOperand, VectorizableMixin):
33
- name: str = "GroupByThenRank"
34
- is_vectorizable: bool = True
35
- is_grouping: bool = True
36
- output_type: Optional[str] = "float"
37
- is_distribution_dependent: bool = True
33
+ name = "GroupByThenRank"
34
+ is_vectorizable = True
35
+ is_grouping = True
36
+ output_type = "float"
37
+ is_distribution_dependent = True
38
38
 
39
39
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
40
40
  temp = pd.DataFrame(left[~right.isna()].groupby(right).rank(ascending=True, pct=True)).reset_index()
@@ -49,12 +49,12 @@ class GroupByThenRank(PandasOperand, VectorizableMixin):
49
49
 
50
50
 
51
51
  class GroupByThenNUnique(PandasOperand, VectorizableMixin):
52
- name: str = "GroupByThenNUnique"
53
- is_vectorizable: bool = True
54
- is_grouping: bool = True
55
- output_type: Optional[str] = "int"
56
- is_distribution_dependent: bool = True
57
- input_type: Optional[str] = "discrete"
52
+ name = "GroupByThenNUnique"
53
+ is_vectorizable = True
54
+ is_grouping = True
55
+ output_type = "int"
56
+ is_distribution_dependent = True
57
+ input_type = "discrete"
58
58
 
59
59
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
60
60
  nunique = left.groupby(right).nunique()
@@ -69,11 +69,11 @@ class GroupByThenNUnique(PandasOperand, VectorizableMixin):
69
69
 
70
70
 
71
71
  class GroupByThenFreq(PandasOperand):
72
- name: str = "GroupByThenFreq"
73
- is_grouping: bool = True
74
- output_type: Optional[str] = "float"
75
- is_distribution_dependent: bool = True
76
- input_type: Optional[str] = "discrete"
72
+ name = "GroupByThenFreq"
73
+ is_grouping = True
74
+ output_type = "float"
75
+ is_distribution_dependent = True
76
+ input_type = "discrete"
77
77
 
78
78
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
79
79
  def _f(x):
@@ -8,19 +8,19 @@ from pydantic import BaseModel
8
8
 
9
9
  class Operand(BaseModel):
10
10
  name: str
11
- alias: Optional[str] = None
11
+ alias: Optional[str]
12
12
  is_unary: bool = False
13
13
  is_symmetrical: bool = False
14
14
  has_symmetry_importance: bool = False
15
- input_type: Optional[str] = None
16
- output_type: Optional[str] = None
15
+ input_type: Optional[str]
16
+ output_type: Optional[str]
17
17
  is_categorical: bool = False
18
18
  is_vectorizable: bool = False
19
19
  is_grouping: bool = False
20
20
  is_binary: bool = False
21
21
  is_vector: bool = False
22
22
  is_distribution_dependent: bool = False
23
- params: Optional[Dict[str, str]] = None
23
+ params: Optional[Dict[str, str]]
24
24
 
25
25
  def set_params(self, params: Dict[str, str]):
26
26
  self.params = params
@@ -1,4 +1,3 @@
1
- from typing import Optional
2
1
  import numpy as np
3
2
  import pandas as pd
4
3
  from sklearn.preprocessing import Normalizer
@@ -7,10 +6,10 @@ from upgini.autofe.operand import PandasOperand, VectorizableMixin
7
6
 
8
7
 
9
8
  class Abs(PandasOperand, VectorizableMixin):
10
- name: str = "abs"
11
- is_unary: bool = True
12
- is_vectorizable: bool = True
13
- group_index: int = 0
9
+ name = "abs"
10
+ is_unary = True
11
+ is_vectorizable = True
12
+ group_index = 0
14
13
 
15
14
  def calculate_unary(self, data: pd.Series) -> pd.Series:
16
15
  return data.abs()
@@ -20,11 +19,11 @@ class Abs(PandasOperand, VectorizableMixin):
20
19
 
21
20
 
22
21
  class Log(PandasOperand, VectorizableMixin):
23
- name: str = "log"
24
- is_unary: bool = True
25
- is_vectorizable: bool = True
26
- output_type: Optional[str] = "float"
27
- group_index: int = 0
22
+ name = "log"
23
+ is_unary = True
24
+ is_vectorizable = True
25
+ output_type = "float"
26
+ group_index = 0
28
27
 
29
28
  def calculate_unary(self, data: pd.Series) -> pd.Series:
30
29
  return self._round_value(np.log(np.abs(data.replace(0, np.nan))), 10)
@@ -34,11 +33,11 @@ class Log(PandasOperand, VectorizableMixin):
34
33
 
35
34
 
36
35
  class Sqrt(PandasOperand, VectorizableMixin):
37
- name: str = "sqrt"
38
- is_unary: bool = True
39
- is_vectorizable: bool = True
40
- output_type: Optional[str] = "float"
41
- group_index: int = 0
36
+ name = "sqrt"
37
+ is_unary = True
38
+ is_vectorizable = True
39
+ output_type = "float"
40
+ group_index = 0
42
41
 
43
42
  def calculate_unary(self, data: pd.Series) -> pd.Series:
44
43
  return self._round_value(np.sqrt(np.abs(data)))
@@ -48,10 +47,10 @@ class Sqrt(PandasOperand, VectorizableMixin):
48
47
 
49
48
 
50
49
  class Square(PandasOperand, VectorizableMixin):
51
- name: str = "square"
52
- is_unary: bool = True
53
- is_vectorizable: bool = True
54
- group_index: int = 0
50
+ name = "square"
51
+ is_unary = True
52
+ is_vectorizable = True
53
+ group_index = 0
55
54
 
56
55
  def calculate_unary(self, data: pd.Series) -> pd.Series:
57
56
  return np.square(data)
@@ -61,11 +60,11 @@ class Square(PandasOperand, VectorizableMixin):
61
60
 
62
61
 
63
62
  class Sigmoid(PandasOperand, VectorizableMixin):
64
- name: str = "sigmoid"
65
- is_unary: bool = True
66
- is_vectorizable: bool = True
67
- output_type: Optional[str] = "float"
68
- group_index: int = 0
63
+ name = "sigmoid"
64
+ is_unary = True
65
+ is_vectorizable = True
66
+ output_type = "float"
67
+ group_index = 0
69
68
 
70
69
  def calculate_unary(self, data: pd.Series) -> pd.Series:
71
70
  return self._round_value(1 / (1 + np.exp(-data)))
@@ -75,12 +74,12 @@ class Sigmoid(PandasOperand, VectorizableMixin):
75
74
 
76
75
 
77
76
  class Floor(PandasOperand, VectorizableMixin):
78
- name: str = "floor"
79
- is_unary: bool = True
80
- is_vectorizable: bool = True
81
- output_type: Optional[str] = "int"
82
- input_type: Optional[str] = "continuous"
83
- group_index: int = 0
77
+ name = "floor"
78
+ is_unary = True
79
+ is_vectorizable = True
80
+ output_type = "int"
81
+ input_type = "continuous"
82
+ group_index = 0
84
83
 
85
84
  def calculate_unary(self, data: pd.Series) -> pd.Series:
86
85
  return np.floor(data)
@@ -90,11 +89,11 @@ class Floor(PandasOperand, VectorizableMixin):
90
89
 
91
90
 
92
91
  class Residual(PandasOperand, VectorizableMixin):
93
- name: str = "residual"
94
- is_unary: bool = True
95
- is_vectorizable: bool = True
96
- input_type: Optional[str] = "continuous"
97
- group_index: int = 0
92
+ name = "residual"
93
+ is_unary = True
94
+ is_vectorizable = True
95
+ input_type = "continuous"
96
+ group_index = 0
98
97
 
99
98
  def calculate_unary(self, data: pd.Series) -> pd.Series:
100
99
  return data - np.floor(data)
@@ -104,11 +103,11 @@ class Residual(PandasOperand, VectorizableMixin):
104
103
 
105
104
 
106
105
  class Freq(PandasOperand):
107
- name: str = "freq"
108
- is_unary: bool = True
109
- output_type: Optional[str] = "float"
110
- is_distribution_dependent: bool = True
111
- input_type: Optional[str] = "discrete"
106
+ name = "freq"
107
+ is_unary = True
108
+ output_type = "float"
109
+ is_distribution_dependent = True
110
+ input_type = "discrete"
112
111
 
113
112
  def calculate_unary(self, data: pd.Series) -> pd.Series:
114
113
  value_counts = data.value_counts(normalize=True)
@@ -116,9 +115,9 @@ class Freq(PandasOperand):
116
115
 
117
116
 
118
117
  class Norm(PandasOperand):
119
- name: str = "norm"
120
- is_unary: bool = True
121
- output_type: Optional[str] = "float"
118
+ name = "norm"
119
+ is_unary = True
120
+ output_type = "float"
122
121
 
123
122
  def calculate_unary(self, data: pd.Series) -> pd.Series:
124
123
  data_dropna = data.dropna()
@@ -132,7 +131,7 @@ class Norm(PandasOperand):
132
131
 
133
132
 
134
133
  class Embeddings(PandasOperand):
135
- name: str = "emb"
136
- is_unary: bool = True
137
- input_type: Optional[str] = "string"
138
- output_type: Optional[str] = "vector"
134
+ name = "emb"
135
+ is_unary = True
136
+ input_type = "string"
137
+ output_type = "vector"