unsloth-mlx 0.3.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- unsloth_mlx-0.3.3/LICENSE +190 -0
- unsloth_mlx-0.3.3/PKG-INFO +279 -0
- unsloth_mlx-0.3.3/README.md +231 -0
- unsloth_mlx-0.3.3/pyproject.toml +85 -0
- unsloth_mlx-0.3.3/setup.cfg +4 -0
- unsloth_mlx-0.3.3/tests/test_chat_templates.py +1167 -0
- unsloth_mlx-0.3.3/tests/test_integration.py +360 -0
- unsloth_mlx-0.3.3/tests/test_losses.py +220 -0
- unsloth_mlx-0.3.3/tests/test_model.py +307 -0
- unsloth_mlx-0.3.3/tests/test_rl_trainers_integration.py +835 -0
- unsloth_mlx-0.3.3/tests/test_trainers.py +227 -0
- unsloth_mlx-0.3.3/unsloth_mlx/__init__.py +165 -0
- unsloth_mlx-0.3.3/unsloth_mlx/chat_templates.py +1912 -0
- unsloth_mlx-0.3.3/unsloth_mlx/losses.py +578 -0
- unsloth_mlx-0.3.3/unsloth_mlx/model.py +738 -0
- unsloth_mlx-0.3.3/unsloth_mlx/rl_trainers.py +1198 -0
- unsloth_mlx-0.3.3/unsloth_mlx/sft_trainer.py +765 -0
- unsloth_mlx-0.3.3/unsloth_mlx/trainer.py +468 -0
- unsloth_mlx-0.3.3/unsloth_mlx/vlm.py +415 -0
- unsloth_mlx-0.3.3/unsloth_mlx.egg-info/PKG-INFO +279 -0
- unsloth_mlx-0.3.3/unsloth_mlx.egg-info/SOURCES.txt +22 -0
- unsloth_mlx-0.3.3/unsloth_mlx.egg-info/dependency_links.txt +1 -0
- unsloth_mlx-0.3.3/unsloth_mlx.egg-info/requires.txt +26 -0
- unsloth_mlx-0.3.3/unsloth_mlx.egg-info/top_level.txt +1 -0
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
+
|
|
7
|
+
1. Definitions.
|
|
8
|
+
|
|
9
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
10
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
11
|
+
|
|
12
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
13
|
+
the copyright owner that is granting the License.
|
|
14
|
+
|
|
15
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
16
|
+
other entities that control, are controlled by, or are under common
|
|
17
|
+
control with that entity. For the purposes of this definition,
|
|
18
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
19
|
+
direction or management of such entity, whether by contract or
|
|
20
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
21
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
22
|
+
|
|
23
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
24
|
+
exercising permissions granted by this License.
|
|
25
|
+
|
|
26
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
27
|
+
including but not limited to software source code, documentation
|
|
28
|
+
source, and configuration files.
|
|
29
|
+
|
|
30
|
+
"Object" form shall mean any form resulting from mechanical
|
|
31
|
+
transformation or translation of a Source form, including but
|
|
32
|
+
not limited to compiled object code, generated documentation,
|
|
33
|
+
and conversions to other media types.
|
|
34
|
+
|
|
35
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
36
|
+
Object form, made available under the License, as indicated by a
|
|
37
|
+
copyright notice that is included in or attached to the work
|
|
38
|
+
(an example is provided in the Appendix below).
|
|
39
|
+
|
|
40
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
41
|
+
form, that is based on (or derived from) the Work and for which the
|
|
42
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
43
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
44
|
+
of this License, Derivative Works shall not include works that remain
|
|
45
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
46
|
+
the Work and Derivative Works thereof.
|
|
47
|
+
|
|
48
|
+
"Contribution" shall mean any work of authorship, including
|
|
49
|
+
the original version of the Work and any modifications or additions
|
|
50
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
51
|
+
submitted to the Licensor for inclusion in the Work by the copyright owner
|
|
52
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
53
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
54
|
+
means any form of electronic, verbal, or written communication sent
|
|
55
|
+
to the Licensor or its representatives, including but not limited to
|
|
56
|
+
communication on electronic mailing lists, source code control systems,
|
|
57
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
58
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
59
|
+
excluding communication that is conspicuously marked or otherwise
|
|
60
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
61
|
+
|
|
62
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
63
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
64
|
+
subsequently incorporated within the Work.
|
|
65
|
+
|
|
66
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
67
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
68
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
69
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
70
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
71
|
+
Work and such Derivative Works in Source or Object form.
|
|
72
|
+
|
|
73
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
74
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
+
(except as stated in this section) patent license to make, have made,
|
|
77
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
78
|
+
where such license applies only to those patent claims licensable
|
|
79
|
+
by such Contributor that are necessarily infringed by their
|
|
80
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
81
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
82
|
+
institute patent litigation against any entity (including a
|
|
83
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
84
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
85
|
+
or contributory patent infringement, then any patent licenses
|
|
86
|
+
granted to You under this License for that Work shall terminate
|
|
87
|
+
as of the date such litigation is filed.
|
|
88
|
+
|
|
89
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
90
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
91
|
+
modifications, and in Source or Object form, provided that You
|
|
92
|
+
meet the following conditions:
|
|
93
|
+
|
|
94
|
+
(a) You must give any other recipients of the Work or
|
|
95
|
+
Derivative Works a copy of this License; and
|
|
96
|
+
|
|
97
|
+
(b) You must cause any modified files to carry prominent notices
|
|
98
|
+
stating that You changed the files; and
|
|
99
|
+
|
|
100
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
101
|
+
that You distribute, all copyright, patent, trademark, and
|
|
102
|
+
attribution notices from the Source form of the Work,
|
|
103
|
+
excluding those notices that do not pertain to any part of
|
|
104
|
+
the Derivative Works; and
|
|
105
|
+
|
|
106
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
107
|
+
distribution, then any Derivative Works that You distribute must
|
|
108
|
+
include a readable copy of the attribution notices contained
|
|
109
|
+
within such NOTICE file, excluding those notices that do not
|
|
110
|
+
pertain to any part of the Derivative Works, in at least one
|
|
111
|
+
of the following places: within a NOTICE text file distributed
|
|
112
|
+
as part of the Derivative Works; within the Source form or
|
|
113
|
+
documentation, if provided along with the Derivative Works; or,
|
|
114
|
+
within a display generated by the Derivative Works, if and
|
|
115
|
+
wherever such third-party notices normally appear. The contents
|
|
116
|
+
of the NOTICE file are for informational purposes only and
|
|
117
|
+
do not modify the License. You may add Your own attribution
|
|
118
|
+
notices within Derivative Works that You distribute, alongside
|
|
119
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
120
|
+
that such additional attribution notices cannot be construed
|
|
121
|
+
as modifying the License.
|
|
122
|
+
|
|
123
|
+
You may add Your own copyright statement to Your modifications and
|
|
124
|
+
may provide additional or different license terms and conditions
|
|
125
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
126
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
127
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
128
|
+
the conditions stated in this License.
|
|
129
|
+
|
|
130
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
131
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
132
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
133
|
+
this License, without any additional terms or conditions.
|
|
134
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
135
|
+
the terms of any separate license agreement you may have executed
|
|
136
|
+
with Licensor regarding such Contributions.
|
|
137
|
+
|
|
138
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
139
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
140
|
+
except as required for reasonable and customary use in describing the
|
|
141
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
142
|
+
|
|
143
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
144
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
145
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
146
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
147
|
+
implied, including, without limitation, any warranties or conditions
|
|
148
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
149
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
150
|
+
appropriateness of using or redistributing the Work and assume any
|
|
151
|
+
risks associated with Your exercise of permissions under this License.
|
|
152
|
+
|
|
153
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
154
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
155
|
+
unless required by applicable law (such as deliberate and grossly
|
|
156
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
157
|
+
liable to You for damages, including any direct, indirect, special,
|
|
158
|
+
incidental, or consequential damages of any character arising as a
|
|
159
|
+
result of this License or out of the use or inability to use the
|
|
160
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
161
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
162
|
+
other commercial damages or losses), even if such Contributor
|
|
163
|
+
has been advised of the possibility of such damages.
|
|
164
|
+
|
|
165
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
166
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
167
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
168
|
+
or other liability obligations and/or rights consistent with this
|
|
169
|
+
License. However, in accepting such obligations, You may act only
|
|
170
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
171
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
172
|
+
defend, and hold each Contributor harmless for any liability
|
|
173
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
174
|
+
of your accepting any such warranty or additional liability.
|
|
175
|
+
|
|
176
|
+
END OF TERMS AND CONDITIONS
|
|
177
|
+
|
|
178
|
+
Copyright [2026-] Abdur Rahim
|
|
179
|
+
|
|
180
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
181
|
+
you may not use this file except in compliance with the License.
|
|
182
|
+
You may obtain a copy of the License at
|
|
183
|
+
|
|
184
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
185
|
+
|
|
186
|
+
Unless required by applicable law or agreed to in writing, software
|
|
187
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
188
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
189
|
+
See the License for the specific language governing permissions and
|
|
190
|
+
limitations under the License.
|
|
@@ -0,0 +1,279 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: unsloth-mlx
|
|
3
|
+
Version: 0.3.3
|
|
4
|
+
Summary: MLX-powered LLM fine-tuning for Apple Silicon - A drop-in replacement for Unsloth
|
|
5
|
+
Author: Unsloth-MLX Contributors
|
|
6
|
+
License: Apache-2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/ARahim3/unsloth-mlx
|
|
8
|
+
Project-URL: Documentation, https://github.com/ARahim3/unsloth-mlx#readme
|
|
9
|
+
Project-URL: Repository, https://github.com/ARahim3/unsloth-mlx
|
|
10
|
+
Project-URL: Issues, https://github.com/ARahim3/unsloth-mlx/issues
|
|
11
|
+
Keywords: llm,fine-tuning,mlx,apple-silicon,lora,unsloth,mac
|
|
12
|
+
Classifier: Development Status :: 3 - Alpha
|
|
13
|
+
Classifier: Intended Audience :: Developers
|
|
14
|
+
Classifier: Intended Audience :: Science/Research
|
|
15
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
21
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
22
|
+
Requires-Python: >=3.9
|
|
23
|
+
Description-Content-Type: text/markdown
|
|
24
|
+
License-File: LICENSE
|
|
25
|
+
Requires-Dist: mlx>=0.20.0
|
|
26
|
+
Requires-Dist: mlx-lm>=0.18.0
|
|
27
|
+
Requires-Dist: transformers>=4.36.0
|
|
28
|
+
Requires-Dist: tokenizers>=0.15.0
|
|
29
|
+
Requires-Dist: datasets>=2.14.0
|
|
30
|
+
Requires-Dist: huggingface-hub>=0.20.0
|
|
31
|
+
Requires-Dist: numpy>=1.23.0
|
|
32
|
+
Requires-Dist: tqdm>=4.65.0
|
|
33
|
+
Provides-Extra: dev
|
|
34
|
+
Requires-Dist: pytest>=7.4.0; extra == "dev"
|
|
35
|
+
Requires-Dist: pytest-cov>=4.1.0; extra == "dev"
|
|
36
|
+
Requires-Dist: black>=23.7.0; extra == "dev"
|
|
37
|
+
Requires-Dist: ruff>=0.0.284; extra == "dev"
|
|
38
|
+
Requires-Dist: ipython>=8.12.0; extra == "dev"
|
|
39
|
+
Provides-Extra: vlm
|
|
40
|
+
Requires-Dist: mlx-vlm>=0.1.0; extra == "vlm"
|
|
41
|
+
Provides-Extra: train
|
|
42
|
+
Requires-Dist: trl>=0.7.0; extra == "train"
|
|
43
|
+
Requires-Dist: peft>=0.7.0; extra == "train"
|
|
44
|
+
Requires-Dist: wandb>=0.15.0; extra == "train"
|
|
45
|
+
Provides-Extra: all
|
|
46
|
+
Requires-Dist: unsloth-mlx[dev,train,vlm]; extra == "all"
|
|
47
|
+
Dynamic: license-file
|
|
48
|
+
|
|
49
|
+
<p align="center">
|
|
50
|
+
<img src="https://raw.githubusercontent.com/ARahim3/unsloth-mlx/main/unsloth_mlx_logo_f.png" alt="Unsloth-MLX Logo" width="200"/>
|
|
51
|
+
</p>
|
|
52
|
+
<h1 align="center">Unsloth-MLX</h1>
|
|
53
|
+
|
|
54
|
+
<p align="center">
|
|
55
|
+
<strong>Fine-tune LLMs on your Mac with Apple Silicon</strong><br>
|
|
56
|
+
<em>Prototype locally, scale to cloud. Same code, just change the import.</em>
|
|
57
|
+
</p>
|
|
58
|
+
|
|
59
|
+
<p align="center">
|
|
60
|
+
<a href="#installation"><img src="https://img.shields.io/badge/Platform-Apple%20Silicon-black?logo=apple" alt="Platform"></a>
|
|
61
|
+
<a href="#requirements"><img src="https://img.shields.io/badge/Python-3.9+-blue?logo=python&logoColor=white" alt="Python"></a>
|
|
62
|
+
<a href="https://github.com/ml-explore/mlx"><img src="https://img.shields.io/badge/MLX-0.20+-green" alt="MLX"></a>
|
|
63
|
+
<a href="#license"><img src="https://img.shields.io/badge/License-Apache%202.0-orange" alt="License"></a>
|
|
64
|
+
</p>
|
|
65
|
+
|
|
66
|
+
<p align="center">
|
|
67
|
+
<a href="#quick-start">Quick Start</a> ·
|
|
68
|
+
<a href="#supported-training-methods">Training Methods</a> ·
|
|
69
|
+
<a href="#examples">Examples</a> ·
|
|
70
|
+
<a href="#project-status">Status</a>
|
|
71
|
+
</p>
|
|
72
|
+
|
|
73
|
+
---
|
|
74
|
+
|
|
75
|
+
> [!NOTE]
|
|
76
|
+
> **Why I Built This (A Personal Note)**
|
|
77
|
+
>
|
|
78
|
+
> I rely on Unsloth for my daily fine-tuning on cloud GPUs—it's the gold standard for me. But recently, I started working on a MacBook M4 and hit a friction point: I wanted to prototype locally on my Mac, then scale up to the cloud without rewriting my entire training script.
|
|
79
|
+
>
|
|
80
|
+
> Since Unsloth relies on Triton (which Macs don't have, yet), I couldn't use it locally. I built `unsloth-mlx` to solve this specific "Context Switch" problem. It wraps Apple's native MLX framework in an Unsloth-compatible API.
|
|
81
|
+
>
|
|
82
|
+
> **The goal isn't to replace Unsloth or claim superior performance.** The goal is **code portability**: allowing you to write `FastLanguageModel` code once on your Mac, test it, and then push that *exact same script* to a CUDA cluster. It solves a workflow problem, not just a hardware one.
|
|
83
|
+
>
|
|
84
|
+
> This is an "unofficial" project built by a fan, for fans who happen to use Macs. It's helping me personally, and if it helps others like me, then I'll have my satisfaction.
|
|
85
|
+
|
|
86
|
+
## Why Unsloth-MLX?
|
|
87
|
+
|
|
88
|
+
Bringing the [Unsloth](https://github.com/unslothai/unsloth) experience to Mac users via Apple's [MLX](https://github.com/ml-explore/mlx) framework.
|
|
89
|
+
|
|
90
|
+
- 🚀 **Fine-tune LLMs locally** on your Mac (M1/M2/M3/M4/M5)
|
|
91
|
+
- 💾 **Leverage unified memory** (up to 512GB on Mac Studio)
|
|
92
|
+
- 🔄 **Same API as Unsloth** - your existing code just works!
|
|
93
|
+
- 📦 **Export anywhere** - HuggingFace format, GGUF for Ollama/llama.cpp
|
|
94
|
+
|
|
95
|
+
```python
|
|
96
|
+
# Unsloth (CUDA) # Unsloth-MLX (Apple Silicon)
|
|
97
|
+
from unsloth import FastLanguageModel from unsloth_mlx import FastLanguageModel
|
|
98
|
+
from trl import SFTTrainer from unsloth_mlx import SFTTrainer
|
|
99
|
+
|
|
100
|
+
# Rest of your code stays exactly the same!
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
## What This Is (and Isn't)
|
|
104
|
+
|
|
105
|
+
**This is NOT** a replacement for Unsloth or an attempt to compete with it. Unsloth is incredible - it's the gold standard for efficient LLM fine-tuning on CUDA.
|
|
106
|
+
|
|
107
|
+
**This IS** a bridge for Mac users who want to:
|
|
108
|
+
- 🧪 **Prototype locally** - Experiment with fine-tuning before committing to cloud GPU costs
|
|
109
|
+
- 📚 **Learn & iterate** - Develop your training pipeline with fast local feedback loops
|
|
110
|
+
- 🔄 **Then scale up** - Move to cloud NVIDIA GPUs + original Unsloth for production training
|
|
111
|
+
|
|
112
|
+
```
|
|
113
|
+
Local Mac (Unsloth-MLX) → Cloud GPU (Unsloth)
|
|
114
|
+
Prototype & experiment Full-scale training
|
|
115
|
+
Small datasets Large datasets
|
|
116
|
+
Quick iterations Production runs
|
|
117
|
+
```
|
|
118
|
+
|
|
119
|
+
## Project Status
|
|
120
|
+
|
|
121
|
+
> 🚀 **v0.3.2** - Full dataset handling + multi-turn conversations!
|
|
122
|
+
|
|
123
|
+
| Feature | Status | Notes |
|
|
124
|
+
|---------|--------|-------|
|
|
125
|
+
| SFT Training | ✅ Stable | Native MLX training |
|
|
126
|
+
| Model Loading | ✅ Stable | Any HuggingFace model |
|
|
127
|
+
| Save/Export | ✅ Stable | HF format, GGUF |
|
|
128
|
+
| DPO Training | ✅ Stable | **Full DPO loss** |
|
|
129
|
+
| ORPO Training | ✅ Stable | **Full ORPO loss** |
|
|
130
|
+
| GRPO Training | ✅ Stable | **Multi-generation + reward** |
|
|
131
|
+
| KTO/SimPO | ✅ Stable | Proper loss implementations |
|
|
132
|
+
| Chat Templates | ✅ Stable | 15 models (llama, gemma, qwen, phi, mistral) |
|
|
133
|
+
| Response-Only Training | ✅ Stable | `train_on_responses_only()` |
|
|
134
|
+
| **Multi-turn Merging** | ✅ **NEW** | `to_sharegpt()` + `conversation_extension` |
|
|
135
|
+
| **Column Mapping** | ✅ **NEW** | `apply_column_mapping()` auto-rename |
|
|
136
|
+
| **Dataset Config** | ✅ **NEW** | `HFDatasetConfig` structured loading |
|
|
137
|
+
| Vision Models | ⚠️ Beta | Via mlx-vlm |
|
|
138
|
+
| PyPI Package | ✅ Available | `uv pip install unsloth-mlx` |
|
|
139
|
+
|
|
140
|
+
## Installation
|
|
141
|
+
|
|
142
|
+
```bash
|
|
143
|
+
# Using uv (recommended - faster and more reliable)
|
|
144
|
+
uv pip install unsloth-mlx
|
|
145
|
+
|
|
146
|
+
# Or using pip
|
|
147
|
+
pip install unsloth-mlx
|
|
148
|
+
|
|
149
|
+
# From source (for development)
|
|
150
|
+
git clone https://github.com/ARahim3/unsloth-mlx.git
|
|
151
|
+
cd unsloth-mlx
|
|
152
|
+
uv pip install -e .
|
|
153
|
+
```
|
|
154
|
+
|
|
155
|
+
## Quick Start
|
|
156
|
+
|
|
157
|
+
```python
|
|
158
|
+
from unsloth_mlx import FastLanguageModel, SFTTrainer, SFTConfig
|
|
159
|
+
from datasets import load_dataset
|
|
160
|
+
|
|
161
|
+
# Load any HuggingFace model (1B model for quick start)
|
|
162
|
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
|
163
|
+
model_name="mlx-community/Llama-3.2-1B-Instruct-4bit",
|
|
164
|
+
max_seq_length=2048,
|
|
165
|
+
load_in_4bit=True,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
# Add LoRA adapters
|
|
169
|
+
model = FastLanguageModel.get_peft_model(
|
|
170
|
+
model,
|
|
171
|
+
r=16,
|
|
172
|
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
173
|
+
lora_alpha=16,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
# Load a dataset (or create your own)
|
|
177
|
+
dataset = load_dataset("yahma/alpaca-cleaned", split="train[:100]")
|
|
178
|
+
|
|
179
|
+
# Train with SFTTrainer (same API as TRL!)
|
|
180
|
+
trainer = SFTTrainer(
|
|
181
|
+
model=model,
|
|
182
|
+
train_dataset=dataset,
|
|
183
|
+
tokenizer=tokenizer,
|
|
184
|
+
args=SFTConfig(
|
|
185
|
+
output_dir="outputs",
|
|
186
|
+
per_device_train_batch_size=2,
|
|
187
|
+
learning_rate=2e-4,
|
|
188
|
+
max_steps=50,
|
|
189
|
+
),
|
|
190
|
+
)
|
|
191
|
+
trainer.train()
|
|
192
|
+
|
|
193
|
+
# Save (same API as Unsloth!)
|
|
194
|
+
model.save_pretrained("lora_model") # Adapters only
|
|
195
|
+
model.save_pretrained_merged("merged", tokenizer) # Full model
|
|
196
|
+
model.save_pretrained_gguf("model", tokenizer, quantization_method="q4_k_m") # GGUF
|
|
197
|
+
```
|
|
198
|
+
|
|
199
|
+
### Chat Templates & Response-Only Training
|
|
200
|
+
|
|
201
|
+
```python
|
|
202
|
+
from unsloth_mlx import get_chat_template, train_on_responses_only
|
|
203
|
+
|
|
204
|
+
# Apply chat template (supports llama-3, gemma, qwen, phi, mistral, etc.)
|
|
205
|
+
tokenizer = get_chat_template(tokenizer, chat_template="llama-3")
|
|
206
|
+
|
|
207
|
+
# Or auto-detect from model name
|
|
208
|
+
tokenizer = get_chat_template(tokenizer, chat_template="auto")
|
|
209
|
+
|
|
210
|
+
# Train only on responses (not prompts) - more efficient!
|
|
211
|
+
trainer = train_on_responses_only(
|
|
212
|
+
trainer,
|
|
213
|
+
instruction_part="<|start_header_id|>user<|end_header_id|>\n\n",
|
|
214
|
+
response_part="<|start_header_id|>assistant<|end_header_id|>\n\n",
|
|
215
|
+
)
|
|
216
|
+
```
|
|
217
|
+
|
|
218
|
+
## Supported Training Methods
|
|
219
|
+
|
|
220
|
+
| Method | Trainer | Implementation | Use Case |
|
|
221
|
+
|--------|---------|----------------|----------|
|
|
222
|
+
| **SFT** | `SFTTrainer` | ✅ Native MLX | Instruction fine-tuning |
|
|
223
|
+
| **DPO** | `DPOTrainer` | ✅ Native MLX | Preference learning (proper log-prob loss) |
|
|
224
|
+
| **ORPO** | `ORPOTrainer` | ✅ Native MLX | Combined SFT + odds ratio preference |
|
|
225
|
+
| **GRPO** | `GRPOTrainer` | ✅ Native MLX | Reasoning with multi-generation (DeepSeek R1 style) |
|
|
226
|
+
| **KTO** | `KTOTrainer` | ✅ Native MLX | Kahneman-Tversky optimization |
|
|
227
|
+
| **SimPO** | `SimPOTrainer` | ✅ Native MLX | Simple preference optimization |
|
|
228
|
+
| **VLM** | `VLMSFTTrainer` | ⚠️ Beta | Vision-Language models |
|
|
229
|
+
|
|
230
|
+
## Examples
|
|
231
|
+
|
|
232
|
+
Check [`examples/`](examples/) for working code:
|
|
233
|
+
- Basic model loading and inference
|
|
234
|
+
- Complete SFT fine-tuning pipeline
|
|
235
|
+
- RL training methods (DPO, GRPO, ORPO)
|
|
236
|
+
|
|
237
|
+
## Requirements
|
|
238
|
+
|
|
239
|
+
- **Hardware**: Apple Silicon Mac (M1/M2/M3/M4/M5)
|
|
240
|
+
- **OS**: macOS 13.0+ (15.0+ recommended for large models)
|
|
241
|
+
- **Memory**: 16GB+ unified RAM (32GB+ for 7B+ models)
|
|
242
|
+
- **Python**: 3.9+
|
|
243
|
+
|
|
244
|
+
## Comparison with Unsloth
|
|
245
|
+
|
|
246
|
+
| Feature | Unsloth (CUDA) | Unsloth-MLX |
|
|
247
|
+
|---------|----------------|-------------|
|
|
248
|
+
| Platform | NVIDIA GPUs | Apple Silicon |
|
|
249
|
+
| Backend | Triton Kernels | MLX Framework |
|
|
250
|
+
| Memory | VRAM (limited) | Unified (up to 512GB) |
|
|
251
|
+
| API | Original | 100% Compatible |
|
|
252
|
+
| Best For | Production training | Local dev, large models |
|
|
253
|
+
|
|
254
|
+
## Contributing
|
|
255
|
+
|
|
256
|
+
Contributions welcome! Areas that need help:
|
|
257
|
+
- Custom MLX kernels for even faster training
|
|
258
|
+
- More comprehensive test coverage
|
|
259
|
+
- Documentation and examples
|
|
260
|
+
- Testing on different M-series chips (M1, M2, M3, M4, M5)
|
|
261
|
+
- VLM training improvements
|
|
262
|
+
|
|
263
|
+
## License
|
|
264
|
+
|
|
265
|
+
Apache 2.0 - See [LICENSE](LICENSE) file.
|
|
266
|
+
|
|
267
|
+
## Acknowledgments
|
|
268
|
+
|
|
269
|
+
- [Unsloth](https://github.com/unslothai/unsloth) - The original, incredible CUDA library
|
|
270
|
+
- [MLX](https://github.com/ml-explore/mlx) - Apple's ML framework
|
|
271
|
+
- [MLX-LM](https://github.com/ml-explore/mlx-lm) - LLM utilities for MLX
|
|
272
|
+
- [MLX-VLM](https://github.com/Blaizzy/mlx-vlm) - Vision model support
|
|
273
|
+
|
|
274
|
+
---
|
|
275
|
+
|
|
276
|
+
<p align="center">
|
|
277
|
+
<strong>Community project, not affiliated with Unsloth AI or Apple.</strong><br>
|
|
278
|
+
⭐ Star this repo if you find it useful!
|
|
279
|
+
</p>
|