unsloth-mlx 0.3.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,190 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to the Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ Copyright [2026-] Abdur Rahim
179
+
180
+ Licensed under the Apache License, Version 2.0 (the "License");
181
+ you may not use this file except in compliance with the License.
182
+ You may obtain a copy of the License at
183
+
184
+ http://www.apache.org/licenses/LICENSE-2.0
185
+
186
+ Unless required by applicable law or agreed to in writing, software
187
+ distributed under the License is distributed on an "AS IS" BASIS,
188
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
189
+ See the License for the specific language governing permissions and
190
+ limitations under the License.
@@ -0,0 +1,279 @@
1
+ Metadata-Version: 2.4
2
+ Name: unsloth-mlx
3
+ Version: 0.3.3
4
+ Summary: MLX-powered LLM fine-tuning for Apple Silicon - A drop-in replacement for Unsloth
5
+ Author: Unsloth-MLX Contributors
6
+ License: Apache-2.0
7
+ Project-URL: Homepage, https://github.com/ARahim3/unsloth-mlx
8
+ Project-URL: Documentation, https://github.com/ARahim3/unsloth-mlx#readme
9
+ Project-URL: Repository, https://github.com/ARahim3/unsloth-mlx
10
+ Project-URL: Issues, https://github.com/ARahim3/unsloth-mlx/issues
11
+ Keywords: llm,fine-tuning,mlx,apple-silicon,lora,unsloth,mac
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: License :: OSI Approved :: Apache Software License
16
+ Classifier: Programming Language :: Python :: 3
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Requires-Python: >=3.9
23
+ Description-Content-Type: text/markdown
24
+ License-File: LICENSE
25
+ Requires-Dist: mlx>=0.20.0
26
+ Requires-Dist: mlx-lm>=0.18.0
27
+ Requires-Dist: transformers>=4.36.0
28
+ Requires-Dist: tokenizers>=0.15.0
29
+ Requires-Dist: datasets>=2.14.0
30
+ Requires-Dist: huggingface-hub>=0.20.0
31
+ Requires-Dist: numpy>=1.23.0
32
+ Requires-Dist: tqdm>=4.65.0
33
+ Provides-Extra: dev
34
+ Requires-Dist: pytest>=7.4.0; extra == "dev"
35
+ Requires-Dist: pytest-cov>=4.1.0; extra == "dev"
36
+ Requires-Dist: black>=23.7.0; extra == "dev"
37
+ Requires-Dist: ruff>=0.0.284; extra == "dev"
38
+ Requires-Dist: ipython>=8.12.0; extra == "dev"
39
+ Provides-Extra: vlm
40
+ Requires-Dist: mlx-vlm>=0.1.0; extra == "vlm"
41
+ Provides-Extra: train
42
+ Requires-Dist: trl>=0.7.0; extra == "train"
43
+ Requires-Dist: peft>=0.7.0; extra == "train"
44
+ Requires-Dist: wandb>=0.15.0; extra == "train"
45
+ Provides-Extra: all
46
+ Requires-Dist: unsloth-mlx[dev,train,vlm]; extra == "all"
47
+ Dynamic: license-file
48
+
49
+ <p align="center">
50
+ <img src="https://raw.githubusercontent.com/ARahim3/unsloth-mlx/main/unsloth_mlx_logo_f.png" alt="Unsloth-MLX Logo" width="200"/>
51
+ </p>
52
+ <h1 align="center">Unsloth-MLX</h1>
53
+
54
+ <p align="center">
55
+ <strong>Fine-tune LLMs on your Mac with Apple Silicon</strong><br>
56
+ <em>Prototype locally, scale to cloud. Same code, just change the import.</em>
57
+ </p>
58
+
59
+ <p align="center">
60
+ <a href="#installation"><img src="https://img.shields.io/badge/Platform-Apple%20Silicon-black?logo=apple" alt="Platform"></a>
61
+ <a href="#requirements"><img src="https://img.shields.io/badge/Python-3.9+-blue?logo=python&logoColor=white" alt="Python"></a>
62
+ <a href="https://github.com/ml-explore/mlx"><img src="https://img.shields.io/badge/MLX-0.20+-green" alt="MLX"></a>
63
+ <a href="#license"><img src="https://img.shields.io/badge/License-Apache%202.0-orange" alt="License"></a>
64
+ </p>
65
+
66
+ <p align="center">
67
+ <a href="#quick-start">Quick Start</a> ·
68
+ <a href="#supported-training-methods">Training Methods</a> ·
69
+ <a href="#examples">Examples</a> ·
70
+ <a href="#project-status">Status</a>
71
+ </p>
72
+
73
+ ---
74
+
75
+ > [!NOTE]
76
+ > **Why I Built This (A Personal Note)**
77
+ >
78
+ > I rely on Unsloth for my daily fine-tuning on cloud GPUs—it's the gold standard for me. But recently, I started working on a MacBook M4 and hit a friction point: I wanted to prototype locally on my Mac, then scale up to the cloud without rewriting my entire training script.
79
+ >
80
+ > Since Unsloth relies on Triton (which Macs don't have, yet), I couldn't use it locally. I built `unsloth-mlx` to solve this specific "Context Switch" problem. It wraps Apple's native MLX framework in an Unsloth-compatible API.
81
+ >
82
+ > **The goal isn't to replace Unsloth or claim superior performance.** The goal is **code portability**: allowing you to write `FastLanguageModel` code once on your Mac, test it, and then push that *exact same script* to a CUDA cluster. It solves a workflow problem, not just a hardware one.
83
+ >
84
+ > This is an "unofficial" project built by a fan, for fans who happen to use Macs. It's helping me personally, and if it helps others like me, then I'll have my satisfaction.
85
+
86
+ ## Why Unsloth-MLX?
87
+
88
+ Bringing the [Unsloth](https://github.com/unslothai/unsloth) experience to Mac users via Apple's [MLX](https://github.com/ml-explore/mlx) framework.
89
+
90
+ - 🚀 **Fine-tune LLMs locally** on your Mac (M1/M2/M3/M4/M5)
91
+ - 💾 **Leverage unified memory** (up to 512GB on Mac Studio)
92
+ - 🔄 **Same API as Unsloth** - your existing code just works!
93
+ - 📦 **Export anywhere** - HuggingFace format, GGUF for Ollama/llama.cpp
94
+
95
+ ```python
96
+ # Unsloth (CUDA) # Unsloth-MLX (Apple Silicon)
97
+ from unsloth import FastLanguageModel from unsloth_mlx import FastLanguageModel
98
+ from trl import SFTTrainer from unsloth_mlx import SFTTrainer
99
+
100
+ # Rest of your code stays exactly the same!
101
+ ```
102
+
103
+ ## What This Is (and Isn't)
104
+
105
+ **This is NOT** a replacement for Unsloth or an attempt to compete with it. Unsloth is incredible - it's the gold standard for efficient LLM fine-tuning on CUDA.
106
+
107
+ **This IS** a bridge for Mac users who want to:
108
+ - 🧪 **Prototype locally** - Experiment with fine-tuning before committing to cloud GPU costs
109
+ - 📚 **Learn & iterate** - Develop your training pipeline with fast local feedback loops
110
+ - 🔄 **Then scale up** - Move to cloud NVIDIA GPUs + original Unsloth for production training
111
+
112
+ ```
113
+ Local Mac (Unsloth-MLX) → Cloud GPU (Unsloth)
114
+ Prototype & experiment Full-scale training
115
+ Small datasets Large datasets
116
+ Quick iterations Production runs
117
+ ```
118
+
119
+ ## Project Status
120
+
121
+ > 🚀 **v0.3.2** - Full dataset handling + multi-turn conversations!
122
+
123
+ | Feature | Status | Notes |
124
+ |---------|--------|-------|
125
+ | SFT Training | ✅ Stable | Native MLX training |
126
+ | Model Loading | ✅ Stable | Any HuggingFace model |
127
+ | Save/Export | ✅ Stable | HF format, GGUF |
128
+ | DPO Training | ✅ Stable | **Full DPO loss** |
129
+ | ORPO Training | ✅ Stable | **Full ORPO loss** |
130
+ | GRPO Training | ✅ Stable | **Multi-generation + reward** |
131
+ | KTO/SimPO | ✅ Stable | Proper loss implementations |
132
+ | Chat Templates | ✅ Stable | 15 models (llama, gemma, qwen, phi, mistral) |
133
+ | Response-Only Training | ✅ Stable | `train_on_responses_only()` |
134
+ | **Multi-turn Merging** | ✅ **NEW** | `to_sharegpt()` + `conversation_extension` |
135
+ | **Column Mapping** | ✅ **NEW** | `apply_column_mapping()` auto-rename |
136
+ | **Dataset Config** | ✅ **NEW** | `HFDatasetConfig` structured loading |
137
+ | Vision Models | ⚠️ Beta | Via mlx-vlm |
138
+ | PyPI Package | ✅ Available | `uv pip install unsloth-mlx` |
139
+
140
+ ## Installation
141
+
142
+ ```bash
143
+ # Using uv (recommended - faster and more reliable)
144
+ uv pip install unsloth-mlx
145
+
146
+ # Or using pip
147
+ pip install unsloth-mlx
148
+
149
+ # From source (for development)
150
+ git clone https://github.com/ARahim3/unsloth-mlx.git
151
+ cd unsloth-mlx
152
+ uv pip install -e .
153
+ ```
154
+
155
+ ## Quick Start
156
+
157
+ ```python
158
+ from unsloth_mlx import FastLanguageModel, SFTTrainer, SFTConfig
159
+ from datasets import load_dataset
160
+
161
+ # Load any HuggingFace model (1B model for quick start)
162
+ model, tokenizer = FastLanguageModel.from_pretrained(
163
+ model_name="mlx-community/Llama-3.2-1B-Instruct-4bit",
164
+ max_seq_length=2048,
165
+ load_in_4bit=True,
166
+ )
167
+
168
+ # Add LoRA adapters
169
+ model = FastLanguageModel.get_peft_model(
170
+ model,
171
+ r=16,
172
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
173
+ lora_alpha=16,
174
+ )
175
+
176
+ # Load a dataset (or create your own)
177
+ dataset = load_dataset("yahma/alpaca-cleaned", split="train[:100]")
178
+
179
+ # Train with SFTTrainer (same API as TRL!)
180
+ trainer = SFTTrainer(
181
+ model=model,
182
+ train_dataset=dataset,
183
+ tokenizer=tokenizer,
184
+ args=SFTConfig(
185
+ output_dir="outputs",
186
+ per_device_train_batch_size=2,
187
+ learning_rate=2e-4,
188
+ max_steps=50,
189
+ ),
190
+ )
191
+ trainer.train()
192
+
193
+ # Save (same API as Unsloth!)
194
+ model.save_pretrained("lora_model") # Adapters only
195
+ model.save_pretrained_merged("merged", tokenizer) # Full model
196
+ model.save_pretrained_gguf("model", tokenizer, quantization_method="q4_k_m") # GGUF
197
+ ```
198
+
199
+ ### Chat Templates & Response-Only Training
200
+
201
+ ```python
202
+ from unsloth_mlx import get_chat_template, train_on_responses_only
203
+
204
+ # Apply chat template (supports llama-3, gemma, qwen, phi, mistral, etc.)
205
+ tokenizer = get_chat_template(tokenizer, chat_template="llama-3")
206
+
207
+ # Or auto-detect from model name
208
+ tokenizer = get_chat_template(tokenizer, chat_template="auto")
209
+
210
+ # Train only on responses (not prompts) - more efficient!
211
+ trainer = train_on_responses_only(
212
+ trainer,
213
+ instruction_part="<|start_header_id|>user<|end_header_id|>\n\n",
214
+ response_part="<|start_header_id|>assistant<|end_header_id|>\n\n",
215
+ )
216
+ ```
217
+
218
+ ## Supported Training Methods
219
+
220
+ | Method | Trainer | Implementation | Use Case |
221
+ |--------|---------|----------------|----------|
222
+ | **SFT** | `SFTTrainer` | ✅ Native MLX | Instruction fine-tuning |
223
+ | **DPO** | `DPOTrainer` | ✅ Native MLX | Preference learning (proper log-prob loss) |
224
+ | **ORPO** | `ORPOTrainer` | ✅ Native MLX | Combined SFT + odds ratio preference |
225
+ | **GRPO** | `GRPOTrainer` | ✅ Native MLX | Reasoning with multi-generation (DeepSeek R1 style) |
226
+ | **KTO** | `KTOTrainer` | ✅ Native MLX | Kahneman-Tversky optimization |
227
+ | **SimPO** | `SimPOTrainer` | ✅ Native MLX | Simple preference optimization |
228
+ | **VLM** | `VLMSFTTrainer` | ⚠️ Beta | Vision-Language models |
229
+
230
+ ## Examples
231
+
232
+ Check [`examples/`](examples/) for working code:
233
+ - Basic model loading and inference
234
+ - Complete SFT fine-tuning pipeline
235
+ - RL training methods (DPO, GRPO, ORPO)
236
+
237
+ ## Requirements
238
+
239
+ - **Hardware**: Apple Silicon Mac (M1/M2/M3/M4/M5)
240
+ - **OS**: macOS 13.0+ (15.0+ recommended for large models)
241
+ - **Memory**: 16GB+ unified RAM (32GB+ for 7B+ models)
242
+ - **Python**: 3.9+
243
+
244
+ ## Comparison with Unsloth
245
+
246
+ | Feature | Unsloth (CUDA) | Unsloth-MLX |
247
+ |---------|----------------|-------------|
248
+ | Platform | NVIDIA GPUs | Apple Silicon |
249
+ | Backend | Triton Kernels | MLX Framework |
250
+ | Memory | VRAM (limited) | Unified (up to 512GB) |
251
+ | API | Original | 100% Compatible |
252
+ | Best For | Production training | Local dev, large models |
253
+
254
+ ## Contributing
255
+
256
+ Contributions welcome! Areas that need help:
257
+ - Custom MLX kernels for even faster training
258
+ - More comprehensive test coverage
259
+ - Documentation and examples
260
+ - Testing on different M-series chips (M1, M2, M3, M4, M5)
261
+ - VLM training improvements
262
+
263
+ ## License
264
+
265
+ Apache 2.0 - See [LICENSE](LICENSE) file.
266
+
267
+ ## Acknowledgments
268
+
269
+ - [Unsloth](https://github.com/unslothai/unsloth) - The original, incredible CUDA library
270
+ - [MLX](https://github.com/ml-explore/mlx) - Apple's ML framework
271
+ - [MLX-LM](https://github.com/ml-explore/mlx-lm) - LLM utilities for MLX
272
+ - [MLX-VLM](https://github.com/Blaizzy/mlx-vlm) - Vision model support
273
+
274
+ ---
275
+
276
+ <p align="center">
277
+ <strong>Community project, not affiliated with Unsloth AI or Apple.</strong><br>
278
+ ⭐ Star this repo if you find it useful!
279
+ </p>