unitlab 2.1.2__tar.gz → 2.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: unitlab
3
- Version: 2.1.2
3
+ Version: 2.1.3
4
4
  Home-page: https://github.com/teamunitlab/unitlab-sdk
5
5
  Author: Unitlab Inc.
6
6
  Author-email: team@unitlab.ai
@@ -2,7 +2,7 @@ from setuptools import find_packages, setup
2
2
 
3
3
  setup(
4
4
  name="unitlab",
5
- version="2.1.2",
5
+ version="2.1.3",
6
6
  license="MIT",
7
7
  author="Unitlab Inc.",
8
8
  author_email="team@unitlab.ai",
@@ -39,18 +39,6 @@ class COCO:
39
39
  self.data_path
40
40
  )
41
41
  )
42
- if self.annotation_type not in [
43
- "img_bbox",
44
- "img_semantic_segmentation",
45
- "img_instance_segmentation",
46
- "img_polygon",
47
- "img_keypoints",
48
- ]:
49
- raise ValueError(
50
- "Invalid annotation type '{}'. Supported types are: ['img_bbox', 'img_semantic_segmentation', 'img_polygon', 'img_keypoints']".format(
51
- self.annotation_type
52
- )
53
- )
54
42
  for required_key in ["images", "annotations", "categories"]:
55
43
  if required_key not in self.dataset.keys():
56
44
  raise KeyError(
@@ -284,30 +272,16 @@ class DatasetUploadHandler(COCO):
284
272
  )
285
273
 
286
274
  def get_img_instance_segmentation_payload(self, anns):
287
- predicted_classes = set()
288
- annotations = []
289
- for ann in anns:
290
- annotations.append(
291
- {
292
- "segmentation": ann["segmentation"],
293
- "category_id": self.original_category_referecences.get(
294
- ann["category_id"]
295
- ),
296
- }
297
- )
298
- predicted_classes.add(
299
- self.original_category_referecences.get(ann["category_id"])
300
- )
301
- return json.dumps(
302
- {
303
- "annotations": annotations,
304
- "predicted_classes": list(predicted_classes),
305
- "classes": self.classes,
306
- }
307
- )
275
+ return self.get_img_semantic_segmentation_payload(anns)
308
276
 
309
277
  def get_img_polygon_payload(self, anns):
310
- logger.warning("Not implemented yet")
278
+ return self.get_img_semantic_segmentation_payload(anns)
279
+
280
+ def get_img_line_payload(self, anns):
281
+ return self.get_img_semantic_segmentation_payload(anns)
282
+
283
+ def get_img_point_payload(self, anns):
284
+ return self.get_img_semantic_segmentation_payload(anns)
311
285
 
312
286
  def get_img_skeleton_payload(self, anns):
313
287
  logger.warning("Not implemented yet")
@@ -32,9 +32,11 @@ class DownloadType(str, Enum):
32
32
 
33
33
  class AnnotationType(str, Enum):
34
34
  IMG_BBOX = "img_bbox"
35
- IMG_POLYGON = "img_polygon"
36
35
  IMG_SEMANTIC_SEGMENTATION = "img_semantic_segmentation"
37
36
  IMG_INSTANCE_SEGMENTATION = "img_instance_segmentation"
37
+ IMG_POLYGON = "img_polygon"
38
+ IMG_LINE = "img_line"
39
+ IMG_POINT = "img_point"
38
40
  IMG_SKELETON = "img_skeleton"
39
41
 
40
42
 
@@ -104,10 +106,7 @@ def dataset_upload(
104
106
  help_prompt = ", ".join(
105
107
  f"{idx}: {license['name']}" for idx, license in enumerate(licenses)
106
108
  )
107
- chosen_license = typer.prompt(
108
- f"Select license {help_prompt}",
109
- type=LicenseEnum,
110
- )
109
+ chosen_license = typer.prompt(f"Select license {help_prompt}", type=LicenseEnum)
111
110
  client.dataset_upload(
112
111
  name,
113
112
  annotation_type.value,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: unitlab
3
- Version: 2.1.2
3
+ Version: 2.1.3
4
4
  Home-page: https://github.com/teamunitlab/unitlab-sdk
5
5
  Author: Unitlab Inc.
6
6
  Author-email: team@unitlab.ai
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes