unifiedbooster 0.1.1__tar.gz → 0.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: unifiedbooster
3
- Version: 0.1.1
4
- Summary: Call R functions from Python
3
+ Version: 0.1.3
4
+ Summary: Unified interface for Gradient Boosted Decision Trees
5
5
  Home-page: https://github.com/thierrymoudiki/unifiedbooster
6
6
  Author: T. Moudiki
7
7
  Author-email: thierry.moudiki@gmail.com
@@ -10,7 +10,7 @@ from os import path
10
10
 
11
11
  subprocess.check_call(['pip', 'install', 'Cython'])
12
12
 
13
- __version__ = "0.1.1"
13
+ __version__ = "0.1.3"
14
14
 
15
15
  here = path.abspath(path.dirname(__file__))
16
16
 
@@ -44,7 +44,7 @@ setup(
44
44
  'Programming Language :: Python :: 3.7',
45
45
  'Programming Language :: Python :: 3.8',
46
46
  ],
47
- description="Call R functions from Python",
47
+ description="Unified interface for Gradient Boosted Decision Trees",
48
48
  entry_points={
49
49
  'console_scripts': [
50
50
  'unifiedbooster=unifiedbooster.cli:main',
@@ -24,7 +24,7 @@ class GBDTClassifier(BaseEstimator, ClassifierMixin):
24
24
  # subsample
25
25
  # max_depth
26
26
  # lightgbm -----
27
- # num_iterations
27
+ # n_estimators
28
28
  # learning_rate
29
29
  # bagging_fraction
30
30
  # max_depth
@@ -45,7 +45,7 @@ class GBDTClassifier(BaseEstimator, ClassifierMixin):
45
45
  elif self.model_type == "lightgbm":
46
46
  verbose = self.verbosity - 1 if self.verbosity==0 else self.verbosity
47
47
  self.params = {
48
- 'num_iterations': self.n_estimators,
48
+ 'n_estimators': self.n_estimators,
49
49
  'learning_rate': self.learning_rate,
50
50
  'bagging_fraction': self.subsample,
51
51
  'max_depth': self.max_depth,
@@ -65,7 +65,7 @@ class GBDTClassifier(BaseEstimator, ClassifierMixin):
65
65
  if model_type == 'xgboost':
66
66
  self.model = XGBClassifier(**self.params)
67
67
  elif model_type == 'catboost':
68
- self.model = CatBoostClassifier(**self.params, logging_level='Silent')
68
+ self.model = CatBoostClassifier(**self.params)
69
69
  elif model_type == 'lightgbm':
70
70
  self.model = LGBMClassifier(**self.params)
71
71
  else:
@@ -24,7 +24,7 @@ class GBDTRegressor(BaseEstimator, RegressorMixin):
24
24
  # subsample
25
25
  # max_depth
26
26
  # lightgbm -----
27
- # num_iterations
27
+ # n_estimators
28
28
  # learning_rate
29
29
  # bagging_fraction
30
30
  # max_depth
@@ -45,7 +45,7 @@ class GBDTRegressor(BaseEstimator, RegressorMixin):
45
45
  elif self.model_type == "lightgbm":
46
46
  verbose = self.verbosity - 1 if self.verbosity==0 else self.verbosity
47
47
  self.params = {
48
- 'num_iterations': self.n_estimators,
48
+ 'n_estimators': self.n_estimators,
49
49
  'learning_rate': self.learning_rate,
50
50
  'bagging_fraction': self.subsample,
51
51
  'max_depth': self.max_depth,
@@ -65,7 +65,7 @@ class GBDTRegressor(BaseEstimator, RegressorMixin):
65
65
  if model_type == 'xgboost':
66
66
  self.model = XGBRegressor(**self.params)
67
67
  elif model_type == 'catboost':
68
- self.model = CatBoostRegressor(**self.params, logging_level='Silent')
68
+ self.model = CatBoostRegressor(**self.params)
69
69
  elif model_type == 'lightgbm':
70
70
  self.model = LGBMRegressor(**self.params)
71
71
  else:
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: unifiedbooster
3
- Version: 0.1.1
4
- Summary: Call R functions from Python
3
+ Version: 0.1.3
4
+ Summary: Unified interface for Gradient Boosted Decision Trees
5
5
  Home-page: https://github.com/thierrymoudiki/unifiedbooster
6
6
  Author: T. Moudiki
7
7
  Author-email: thierry.moudiki@gmail.com
File without changes
File without changes